A counterexample to a conjecture of Selmer

Tom Fisher

6 November 2002

Abstract

We present a counterexample to a conjecture cited by Cassels [CaI] and attributed to Selmer. The issues raised have been given new significance by the recent work of Heath-Brown [HB] and Swinnerton-Dyer [SwD] on the arithmetic of diagonal cubic surfaces.

1 Introduction

Let E be an elliptic curve over a number field k, with complex multiplication by $\mathbf{Z}[\omega]$ where ω is a primitive cube root of unity. Let $K = k(\omega)$, so that [K:k] = 1 or 2 according as $\omega \in k$ or $\omega \notin k$. In his work on cubic surfaces, Heath-Brown [HB] makes implicit use of

Theorem 1.1 If [K:k] = 2 and the Tate-Shafarevich group $\coprod(E/k)$ is finite, then the order of $\coprod(E/K)[\sqrt{-3}]$ is a perfect square.

We explain how this result follows from the work of Cassels [CaIV], and give an example to show that the condition [K:k]=2 is necessary.

For the application to cubic surfaces, we only need a special case of the theorem, namely that $\mathrm{III}(E/K)[\sqrt{-3}]$ cannot have order 3. This result, still conditional on the finiteness of the Tate-Shafarevich group, has already appeared in [BF] and [SwD]. In fact Swinnerton-Dyer [SwD] vastly generalises Heath-Brown's results. In the case [K:k]=2 he proves the Hasse principle for diagonal cubic 3-folds over k, conditional only on the finiteness of the Tate-Shafarevich group for elliptic curves over k. The condition [K:k]=2 is unnatural, and conjecturally should not appear. However, the counterexample presented in this article suggests that, if we are to follow the methods of Heath-Brown and Swinnerton-Dyer, then this condition on k is unavoidable.

In $\S 2$ we recall how it is possible to pass between the fields k and K. Then in $\S 3$ we give a modern treatment of the descent by 3-isogeny studied by Selmer [S1] and Cassels [CaI]. In $\S \S 4,5$ we recall how the conjectures of Selmer may be deduced from properties of the Cassels-Tate pairing. This culminates in a proof of Theorem 1.1. Finally in $\S 6$ we present our new example.

2 Decomposition into Galois eigenspaces

Let E be an elliptic curve over k with complex multiplication by $\mathbf{Z}[\omega]$. The isogeny $[\sqrt{-3}]: E \to E$ is defined over $K = k(\omega)$. But the kernel $E[\sqrt{-3}]$ is defined over k. It follows that there is a 3-isogeny $\phi: E \to \widetilde{E}$ defined over k with $E[\sqrt{-3}] = E[\phi]$. Here \widetilde{E} is a second elliptic curve defined over k, which we immediately recognise as the -3-twist of E. The dual isogeny $\widehat{\phi}: \widetilde{E} \to E$ satisfies $\phi \circ \widehat{\phi} = [3]$ and $\widehat{\phi} \circ \phi = [3]$. Our notation for the Selmer groups and Tate-Shafarevich groups follows [Sil, Chapter X].

Lemma 2.1 If [K:k] = 2 then the exact sequence

$$0 \longrightarrow E(K)/\sqrt{-3}E(K) \longrightarrow S^{(\sqrt{-3})}(E/K) \longrightarrow \coprod (E/K)[\sqrt{-3}] \longrightarrow 0 \quad (1)$$

is the direct sum of the exact sequences

$$0 \longrightarrow \widetilde{E}(k)/\phi E(k) \longrightarrow S^{(\phi)}(E/k) \longrightarrow \coprod (E/k)[\phi] \longrightarrow 0$$
 (2)

and

$$0 \longrightarrow E(k)/\widehat{\phi}\widetilde{E}(k) \longrightarrow S^{(\widehat{\phi})}(\widetilde{E}/k) \longrightarrow \operatorname{III}(\widetilde{E}/k)[\widehat{\phi}] \longrightarrow 0. \tag{3}$$

Proof. Since arguments of this type have already appeared in [BF], [N], [SwD] and presumably countless other places in the literature, we will not dwell on the proof. Suffice to say that we decompose (1) into eigenspaces for the action of Gal(K/k), and then use the inflation-restriction exact sequence to identify these eigenspaces as (2) and (3). The observation that [K:k]=2 is prime to $\deg \phi=3$ is crucial throughout the proof.

