A counterexample to a conjecture of Selmer

Tom Fisher
6 November 2002

Abstract
We present a counterexample to a conjecture cited by Cassels [Cal]
and attributed to Selmer. The issues raised have been given new
significance by the recent work of Heath-Brown [HB| and Swinnerton-
Dyer [SwD] on the arithmetic of diagonal cubic surfaces.

1 Introduction

Let E be an elliptic curve over a number field k&, with complex multiplication
by Z[w] where w is a primitive cube root of unity. Let K = k(w), so that
[K : k] =1 or 2 according as w € k or w ¢ k. In his work on cubic surfaces,
Heath-Brown [HB| makes implicit use of

Theorem 1.1 If [K : k| = 2 and the Tate-Shafarevich group UI(E/k) is
finite, then the order of UI(E/K)[\/—3] is a perfect square.

We explain how this result follows from the work of Cassels [CalV], and give
an example to show that the condition [K : k] = 2 is necessary.

For the application to cubic surfaces, we only need a special case of the
theorem, namely that IIT(E/K)[v/—3] cannot have order 3. This result, still
conditional on the finiteness of the Tate-Shafarevich group, has already ap-
peared in [BF] and [SwD]. In fact Swinnerton-Dyer [SwD] vastly generalises
Heath-Brown’s results. In the case [K : k| = 2 he proves the Hasse princi-
ple for diagonal cubic 3-folds over k, conditional only on the finiteness of the
Tate-Shafarevich group for elliptic curves over k. The condition [K : k] = 2 is
unnatural, and conjecturally should not appear. However, the counterexam-
ple presented in this article suggests that, if we are to follow the methods of
Heath-Brown and Swinnerton-Dyer, then this condition on £ is unavoidable.
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In §2 we recall how it is possible to pass between the fields £ and K.
Then in §3 we give a modern treatment of the descent by 3-isogeny studied
by Selmer [S1] and Cassels [Cal]. In §§4,5 we recall how the conjectures of
Selmer may be deduced from properties of the Cassels-Tate pairing. This
culminates in a proof of Theorem 1.1. Finally in §6 we present our new
example.

2 Decomposition into Galois eigenspaces

Let E be an elliptic curve over k with complex multiplication by Z[w]. The
isogeny [v/—=3] : E — F is defined over K = k(w). But the kernel E[y/—3] is
defined over k. It follows that there is a 3-isogeny ¢ : E — E defined over k
with E[v/=3] = E[¢]. Here E is a second elliptic curve defined over k, which
we immediately recognise as the —3-twist of . The dual isogeny (E .FE—FE
satisfies ¢ 0 ¢ = [3] and ¢ o ¢ = [3]. Our notation for the Selmer groups and
Tate-Shafarevich groups follows [Sil, Chapter X].

Lemma 2.1 If [K : k] = 2 then the exact sequence
0— E(K)/V=3E(K)— SY=)(E/K) — II(E/K)[v/=3] —0 (1)
is the direct sum of the exact sequences
0— E(k)/¢E(k) — S(E/k) — I(E/k)[¢] — 0 (2)
and
0— E(k)/SE (k) — SO(E/k) — I(E/k)[¢] — 0, (3)

Proof. Since arguments of this type have already appeared in [BF], [N],
[SwD] and presumably countless other places in the literature, we will not
dwell on the proof. Suffice to say that we decompose (1) into eigenspaces for
the action of Gal(K/k), and then use the inflation-restriction exact sequence
to identify these eigenspaces as (2) and (3). The observation that [K : k| = 2
is prime to deg ¢ = 3 is crucial throughout the proof. O

Remark 2.2 Each term of the exact sequence (1) is a Z/3Z-vector space
with an action of Gal(K/k). So each term is a direct sum of the Galois
modules Z/3Z and ji3. If we replace E by E in (1) then we obtain the same
exact sequence of abelian groups, but as Galois modules the summands Z/3Z
and ps are interchanged.



