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Abstract
We present a counterexample to a conjecture cited by Cassels [CaI]

and attributed to Selmer. The issues raised have been given new
significance by the recent work of Heath-Brown [HB] and Swinnerton-
Dyer [SwD] on the arithmetic of diagonal cubic surfaces.

1 Introduction

Let E be an elliptic curve over a number field k, with complex multiplication
by Z[ω] where ω is a primitive cube root of unity. Let K = k(ω), so that
[K : k] = 1 or 2 according as ω ∈ k or ω 6∈ k. In his work on cubic surfaces,
Heath-Brown [HB] makes implicit use of

Theorem 1.1 If [K : k] = 2 and the Tate-Shafarevich group X(E/k) is
finite, then the order of X(E/K)[

√
−3] is a perfect square.

We explain how this result follows from the work of Cassels [CaIV], and give
an example to show that the condition [K : k] = 2 is necessary.

For the application to cubic surfaces, we only need a special case of the
theorem, namely that X(E/K)[

√
−3] cannot have order 3. This result, still

conditional on the finiteness of the Tate-Shafarevich group, has already ap-
peared in [BF] and [SwD]. In fact Swinnerton-Dyer [SwD] vastly generalises
Heath-Brown’s results. In the case [K : k] = 2 he proves the Hasse princi-
ple for diagonal cubic 3-folds over k, conditional only on the finiteness of the
Tate-Shafarevich group for elliptic curves over k. The condition [K : k] = 2 is
unnatural, and conjecturally should not appear. However, the counterexam-
ple presented in this article suggests that, if we are to follow the methods of
Heath-Brown and Swinnerton-Dyer, then this condition on k is unavoidable.
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In §2 we recall how it is possible to pass between the fields k and K.
Then in §3 we give a modern treatment of the descent by 3-isogeny studied
by Selmer [S1] and Cassels [CaI]. In §§4,5 we recall how the conjectures of
Selmer may be deduced from properties of the Cassels-Tate pairing. This
culminates in a proof of Theorem 1.1. Finally in §6 we present our new
example.

2 Decomposition into Galois eigenspaces

Let E be an elliptic curve over k with complex multiplication by Z[ω]. The
isogeny [

√
−3] : E → E is defined over K = k(ω). But the kernel E[

√
−3] is

defined over k. It follows that there is a 3-isogeny φ : E → Ẽ defined over k
with E[

√
−3] = E[φ]. Here Ẽ is a second elliptic curve defined over k, which

we immediately recognise as the −3-twist of E. The dual isogeny φ̂ : Ẽ → E
satisfies φ ◦ φ̂ = [3] and φ̂ ◦ φ = [3]. Our notation for the Selmer groups and
Tate-Shafarevich groups follows [Sil, Chapter X].

Lemma 2.1 If [K : k] = 2 then the exact sequence

0−→E(K)/
√
−3E(K)−→S(

√
−3)(E/K)−→X(E/K)[

√
−3]−→ 0 (1)

is the direct sum of the exact sequences

0−→ Ẽ(k)/φE(k)−→S(φ)(E/k)−→X(E/k)[φ]−→ 0 (2)

and

0−→E(k)/φ̂Ẽ(k)−→S(φ̂)(Ẽ/k)−→X(Ẽ/k)[φ̂]−→ 0. (3)

Proof. Since arguments of this type have already appeared in [BF], [N],
[SwD] and presumably countless other places in the literature, we will not
dwell on the proof. Suffice to say that we decompose (1) into eigenspaces for
the action of Gal(K/k), and then use the inflation-restriction exact sequence
to identify these eigenspaces as (2) and (3). The observation that [K : k] = 2
is prime to deg φ = 3 is crucial throughout the proof. �

Remark 2.2 Each term of the exact sequence (1) is a Z/3Z-vector space
with an action of Gal(K/k). So each term is a direct sum of the Galois

modules Z/3Z and µ3. If we replace E by Ẽ in (1) then we obtain the same
exact sequence of abelian groups, but as Galois modules the summands Z/3Z
and µ3 are interchanged.
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3 Computation of Selmer groups

Let k be a number field. Let T [a0, a1, a2] be the diagonal plane cubic

a0x
3
0 + a1x

3
1 + a2x

3
2 = 0 (4)

where a0, a1, a2 ∈ k∗/k∗3. Let EA be the elliptic curve T [A, 1, 1] with identity
element 0 = (0 : 1 : −1). It is well known [St] that EA has Weierstrass
equation y2 = x3 − 432A2. An alternative proof of the following lemma may
be found in [CaL, §18].