Remark 2.2 Each term of the exact sequence (1) is a $\mathbb{Z}/3\mathbb{Z}$ -vector space with an action of $\operatorname{Gal}(K/k)$. So each term is a direct sum of the Galois modules $\mathbb{Z}/3\mathbb{Z}$ and μ_3 . If we replace E by \widetilde{E} in (1) then we obtain the same exact sequence of abelian groups, but as Galois modules the summands $\mathbb{Z}/3\mathbb{Z}$ and μ_3 are interchanged.

3 Computation of Selmer groups

Let k be a number field. Let $T[a_0, a_1, a_2]$ be the diagonal plane cubic

$$a_0 x_0^3 + a_1 x_1^3 + a_2 x_2^3 = 0 (4)$$

where $a_0, a_1, a_2 \in k^*/k^{*3}$. Let E_A be the elliptic curve T[A, 1, 1] with identity element 0 = (0 : 1 : -1). It is well known [St] that E_A has Weierstrass equation $y^2 = x^3 - 432A^2$. An alternative proof of the following lemma may be found in [CaL, §18].

Lemma 3.1 The diagonal plane cubic $T[a_0, a_1, a_2]$ is a smooth curve of genus 1 with Jacobian E_A where $A = a_0 a_1 a_2$.

Proof. There is an isomorphism $T[a_0, a_1, a_2] \simeq E_A$ defined over $k(\sqrt[3]{\alpha})$ where $\alpha = a_1 a_2^2$. It is given by

$$\psi: (x_0: x_1: x_2) \mapsto (a_2x_0: \alpha^{2/3}x_1: \alpha^{1/3}a_2x_2).$$

The cocycle $\sigma(\psi)\psi^{-1}$ takes values in the subgroup $\mu_3 \subset \operatorname{Aut}(E_A)$ generated by $x_i \mapsto \omega^i x_i$. But since μ_3 acts on E_A without fixed points, this action belongs to the translation subgroup of $\operatorname{Aut}(E_A)$. It follows that $T[a_0, a_1, a_2]$ is a torsor under E_A and that E_A is the Jacobian of $T[a_0, a_1, a_2]$.

Temporarily working over $K = k(\omega)$ we note that E_A has complex multiplication by $\mathbf{Z}[\omega]$ where $\omega : (x_0 : x_1 : x_2) \mapsto (\omega x_0 : x_1 : x_2)$ and that $E_A[1 - \omega] = E_A[\sqrt{-3}]$ is generated by $(0 : \omega : -\omega^2)$. So as in §2 there is a map ϕ which gives an exact sequence of Galois modules

$$0 \longrightarrow \mu_3 \longrightarrow E_A \stackrel{\phi}{\longrightarrow} \widetilde{E}_A \longrightarrow 0$$

where \widetilde{E}_A is the -3-twist of E_A . Taking Galois cohomology we obtain an exact sequence

$$0 \longrightarrow \widetilde{E}_A(k)/\phi E_A(k) \stackrel{\delta}{\longrightarrow} k^*/k^{*3} \longrightarrow H^1(k, E_A)[\phi] \longrightarrow 0.$$
 (5)

The group $H^1(k, E_A)$ parametrises the torsors under E_A . We write $C_{A,\alpha}$ for the torsor under E_A described by $\alpha \in k^*/k^{*3}$. The proof of Lemma 3.1 shows that

$$T[a_0, a_1, a_2] \simeq C_{A,\alpha}$$
 for $A = \prod a_{\nu}$ and $\alpha = \prod a_{\nu}^{\nu}$ (6)

where the products are over $\nu \in \mathbf{Z}/3\mathbf{Z}$. Since $T[a_0, a_1, a_2] \simeq T[a_1, a_2, a_0]$ it is clear that $A \in \operatorname{im} \delta$. If \widetilde{E}_A has Weierstrass equation $Y^2Z = -4AX^3 + Z^3$ then the 3-covering map $T[a_0, a_1, a_2] \to \widetilde{E}_A$ is given by

$$(x_0: x_1: x_2) \mapsto (x_0x_1x_2: a_1x_1^3 - a_2x_2^3: a_0x_0^3).$$

The Selmer group attached to ϕ is

$$S^{(\phi)}(E_A/k) = \{ \alpha \in k^*/k^{*3} \mid C_{A,\alpha}(k_{\mathfrak{p}}) \neq \emptyset \text{ for all primes } \mathfrak{p} \}.$$