3 Computation of Selmer groups
Let k be a number field. Let T[ag, a, as] be the diagonal plane cubic
apTy + a17% + apah =0 (4)

where ag, a1, as € k*/k*3. Let E4 be the elliptic curve T[A, 1, 1] with identity
element 0 = (0 : 1 : —1). It is well known [St] that F4 has Weierstrass

equation y? = x® — 432A2. An alternative proof of the following lemma may
be found in [CaL, §18].

Lemma 3.1 The diagonal plane cubic Tlag,a1,as] is a smooth curve of
genus 1 with Jacobian E, where A = agaqas.

Proof. There is an isomorphism T'[ag, a;, as] ~ E4 defined over k(/a) where
a = aja3. It is given by

Y (xo:xy t xg) = (agxg - Py 041/3@2902).

The cocycle o (1)1 takes values in the subgroup pus C Aut(E,) generated
by x; — wix;. But since us acts on E, without fixed points, this action
belongs to the translation subgroup of Aut(Ey4). It follows that T'[ag, a1, as]
is a torsor under E4 and that F, is the Jacobian of T[ag, ai, as). O

Temporarily working over K = k(w) we note that E4 has complex mul-
tiplication by Z[w] where w : (g : 1 : @2) — (wxg : 1 : x9) and that
Eall —w] = Ea[y/=3] is generated by (0 : w : —w?). So as in §2 there is a
map ¢ which gives an exact sequence of Galois modules

00— ps— Ey 2 Ey—s0

where F 4 is the —3-twist of E4. Taking Galois cohomology we obtain an
exact sequence

0— Ea(k)/¢Ea(k) —> k*/k*> — H'(k, E4)[¢] — 0. (5)

The group H'(k, E4) parametrises the torsors under E4. We write Cy , for
the torsor under F4 described by o € k*/k*3. The proof of Lemma 3.1 shows
that

Tlag, a1, as] ~Caq for A=]]a, and o =[] a, (6)



where the products are over v € Z/3Z. Since T'|ag, a1, as] ~T[ay, as, ag)] it is
clear that A € im¢. If F4 has Weierstrass equation Y?Z = —4AX? 4 Z°
then the 3-covering map T[ag, a1, as] — E4 is given by

(w0 : 21 2 T) > (D212 © 125 — apTy © apxd).
The Selmer group attached to ¢ is
SONEAk) = {a € k*/E | Cunlky) # 0 for all primes p }.

Since deg ¢ = 3 is odd we have ignored the infinite places. We write ¢, for
the local connecting map obtained when we apply (5) to the local field k.
Then the condition C4 4(ky) # 0 may also be written a € imd,. Using (6)
to give equations for Cy , it is easy to prove

Lemma 3.2 Let k be a number field, and let p be a prime not dividing 3.
Let o, denote the ring of integers of ky. Then

G — 0;/05% if ordy(A) =0 (mod 3)
H P—{ (A)  if ordy(A) £ 0 (mod 3).

If p divides 3 the situation is more complicated, although we still have
imd, C o;/0;’ if ordy(4) =0 (mod 3). (7)

If w € k, then Tate local duality tells us that im d, is a maximal isotropic
subspace with respect to the Hilbert norm residue symbol

ke /K X ke [R5 — s, (8)

The next lemma treats the case k = Q(w). This field has ring of integers

Z[w] and class number 1. The unique prime above 3 is T = w — w?.

Lemma 3.3 Let A € Z|w] be non-zero and cube-free. Then

(A, (1—-A)/1+A)) if ord:(A) #0
imd, = (A1 —m3) if ord.(A) =0 and A* # +1 (73)
(w(l+3a),1—73) if A= +(1+ar®) for some a € Z]w)].



Proof. We recall [CF, Exercise 2.13] that k¥ /k*> has basis 7, w,1 — 72,1 — 73
and that these elements define a filtration compatible with the pairing (8).
By Tate local duality it follows that im 4, has order 9. So to prove the lemma
it suffices to prove the inclusions D. As always A € imd,, whereas (7) and
Tate local duality tell us that 1 — 7 € imd,. There is at most one more
element to find.