Lemma 3.1 The diagonal plane cubic T [a0, a1, a2] is a smooth curve of
genus 1 with Jacobian EA where A = a0a1a2.

Proof. There is an isomorphism T [a0, a1, a2]'EA defined over k( 3
√
α) where

α = a1a
2
2. It is given by

ψ : (x0 : x1 : x2) 7→ (a2x0 : α2/3x1 : α1/3a2x2).

The cocycle σ(ψ)ψ−1 takes values in the subgroup µ3 ⊂ Aut(EA) generated
by xi 7→ ωixi. But since µ3 acts on EA without fixed points, this action
belongs to the translation subgroup of Aut(EA). It follows that T [a0, a1, a2]
is a torsor under EA and that EA is the Jacobian of T [a0, a1, a2]. �

Temporarily working over K = k(ω) we note that EA has complex mul-
tiplication by Z[ω] where ω : (x0 : x1 : x2) 7→ (ωx0 : x1 : x2) and that
EA[1 − ω] = EA[

√
−3] is generated by (0 : ω : −ω2). So as in §2 there is a

map φ which gives an exact sequence of Galois modules

0−→µ3−→EA
φ−→ ẼA−→ 0

where ẼA is the −3-twist of EA. Taking Galois cohomology we obtain an
exact sequence

0−→ ẼA(k)/φEA(k)
δ−→ k∗/k∗3−→H1(k,EA)[φ]−→ 0. (5)

The group H1(k,EA) parametrises the torsors under EA. We write CA,α for
the torsor under EA described by α ∈ k∗/k∗3. The proof of Lemma 3.1 shows
that

T [a0, a1, a2]'CA,α for A =
∏
aν and α =

∏
aνν (6)
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where the products are over ν ∈ Z/3Z. Since T [a0, a1, a2]'T [a1, a2, a0] it is

clear that A ∈ im δ. If ẼA has Weierstrass equation Y 2Z = −4AX3 + Z3

then the 3-covering map T [a0, a1, a2]→ ẼA is given by

(x0 : x1 : x2) 7→ (x0x1x2 : a1x
3
1 − a2x

3
2 : a0x

3
0).

The Selmer group attached to φ is

S(φ)(EA/k) = {α ∈ k∗/k∗3 |CA,α(kp) 6= ∅ for all primes p }.

Since deg φ = 3 is odd we have ignored the infinite places. We write δp for
the local connecting map obtained when we apply (5) to the local field kp.
Then the condition CA,α(kp) 6= ∅ may also be written α ∈ im δp. Using (6)
to give equations for CA,α it is easy to prove

Lemma 3.2 Let k be a number field, and let p be a prime not dividing 3.
Let op denote the ring of integers of kp. Then

im δp =

{
o∗p/o

∗3
p if ordp(A) ≡ 0 (mod 3)

〈A〉 if ordp(A) 6≡ 0 (mod 3).

If p divides 3 the situation is more complicated, although we still have

im δp ⊂ o∗p/o
∗3
p if ordp(A) ≡ 0 (mod 3). (7)

If ω ∈ kp then Tate local duality tells us that im δp is a maximal isotropic
subspace with respect to the Hilbert norm residue symbol

k∗p/k
∗3
p × k∗p/k∗3p → µ3. (8)

The next lemma treats the case k = Q(ω). This field has ring of integers
Z[ω] and class number 1. The unique prime above 3 is π = ω − ω2.

Lemma 3.3 Let A ∈ Z[ω] be non-zero and cube-free. Then

im δπ =


〈A, (1− A)/(1 + A) 〉 if ordπ(A) 6= 0

〈A, 1− π3 〉 if ordπ(A) = 0 and A2 6≡ ±1 (π3)
〈ω(1 + 3a), 1− π3 〉 if A = ±(1 + aπ3) for some a ∈ Z[ω].
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Proof. We recall [CF, Exercise 2.13] that k∗π/k
∗3
π has basis π, ω, 1−π2, 1−π3

and that these elements define a filtration compatible with the pairing (8).
By Tate local duality it follows that im δπ has order 9. So to prove the lemma
it suffices to prove the inclusions ⊃. As always A ∈ im δπ, whereas (7) and
Tate local duality tell us that 1 − π3 ∈ im δπ. There is at most one more
element to find.
(i) Suppose ordπ(A) 6= 0. If α satisfies α − α−1 = A then T [A,α, α−1] is
soluble. Splitting into the cases ordπ(A) = 1 or 2 we find

4A/(1− A2) ≡ A (mod π4).