Since $\deg \phi = 3$ is odd we have ignored the infinite places. We write $\delta_{\mathfrak{p}}$ for the local connecting map obtained when we apply (5) to the local field $k_{\mathfrak{p}}$. Then the condition $C_{A,\alpha}(k_{\mathfrak{p}}) \neq \emptyset$ may also be written $\alpha \in \operatorname{im} \delta_{\mathfrak{p}}$. Using (6) to give equations for $C_{A,\alpha}$ it is easy to prove

Lemma 3.2 Let k be a number field, and let \mathfrak{p} be a prime not dividing 3. Let $\mathfrak{o}_{\mathfrak{p}}$ denote the ring of integers of $k_{\mathfrak{p}}$. Then

$$\operatorname{im} \delta_{\mathfrak{p}} = \left\{ \begin{array}{ll} \mathfrak{o}_{\mathfrak{p}}^*/\mathfrak{o}_{\mathfrak{p}}^{*3} & \text{if } \operatorname{ord}_{\mathfrak{p}}(A) \equiv 0 \pmod{3} \\ \langle A \rangle & \text{if } \operatorname{ord}_{\mathfrak{p}}(A) \not\equiv 0 \pmod{3}. \end{array} \right.$$

If \mathfrak{p} divides 3 the situation is more complicated, although we still have

$$\operatorname{im} \delta_{\mathfrak{p}} \subset \mathfrak{o}_{\mathfrak{p}}^*/\mathfrak{o}_{\mathfrak{p}}^{*3} \quad \text{if } \operatorname{ord}_{\mathfrak{p}}(A) \equiv 0 \pmod{3}.$$
 (7)

If $\omega \in k_{\mathfrak{p}}$ then Tate local duality tells us that im $\delta_{\mathfrak{p}}$ is a maximal isotropic subspace with respect to the Hilbert norm residue symbol

$$k_{\mathfrak{p}}^*/k_{\mathfrak{p}}^{*3} \times k_{\mathfrak{p}}^*/k_{\mathfrak{p}}^{*3} \to \mu_3.$$
 (8)

The next lemma treats the case $k = \mathbf{Q}(\omega)$. This field has ring of integers $\mathbf{Z}[\omega]$ and class number 1. The unique prime above 3 is $\pi = \omega - \omega^2$.

Lemma 3.3 Let $A \in \mathbf{Z}[\omega]$ be non-zero and cube-free. Then

$$\operatorname{im} \delta_{\pi} = \begin{cases} \langle A, (1-A)/(1+A) \rangle & \text{if } \operatorname{ord}_{\pi}(A) \neq 0 \\ \langle A, 1-\pi^{3} \rangle & \text{if } \operatorname{ord}_{\pi}(A) = 0 \text{ and } A^{2} \not\equiv \pm 1 (\pi^{3}) \\ \langle \omega(1+3a), 1-\pi^{3} \rangle & \text{if } A = \pm (1+a\pi^{3}) \text{ for some } a \in \mathbf{Z}[\omega]. \end{cases}$$

Proof. We recall [CF, Exercise 2.13] that k_{π}^*/k_{π}^{*3} has basis $\pi, \omega, 1 - \pi^2, 1 - \pi^3$ and that these elements define a filtration compatible with the pairing (8). By Tate local duality it follows that im δ_{π} has order 9. So to prove the lemma it suffices to prove the inclusions \supset . As always $A \in \text{im } \delta_{\pi}$, whereas (7) and Tate local duality tell us that $1 - \pi^3 \in \text{im } \delta_{\pi}$. There is at most one more element to find.

(i) Suppose $\operatorname{ord}_{\pi}(A) \neq 0$. If α satisfies $\alpha - \alpha^{-1} = A$ then $T[A, \alpha, \alpha^{-1}]$ is soluble. Splitting into the cases $\operatorname{ord}_{\pi}(A) = 1$ or 2 we find

$$4A/(1-A^2) \equiv A \pmod{\pi^4}.$$

So $\alpha = (1 - A)/(1 + A)$ provides a solution mod π^4 .

(ii) Suppose $A=1+a\pi^3$ for some $a\in \mathbf{Z}[\omega]$. If α satisfies $A+\alpha+\alpha^{-1}=0$ then $T[A,\alpha,\alpha^{-1}]$ is soluble. In view of the identity

$$(1 + \pi^3 a) + \omega(1 + 3a) + \omega^2(1 - 3a) = 0$$

we see that $\alpha = \omega(1+3a)$ provides a solution mod π^4 .