(i) Suppose ord;(A) # 0. If « satisfies « — a™' = A then T[A, a,a7!] is
soluble. Splitting into the cases ord,(A) =1 or 2 we find
4A/(1 =A%) = A (mod 7).

Soa=(1—A)/(1+ A) provides a solution mod 7.
(ii) Suppose A = 1+ an® for some a € Z[w]. If « satisfies A+ a+a ™t =0
then T[A, o, a™ '] is soluble. In view of the identity

(1+7%a) +w(1+3a) +w?(1 —3a) =0

we see that o = w(1 + 3a) provides a solution mod 7. 0

4 Selmer’s conjectures

In this section we take k = Q, so that K = Q(w). We consider the elliptic
curves F4 and FE4 over Q where A > 2 is a cube-free integer.

Lemma 4.1 If A > 3 then the torsion subgroups are

Eo(Qors =0 and  E4(Q)iors~Z/3Z.

Proof. See [St, §6] or [K, Chapter 1, Problem 7]. O

Lemma 2.1 gives a decomposition into Gal(K/Q)-eigenspaces
SV (Ba/K) = SO (Ea/Q) @ SP(Ea/Q). (9)
The following examples were found by Selmer [S1], [S2].
Example 4.2 Let A = 60. Lemmas 3.2 and 3.3 tell us that

SV (Bg/K) ~(2,3,5) € K*/K*.
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Then (9) gives S'®)(Eg/Q) ~ (Z/3Z)* and S@(EGO/Q) = 0. But a 2-descent
[CaL, §15], [Cr]| shows that Eg(Q) has rank 0. We deduce

11 (Eso/Q)[3] ~ (2/3Z)°.
Example 4.3 Let A =473. Lemmas 3.2 and 3.3 tell us that
SV (B /K) ~ (11,1 — 6w, 1 — 6w?) C K*/K*.

Then (9) gives S (Ey73/Q)~(Z/3Z)? and S((E)(Eggg/Q)ﬁZ/SZ. But a
2-descent [S2], [Cr] shows that FE473(Q) has rank 0. We deduce

I(Ey3/Q)[¢] ~Z/3Z and 1I(Eys/Q)[¢] ~Z/3Z.

Remark 4.4 According to the formulae and tables of Stephens [St], the
above examples have L(E4,1) # 0. So the claims rank F4(Q) = 0 could
equally be deduced from the work of Coates-Wiles [CW].

Example 4.2 tells us that each of the curves

7(3,4,5): 3af+4zf +525 = 0

T[1,3,20]: a3+ 32342023 = 0
3 3 3 (10)

T[1,4,15] : xy+4af+ 1525 = 0

T[,5,12]: xy+ 5z +1223 = 0

is a counterexample to the Hasse Principle for smooth curves of genus 1 de-
fined over Q. Selmer proves this without the need for a 2-descent. Instead he
shows that the equations (10) are insoluble over Q by writing them as norm
equations. As Cassels explains [Cal, §11] this is equivalent to performing a
second descent, ¢.e. computing the middle group in

EA(Q)/0EA(Q) C 6SP(E4/Q) C S9(EA/Q). (11)

In fact Selmer’s calculations suffice to show that II(Fg/Q)(3) ~ (Z/3Z)>.
In other words II(Eg)/Q) does not contain an element of order 9. More
recent work of Rubin [M] improves this to III(Fg/Q) ~ (Z/3Z)>.

Selmer also gave practical methods for computing the two right hand
groups in

Ea(Q)/$EA(Q) C 6SP(E4/Q) C SO (EA/Q). (12)



Following Stephens [St] we write g; + 1, A} + 1, A; + 1 for the dimensions of
the Z/3Z-vector spaces (11) and go, A, Ay for the dimensions of the Z/3Z-
vector spaces (12). Trivially we have 0 < g1 < N < A1, 0 < g < A, < Ay
and rank £4(Q) = g1 + ¢g2. Based on a large amount of numerical evidence,
Selmer [S3] made the following

Conjecture 4.5 Let A > 2 be a cube-free integer. Let E 4 be the elliptic
curve 23 + 3 = Az3 defined over Q. Then

Weak form. The second descent excludes an even number of generators,
i.e. A1 = A} (mod 2) and Ay = N, (mod 2).