So α = (1− A)/(1 + A) provides a solution mod π4.
(ii) Suppose A = 1 + aπ3 for some a ∈ Z[ω]. If α satisfies A + α + α−1 = 0
then T [A,α, α−1] is soluble. In view of the identity

(1 + π3a) + ω(1 + 3a) + ω2(1− 3a) = 0

we see that α = ω(1 + 3a) provides a solution mod π4. �

4 Selmer’s conjectures

In this section we take k = Q, so that K = Q(ω). We consider the elliptic

curves EA and ẼA over Q where A ≥ 2 is a cube-free integer.

Lemma 4.1 If A ≥ 3 then the torsion subgroups are

EA(Q)tors = 0 and ẼA(Q)tors'Z/3Z.

Proof. See [St, §6] or [K, Chapter 1, Problem 7]. �

Lemma 2.1 gives a decomposition into Gal(K/Q)-eigenspaces

S(
√
−3)(EA/K)'S(φ)(EA/Q)⊕ S(φ̂)(ẼA/Q). (9)

The following examples were found by Selmer [S1], [S2].

Example 4.2 Let A = 60. Lemmas 3.2 and 3.3 tell us that

S(
√
−3)(E60/K)'〈2, 3, 5〉 ⊂ K∗/K∗3.
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Then (9) gives S(φ)(E60/Q)' (Z/3Z)3 and S(φ̂)(Ẽ60/Q) = 0. But a 2-descent
[CaL, §15], [Cr] shows that E60(Q) has rank 0. We deduce

X(E60/Q)[3]' (Z/3Z)2.

Example 4.3 Let A = 473. Lemmas 3.2 and 3.3 tell us that

S(
√
−3)(E473/K)'〈11, 1− 6ω, 1− 6ω2〉 ⊂ K∗/K∗3.

Then (9) gives S(φ)(E473/Q)' (Z/3Z)2 and S(φ̂)(Ẽ473/Q)'Z/3Z. But a
2-descent [S2], [Cr] shows that E473(Q) has rank 0. We deduce

X(E473/Q)[φ]'Z/3Z and X(Ẽ473/Q)[φ̂]'Z/3Z.

Remark 4.4 According to the formulae and tables of Stephens [St], the
above examples have L(EA, 1) 6= 0. So the claims rankEA(Q) = 0 could
equally be deduced from the work of Coates-Wiles [CW].

Example 4.2 tells us that each of the curves

T [3, 4, 5] : 3x3
0 + 4x3

1 + 5x3
2 = 0

T [1, 3, 20] : x3
0 + 3x3

1 + 20x3
2 = 0

T [1, 4, 15] : x3
0 + 4x3

1 + 15x3
2 = 0

T [1, 5, 12] : x3
0 + 5x3

1 + 12x3
2 = 0

(10)

is a counterexample to the Hasse Principle for smooth curves of genus 1 de-
fined over Q. Selmer proves this without the need for a 2-descent. Instead he
shows that the equations (10) are insoluble over Q by writing them as norm
equations. As Cassels explains [CaI, §11] this is equivalent to performing a
second descent, i.e. computing the middle group in

ẼA(Q)/φEA(Q) ⊂ φ̂S(3)(ẼA/Q) ⊂ S(φ)(EA/Q). (11)

In fact Selmer’s calculations suffice to show that X(E60/Q)(3)' (Z/3Z)2.
In other words X(E60/Q) does not contain an element of order 9. More
recent work of Rubin [M] improves this to X(E60/Q)' (Z/3Z)2.