4 Selmer's conjectures

In this section we take $k = \mathbf{Q}$, so that $K = \mathbf{Q}(\omega)$. We consider the elliptic curves E_A and \widetilde{E}_A over \mathbf{Q} where $A \geq 2$ is a cube-free integer.

Lemma 4.1 If $A \ge 3$ then the torsion subgroups are

$$E_A(\mathbf{Q})_{\mathrm{tors}} = 0$$
 and $\widetilde{E}_A(\mathbf{Q})_{\mathrm{tors}} \simeq \mathbf{Z}/3\mathbf{Z}$.

Proof. See [St, §6] or [K, Chapter 1, Problem 7].

Lemma 2.1 gives a decomposition into $Gal(K/\mathbb{Q})$ -eigenspaces

$$S^{(\sqrt{-3})}(E_A/K) \simeq S^{(\phi)}(E_A/\mathbf{Q}) \oplus S^{(\widehat{\phi})}(\widetilde{E}_A/\mathbf{Q}). \tag{9}$$

The following examples were found by Selmer [S1], [S2].

Example 4.2 Let A = 60. Lemmas 3.2 and 3.3 tell us that

$$S^{(\sqrt{-3})}(E_{60}/K) \simeq \langle 2, 3, 5 \rangle \subset K^*/K^{*3}.$$

Then (9) gives $S^{(\phi)}(E_{60}/\mathbf{Q}) \simeq (\mathbf{Z}/3\mathbf{Z})^3$ and $S^{(\widehat{\phi})}(\widetilde{E}_{60}/\mathbf{Q}) = 0$. But a 2-descent [CaL, §15], [Cr] shows that $E_{60}(\mathbf{Q})$ has rank 0. We deduce

$$\coprod (E_{60}/\mathbf{Q})[3] \simeq (\mathbf{Z}/3\mathbf{Z})^2.$$

Example 4.3 Let A = 473. Lemmas 3.2 and 3.3 tell us that

$$S^{(\sqrt{-3})}(E_{473}/K) \simeq \langle 11, 1 - 6\omega, 1 - 6\omega^2 \rangle \subset K^*/K^{*3}.$$

Then (9) gives $S^{(\phi)}(E_{473}/\mathbf{Q}) \simeq (\mathbf{Z}/3\mathbf{Z})^2$ and $S^{(\widehat{\phi})}(\widetilde{E}_{473}/\mathbf{Q}) \simeq \mathbf{Z}/3\mathbf{Z}$. But a 2-descent [S2], [Cr] shows that $E_{473}(\mathbf{Q})$ has rank 0. We deduce

$$\mathrm{III}(E_{473}/\mathbf{Q})[\phi] \simeq \mathbf{Z}/3\mathbf{Z}$$
 and $\mathrm{III}(\widetilde{E}_{473}/\mathbf{Q})[\widehat{\phi}] \simeq \mathbf{Z}/3\mathbf{Z}$.

Remark 4.4 According to the formulae and tables of Stephens [St], the above examples have $L(E_A, 1) \neq 0$. So the claims rank $E_A(\mathbf{Q}) = 0$ could equally be deduced from the work of Coates-Wiles [CW].

Example 4.2 tells us that each of the curves

$$T[3,4,5]: 3x_0^3 + 4x_1^3 + 5x_2^3 = 0$$

$$T[1,3,20]: x_0^3 + 3x_1^3 + 20x_2^3 = 0$$

$$T[1,4,15]: x_0^3 + 4x_1^3 + 15x_2^3 = 0$$

$$T[1,5,12]: x_0^3 + 5x_1^3 + 12x_2^3 = 0$$
(10)

is a counterexample to the Hasse Principle for smooth curves of genus 1 defined over \mathbf{Q} . Selmer proves this without the need for a 2-descent. Instead he shows that the equations (10) are insoluble over \mathbf{Q} by writing them as norm equations. As Cassels explains [CaI, §11] this is equivalent to performing a second descent, *i.e.* computing the middle group in

$$\widetilde{E}_A(\mathbf{Q})/\phi E_A(\mathbf{Q}) \subset \widehat{\phi} S^{(3)}(\widetilde{E}_A/\mathbf{Q}) \subset S^{(\phi)}(E_A/\mathbf{Q}).$$
 (11)

In fact Selmer's calculations suffice to show that $\coprod (E_{60}/\mathbf{Q})(3) \simeq (\mathbf{Z}/3\mathbf{Z})^2$. In other words $\coprod (E_{60}/\mathbf{Q})$ does not contain an element of order 9. More recent work of Rubin [M] improves this to $\coprod (E_{60}/\mathbf{Q}) \simeq (\mathbf{Z}/3\mathbf{Z})^2$.