Strong form. The number of generators of infinite order for Eo(Q) is an
even number less than what is indicated by the first descent, i.e. \y + \o =
g1+ g2 (mod 2).

For A = 473, Selmer found \y = \] = Ay = A, = 1 yet gy = go = 0. He
was thus aware of the need to combine the contributions from ¢ and ¢ in the
strong form of his conjecture.

Remark 4.6 In Heath-Brown’s notation [HB] we have
r(A) =rank EA(Q) = g1 + g2 and s(A) = A\ + Ao

By (9) the order of SV=3)(E,/K) is 3*4*! and in fact it is this relation
that Heath-Brown uses to define s(A). Naturally he writes the strong form
of Selmer’s conjecture as r(A) = s(A) (mod 2).

Now let k be any number field. Conjecture 4.5 is equivalent to the case
k = Q of the following

Conjecture 4.7 Let A € k* not a perfect cube. Let E 4 be the elliptic curve
2?4+ 2 = A2? defined over k. Then

Weak form. The subgroup ¢(IIL(E4/k)[3]) C III(E4/k)[¢] has index a per-
fect square. The same is true for ¢(IIL(E4/k)[3]) C HI(EA/k)[QAﬁ]

Strong form. The order of INI(E 4 /k)[¢] multiplied by the order of II1(E /k)[4)

1S a perfect square.

In the next section we recall how Conjecture 4.7 follows from the work of
Cassels, the strong form being conditional on the finiteness of IIT(E4/k).



5 The Cassels-Tate pairing

Let E be an elliptic curve over a number field k. For ¢ : E — E' an isogeny
of elliptic curves over k we shall write ¢ : £/ — E for the dual isogeny.
Cassels [CalV] defines an alternating bilinear pairing

(, ) HI(E/k) x I(E/k) — Q/Z (13)
with the following non-degeneracy property.

Theorem 5.1 Let ¢ : E — E' be an isogeny of elliptic curves over k. Then
x € HI(E/k) belongs to the image of ¢ : IL(E'/k) — UI(E/k) if and only if
(z,y) =0 for all y € HI(E/k)[¢].

Proof. This was proved by Cassels [CalV] in the case ¢ = [m] for m a rational
integer. The general case follows by his methods and is explained in [F]. O

The pairing was later generalised to abelian varieties by Tate, and so is
known as the Cassels-Tate pairing. The most striking applications in the
case of elliptic curves come from the following easy lemma.

Lemma 5.2 If a finite abelian group admits a non-degenerate alternating
bilinear pairing, then its order must be a perfect square.
The weak form of Conjecture 4.7 is a special case of

Corollary 5.3 Let ¢ : E — E' be an m-isogeny of elliptic curves over k.
Then the subgroup ¢(LLL(E'/k)[m]) C LILI(E/k)[¢] has index a perfect square.

Proof. According to Theorem 5.1 the pairing (13) restricted to HI(E/k)[¢]
has kernel ¢(III(E’/k)[m]). We are done by Lemma 5.2. O

Let us assume that III(E/k) is finite. So by Theorem 5.1 and Lemma 5.2
the order of III(E/k) is a perfect square. If ¢ : E — FE’ is an isogeny of
elliptic curves over k then the same conclusions will hold for E’. We define

(, )o: T(E/R) x TL(E'[k) = Q/Z;  (2,y) — (¢w,y) = (z,0y)  (14)

where the equality on the right is [CaVIII, Theorem 1.2]. The strong form
of Conjecture 4.7 is a special case of



Corollary 5.4 Let ¢ : E — E’ be an isogeny of elliptic curves over k. If
HI(E/k) is finite then the order of ILI(E/k)[¢p| multiplied by the order of

I(E'/k)[¢] is a perfect square.
Proof. According to Theorem 5.1 the left and right kernels of ( , ), are

II(E/k)[¢] and II(E'/k)[$]. We obtain a non-degenerate pairing

~

I(E/k)/T(E/k)[¢] x TL(E'/k)/T(E"/k)[¢] — Q/Z.