Selmer also gave practical methods for computing the two right hand
groups in

EA(Q)/φ̂ẼA(Q) ⊂ φS(3)(EA/Q) ⊂ S(φ̂)(ẼA/Q). (12)
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Following Stephens [St] we write g1 + 1, λ′1 + 1, λ1 + 1 for the dimensions of
the Z/3Z-vector spaces (11) and g2, λ′2, λ2 for the dimensions of the Z/3Z-
vector spaces (12). Trivially we have 0 ≤ g1 ≤ λ′1 ≤ λ1, 0 ≤ g2 ≤ λ′2 ≤ λ2

and rankEA(Q) = g1 + g2. Based on a large amount of numerical evidence,
Selmer [S3] made the following

Conjecture 4.5 Let A ≥ 2 be a cube-free integer. Let EA be the elliptic
curve x3 + y3 = Az3 defined over Q. Then
Weak form. The second descent excludes an even number of generators,
i.e. λ1 ≡ λ′1 (mod 2) and λ2 ≡ λ′2 (mod 2).
Strong form. The number of generators of infinite order for EA(Q) is an
even number less than what is indicated by the first descent, i.e. λ1 + λ2 ≡
g1 + g2 (mod 2).

For A = 473, Selmer found λ1 = λ′1 = λ2 = λ′2 = 1 yet g1 = g2 = 0. He

was thus aware of the need to combine the contributions from φ and φ̂ in the
strong form of his conjecture.

Remark 4.6 In Heath-Brown’s notation [HB] we have

r(A) = rankEA(Q) = g1 + g2 and s(A) = λ1 + λ2.

By (9) the order of S(
√
−3)(EA/K) is 3s(A)+1 and in fact it is this relation

that Heath-Brown uses to define s(A). Naturally he writes the strong form
of Selmer’s conjecture as r(A) ≡ s(A) (mod 2).

Now let k be any number field. Conjecture 4.5 is equivalent to the case
k = Q of the following

Conjecture 4.7 Let A ∈ k∗ not a perfect cube. Let EA be the elliptic curve
x3 + y3 = Az3 defined over k. Then
Weak form. The subgroup φ̂(X(ẼA/k)[3]) ⊂X(EA/k)[φ] has index a per-

fect square. The same is true for φ(X(EA/k)[3]) ⊂X(ẼA/k)[φ̂].

Strong form. The order of X(EA/k)[φ] multiplied by the order of X(ẼA/k)[φ̂]
is a perfect square.

In the next section we recall how Conjecture 4.7 follows from the work of
Cassels, the strong form being conditional on the finiteness of X(EA/k).
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5 The Cassels-Tate pairing

Let E be an elliptic curve over a number field k. For φ : E → E ′ an isogeny
of elliptic curves over k we shall write φ̂ : E ′ → E for the dual isogeny.
Cassels [CaIV] defines an alternating bilinear pairing

〈 , 〉 : X(E/k)×X(E/k)→ Q/Z (13)

with the following non-degeneracy property.

Theorem 5.1 Let φ : E → E ′ be an isogeny of elliptic curves over k. Then
x ∈X(E/k) belongs to the image of φ̂ : X(E ′/k)→X(E/k) if and only if
〈x, y〉 = 0 for all y ∈X(E/k)[φ].

Proof. This was proved by Cassels [CaIV] in the case φ = [m] for m a rational
integer. The general case follows by his methods and is explained in [F]. �

The pairing was later generalised to abelian varieties by Tate, and so is
known as the Cassels-Tate pairing. The most striking applications in the
case of elliptic curves come from the following easy lemma.

Lemma 5.2 If a finite abelian group admits a non-degenerate alternating
bilinear pairing, then its order must be a perfect square.

The weak form of Conjecture 4.7 is a special case of

Corollary 5.3 Let φ : E → E ′ be an m-isogeny of elliptic curves over k.
Then the subgroup φ̂(X(E ′/k)[m]) ⊂X(E/k)[φ] has index a perfect square.

Proof. According to Theorem 5.1 the pairing (13) restricted to X(E/k)[φ]

has kernel φ̂(X(E ′/k)[m]). We are done by Lemma 5.2. �

Let us assume that X(E/k) is finite. So by Theorem 5.1 and Lemma 5.2
the order of X(E/k) is a perfect square. If φ : E → E ′ is an isogeny of
elliptic curves over k then the same conclusions will hold for E ′. We define

〈 , 〉φ : X(E/k)×X(E ′/k)→ Q/Z ; (x, y) 7→ 〈φx, y〉 = 〈x, φ̂y〉 (14)

where the equality on the right is [CaVIII, Theorem 1.2]. The strong form
of Conjecture 4.7 is a special case of
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Corollary 5.4 Let φ : E → E ′ be an isogeny of elliptic curves over k. If
X(E/k) is finite then the order of X(E/k)[φ] multiplied by the order of

X(E ′/k)[φ̂] is a perfect square.

Proof. According to Theorem 5.1 the left and right kernels of 〈 , 〉φ are

X(E/k)[φ] and X(E ′/k)[φ̂]. We obtain a non-degenerate pairing

X(E/k)/X(E/k)[φ]×X(E ′/k)/X(E ′/k)[φ̂]→ Q/Z.

We deduce that these quotients have the same order and are done since
X(E/k) and X(E ′/k) each have order a perfect square. �

Another well known consequence is

Corollary 5.5 Let E be an elliptic curve over k whose Tate-Shafarevich
group is finite, and let m be a rational integer. Then the order of X(E/k)[m]
is a perfect square.

Proof. According to Theorem 5.1 the kernel of 〈 , 〉m is X(E/k)[m]. We
obtain a non-degenerate alternating pairing

X(E/k)/X(E/k)[m]×X(E/k)/X(E/k)[m]→ Q/Z.

We apply Lemma 5.2 to this pairing and are done since X(E/k) has order
a perfect square. �

Remark 5.6 We could equally deduce Corollary 5.4 from Corollaries 5.3
and 5.5.

Proof of Theorem 1.1. Let E be an elliptic curve over k with complex mul-
tiplication by Z[ω] and suppose that [K : k] = 2. Lemma 2.1 tells us that

X(E/K)[
√
−3]'X(E/k)[φ]⊕X(Ẽ/k)[φ̂].

Assuming X(E/k) is finite, Corollary 5.4 shows that the group on the right
has order a perfect square. So the group on the left has order a perfect
square, and this is precisely the statement of Theorem 1.1. �

In the first of his celebrated series of papers, Cassels [CaI] defines a pairing
S(
√
−3)(EA/K) × S(

√
−3)(EA/K) → µ3. It is of course a special case of the

pairing (13). He uses it to prove the weak form of Conjecture 4.7 in the case
[K : k] = 1. However in the introduction to the same paper he misquotes
the strong form of Selmer’s conjecture. The statement he gives is equivalent
to

9



• If [K : k] = 1 then the order of X(EA/K)[
√
−3] is a perfect square.

It is this statement to which we have found a counterexample. It is possible
that Cassels was mislead by earlier work of Selmer at a time when he did not
appreciate the need to combine the contributions from φ and φ̂ in the strong
form of his conjecture.

Remark 5.7 It is tempting to try and prove Theorem 1.1 in the case [K :
k] = 1 by imitating the proof of Corollary 5.5. However the isogeny [

√
−3]

has dual [−
√
−3] and this extra sign means that the pairing 〈 , 〉√−3 is

symmetric rather than alternating. Lemma 5.2 does not apply.

6 A new example

In this section we take K = Q(ω). Let EA be the elliptic curve x3+y3 = Az3.
We aim to find A ∈ K such that the order of X(EA/K)[

√
−3] is not a perfect

square. As in Example 4.3 our method is to compare a 3-descent with a 2-
descent. The form of the curves EA makes the 3-descent easy. We use the
results of §3 to compute the Selmer group S(

√
−3)(EA/K). For the 2-descent

we would like to use John Cremona’s program mwrank [Cr]. But mwrank is
written specifically for elliptic curves over Q, whereas Theorem 1.1 tells us
that there are no examples of the required form with A2 ∈ Q. Fortunately
we were able to use a program of Denis Simon [Si1], [Si2], written using pari

[BBBCO], that extends Cremona’s work on 2-descents to general number
fields (in practice of degrees 1 to 5).

We consider all cube-free A ∈ Z[ω] with A2 6∈ Q and Norm(A) ≤ 150. We
ignore repeats of the form ±σ(A) for σ ∈ Gal(K/Q). In all 123 cases a calcu-
lation based on Lemmas 3.2 and 3.3 shows that S(

√
−3)(EA/K) is isomorphic

to either Z/3Z or (Z/3Z)2. In the 98 cases where S(
√
−3)(EA/K)'Z/3Z it

follows immediately that rankEA(K) = 0. In the remaining 25 cases we run
Simon’s program. For 20 of these curves the program exhibits a point of
infinite order. Since EA(K) has the structure of Z[ω]-module, we are able to
deduce that rankEA(K) = 2. The remaining 5 cases are

A = ±(3 + 7ω), ±(9 + ω), ±(12 + 5ω), ±(6 + 13ω), ±(13 + 7ω)

and their Galois conjugates. In each case Simon’s program reports that
rankEA(K) = 0. Reducing modulo some small primes we findEA(K)'Z/3Z.
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Thus
X(EA/K)[

√
−3]'Z/3Z.