We deduce that these quotients have the same order and are done since
HI(E/k) and II(E’/k) each have order a perfect square. O

Another well known consequence is

Corollary 5.5 Let E be an elliptic curve over k whose Tate-Shafarevich
group is finite, and let m be a rational integer. Then the order of III(E/k)[m]
is a perfect square.

Proof. According to Theorem 5.1 the kernel of ( |, ), is III(E/k)[m]. We

obtain a non-degenerate alternating pairing
UI(E/k)/IL(E/k)[m] x TI(E/k)/OL(E/k)[m] — Q/Z.

We apply Lemma 5.2 to this pairing and are done since II(E/k) has order
a perfect square. O

Remark 5.6 We could equally deduce Corollary 5.4 from Corollaries 5.3
and 5.5.

Proof of Theorem 1.1. Let E be an elliptic curve over k with complex mul-
tiplication by Z[w] and suppose that [K : k] = 2. Lemma 2.1 tells us that

(E/K)[v=3| ~ I(E/k)[¢] & TL(E/k)[4)].

Assuming II(E/k) is finite, Corollary 5.4 shows that the group on the right
has order a perfect square. So the group on the left has order a perfect
square, and this is precisely the statement of Theorem 1.1. O

In the first of his celebrated series of papers, Cassels [Cal| defines a pairing
SV=(EL/K) x ST (E4/K) — ps. It is of course a special case of the
pairing (13). He uses it to prove the weak form of Conjecture 4.7 in the case
[K : k] = 1. However in the introduction to the same paper he misquotes
the strong form of Selmer’s conjecture. The statement he gives is equivalent
to



o If [K : k| =1 then the order of HI(E4/K)[\/—3]| is a perfect square.

It is this statement to which we have found a counterexample. It is possible
that Cassels was mislead by earlier work of Selmer at a time when he did not
appreciate the need to combine the contributions from ¢ and ¢ in the strong
form of his conjecture.

Remark 5.7 It is tempting to try and prove Theorem 1.1 in the case [K :
k] = 1 by imitating the proof of Corollary 5.5. However the isogeny [v/—3]
has dual [—/=3] and this extra sign means that the pairing ( , ) =3 is
symmetric rather than alternating. Lemma 5.2 does not apply.

6 A new example

In this section we take K = Q(w). Let E4 be the elliptic curve 23 +3°> = Az3.
We aim to find A € K such that the order of III(E4/K)[v/—3] is not a perfect
square. As in Example 4.3 our method is to compare a 3-descent with a 2-
descent. The form of the curves E4 makes the 3-descent easy. We use the
results of §3 to compute the Selmer group SV=3)(E,/K). For the 2-descent
we would like to use John Cremona’s program mwrank [Cr|. But mwrank is
written specifically for elliptic curves over Q, whereas Theorem 1.1 tells us
that there are no examples of the required form with A? € Q. Fortunately
we were able to use a program of Denis Simon [Sil], [Si2], written using pari
[BBBCO], that extends Cremona’s work on 2-descents to general number
fields (in practice of degrees 1 to 5).

We consider all cube-free A € Z[w] with A% ¢ Q and Norm(A) < 150. We
ignore repeats of the form £o(A) for o € Gal(K/Q). In all 123 cases a calcu-
lation based on Lemmas 3.2 and 3.3 shows that S&/=3)(E,/K) is isomorphic
to either Z/3Z or (Z/3Z)%. In the 98 cases where SV=3)(E,/K)~Z/3Z it
follows immediately that rank £4(K) = 0. In the remaining 25 cases we run
Simon’s program. For 20 of these curves the program exhibits a point of
infinite order. Since E4(K) has the structure of Z[w]-module, we are able to
deduce that rank F4(K) = 2. The remaining 5 cases are

A=+034+Tw), £(9+w), £(12 + bw), £(6 + 13w), (13 + Tw)

and their Galois conjugates. In each case Simon’s program reports that
rank F4(K) = 0. Reducing modulo some small primes we find F4(K) ~Z/3Z.
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Thus
I(E4/K)[v—3]~Z/3Z.