For the remainder of this article we restrict attention to the first of these
examples, namely A = 3 + 7ω, and give further details of the descent calcu-
lations involved. In particular we establish the counterexample of the title
in a way that is independent of Simon’s program.

We begin by checking the above computation of S(
√
−3)(EA/K) for A =

3 + 7ω. Since (A) is prime, Lemma 3.2 tells us that

S(
√
−3)(EA/K) ⊂ 〈ω, 3 + 7ω〉. (15)

We check the local conditions at the primes (π) and (A) above 3 and 37
respectively.

• Since 37 ≡ 1 (mod 9) we know that ω is a cube locally at (A).

• Lemma 3.3 gives im δπ = 〈A, 1 − π3〉 ⊂ K∗π/K
∗3
π . Since A = ω − π3 it

is clear that ω belongs to this subgroup.

It follows that equality holds in (15) as required.
Given the provisional nature of Simon’s program we have taken the liberty

of writing out the 2-descent for A = 3+7ω in the style of Cassels [CaL, p.72-
73]. The curve EA has Weierstrass form

Y 2 = X3 − 2433(3 + 7ω)2. (16)

The 2-descent takes place over the field L = K(δ) where δ3 = 4(3 + 7ω).
According to pari [BBBCO]1, L has class number h = 3, and fundamental
units

η1 = (−7− 3ω) + (−3− 2ω)δ + (−2 + ω)δ2/2
η2 = (−7− 3ω) + (2− ω)δ + (3 + 2ω)δ2/2.

Furthermore pari is able to certify these results, independent of any con-
jecture. We have chosen η1 and η2 to be K-conjugates. They have minimal
polynomial

x3 + (21 + 9ω)x2 + (102− 165ω)x− 1.

If (X, Y ) = (r/t2, s/t3) is a solution of (16), with fractions in lowest terms,
then a common prime divisor of any two of

r − 3δ2t2, r − 3ωδ2t2, r − 3ω2δ2t2

1These calculations were performed using Version 2.0.20 (beta)
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must divide 2(1 − ω)(3 + 7ω). Since 2, (1 − ω), (3 + 7ω) ramify completely,
r − 3δ2t2 must be a perfect ideal square. Since h is odd it follows that
S(2)(E/K) is a subgroup of 〈−1, η1, η2〉 ⊂ L∗/L∗2. We claim that S(2)(E/K)
is trivial. By considering norms from L to K, it suffices to show that the
equation

r − 3δ2t2 = ηα2 with η = η1, η2 or 1/(η1η2)

is insoluble for r, t ∈ K and α ∈ L. The action of Gal(L/K) shows that
we need only consider the case η = η1. Put α = u + vδ + wδ2. Equating
coefficients of powers of δ we obtain

0 = (−3− 2ω)u2 + (−14− 6ω)uv + (−26− 36ω)v2

+ (−52− 72ω)uw + (40− 104ω)vw + (−148ω)w2

−3t2 = ((−2 + ω)/2)u2 + (−6− 4ω)uv + (−7− 3ω)v2

+ (−14− 6ω)uw + (−52− 72ω)vw + (20− 52ω)w2.

On putting

u = (−8 + 6ω)e+ (−6− 34ω)f + (−20 + 15ω)g
v = (−4− 4ω)e+ (12 + 4ω)f + (−10− 11ω)g
w = (1− ω)e+ (1 + 4ω)f + (2− 2ω)g

in the first equation, it becomes

0 = (3 + 7ω)g2 − 16ef.

Hence there are m,n such that

e : f : g = m2 : (3 + 7ω)n2 : 4mn.

On substituting into the second equation, we get

−3t2 = 2(−1− 4ω)m4 + 8(−4 + 3ω)m3n+ 4(21 + 12ω)m2n2

+ 8(4− 3ω)mn3 + 2(−33− 40ω)n4.

But this is impossible in K2. Hence S(2)(EA/K) is trivial and rankEA(K) =
0 as claimed.
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