For the remainder of this article we restrict attention to the first of these
examples, namely A = 3 + 7w, and give further details of the descent calcu-
lations involved. In particular we establish the counterexample of the title
in a way that is independent of Simon’s program.

We begin by checking the above computation of S&V=3)(E,/K) for A =
3 + Tw. Since (A) is prime, Lemma 3.2 tells us that

SVENEL/K) C (w, 3+ Tw). (15)

We check the local conditions at the primes (7) and (A) above 3 and 37
respectively.

e Since 37 =1 (mod 9) we know that w is a cube locally at (A).

e Lemma 3.3 gives im§, = (A, 1 —73) C K*/K?3. Since A = w — 73 it
is clear that w belongs to this subgroup.

It follows that equality holds in (15) as required.

Given the provisional nature of Simon’s program we have taken the liberty
of writing out the 2-descent for A = 3+ 7w in the style of Cassels [Cal, p.72-
73]. The curve E4 has Weierstrass form

Y?= X3 —2'33(3 4+ Tw)>. (16)

The 2-descent takes place over the field L = K () where §* = 4(3 + Tw).
According to pari [BBBCO]!, L has class number h = 3, and fundamental
units

m = (=7—=3w)+ (=3 —2w)d + (=2 + w)d?/2

e = (=7—=3w)+(2—w)d+ (3+2w)ds?/2.
Furthermore pari is able to certify these results, independent of any con-
jecture. We have chosen 7; and 7, to be K-conjugates. They have minimal
polynomial

3 2
z° 4+ (21 + w)z” + (102 — 165w)z — 1.

If (X,Y) = (r/t? s/t?) is a solution of (16), with fractions in lowest terms,
then a common prime divisor of any two of

r—36%2, r—3wst?, r— 3wt

!These calculations were performed using Version 2.0.20 (beta)
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must divide 2(1 — w)(3 + 7w). Since 2, (1 — w), (3 + 7w) ramify completely,
r — 36%t?> must be a perfect ideal square. Since h is odd it follows that
S@(E/K) is a subgroup of (—1,n1,1,) € L*/L*?. We claim that S®(E/K)
is trivial. By considering norms from L to K, it suffices to show that the
equation

r—36%* =na®  with n =ny,my or 1/(mins)

is insoluble for r,t € K and o € L. The action of Gal(L/K) shows that
we need only consider the case n = 1. Put a = u + vé + wdé?. Equating
coefficients of powers of  we obtain

0 = (=3—2w)u?+ (—14 — 6w)uv + (—26 — 36w)v?
+ (=52 — T2w)uw + (40 — 104w)vw + (—148w)w?

=3t = ((-2+w)/2)u* + (=6 — dw)uv + (=7 — 3w)v?
+ (=14 — 6w)uw + (=52 — T2w)vw + (20 — 52w)w?.

On putting

u = (=846w)e+ (—6—34w)f + (=20 + 15w)g
v = (—4—4dw)e+ (12 +4w)f + (10 — 11lw)g
= (I1-w)e+(1+4w)f +(2—2w)g

in the first equation, it becomes
0= (3+7w)g* — 16ef.
Hence there are m,n such that
e:f:g=m?: (34 Tw)n?: 4mn.
On substituting into the second equation, we get

—3t? = 2(—1—4w)m* + 8(—4 + 3w)m3n + 4(21 + 12w)m?n?
+ 8(4 — 3w)mn? + 2(—33 — 40w)n?.

But this is impossible in K. Hence S®(E,/K) is trivial and rank E4(K) =
0 as claimed.
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