Selmer also gave practical methods for computing the two right hand groups in

$$E_A(\mathbf{Q})/\widehat{\phi}\widetilde{E}_A(\mathbf{Q}) \subset \phi S^{(3)}(E_A/\mathbf{Q}) \subset S^{(\widehat{\phi})}(\widetilde{E}_A/\mathbf{Q}).$$
 (12)

Following Stephens [St] we write $g_1 + 1$, $\lambda'_1 + 1$, $\lambda_1 + 1$ for the dimensions of the $\mathbb{Z}/3\mathbb{Z}$ -vector spaces (11) and g_2 , λ'_2 , λ_2 for the dimensions of the $\mathbb{Z}/3\mathbb{Z}$ -vector spaces (12). Trivially we have $0 \leq g_1 \leq \lambda'_1 \leq \lambda_1$, $0 \leq g_2 \leq \lambda'_2 \leq \lambda_2$ and rank $E_A(\mathbb{Q}) = g_1 + g_2$. Based on a large amount of numerical evidence, Selmer [S3] made the following

Conjecture 4.5 Let $A \ge 2$ be a cube-free integer. Let E_A be the elliptic curve $x^3 + y^3 = Az^3$ defined over \mathbf{Q} . Then

Weak form. The second descent excludes an even number of generators, i.e. $\lambda_1 \equiv \lambda_1' \pmod{2}$ and $\lambda_2 \equiv \lambda_2' \pmod{2}$.

Strong form. The number of generators of infinite order for $E_A(\mathbf{Q})$ is an even number less than what is indicated by the first descent, i.e. $\lambda_1 + \lambda_2 \equiv g_1 + g_2 \pmod{2}$.

For A=473, Selmer found $\lambda_1=\lambda_1'=\lambda_2=\lambda_2'=1$ yet $g_1=g_2=0$. He was thus aware of the need to combine the contributions from ϕ and $\widehat{\phi}$ in the strong form of his conjecture.

Remark 4.6 In Heath-Brown's notation [HB] we have

$$r(A) = \operatorname{rank} E_A(\mathbf{Q}) = q_1 + q_2$$
 and $s(A) = \lambda_1 + \lambda_2$.

By (9) the order of $S^{(\sqrt{-3})}(E_A/K)$ is $3^{s(A)+1}$ and in fact it is this relation that Heath-Brown uses to define s(A). Naturally he writes the strong form of Selmer's conjecture as $r(A) \equiv s(A) \pmod{2}$.

Now let k be any number field. Conjecture 4.5 is equivalent to the case $k = \mathbf{Q}$ of the following

Conjecture 4.7 Let $A \in k^*$ not a perfect cube. Let E_A be the elliptic curve $x^3 + y^3 = Az^3$ defined over k. Then

Weak form. The subgroup $\phi(\mathrm{III}(E_A/k)[3]) \subset \mathrm{III}(E_A/k)[\phi]$ has index a perfect square. The same is true for $\phi(\mathrm{III}(E_A/k)[3]) \subset \mathrm{III}(\widetilde{E}_A/k)[\widehat{\phi}]$.

Strong form. The order of $\coprod (E_A/k)[\phi]$ multiplied by the order of $\coprod (\widetilde{E}_A/k)[\widehat{\phi}]$ is a perfect square.

In the next section we recall how Conjecture 4.7 follows from the work of Cassels, the strong form being conditional on the finiteness of $\coprod (E_A/k)$.

5 The Cassels-Tate pairing

Let E be an elliptic curve over a number field k. For $\phi: E \to E'$ an isogeny of elliptic curves over k we shall write $\widehat{\phi}: E' \to E$ for the dual isogeny. Cassels [CaIV] defines an alternating bilinear pairing

$$\langle , \rangle : \coprod (E/k) \times \coprod (E/k) \to \mathbf{Q}/\mathbf{Z}$$
 (13)

with the following non-degeneracy property.

Theorem 5.1 Let $\phi: E \to E'$ be an isogeny of elliptic curves over k. Then $x \in \mathrm{III}(E/k)$ belongs to the image of $\widehat{\phi}: \mathrm{III}(E'/k) \to \mathrm{III}(E/k)$ if and only if $\langle x,y \rangle = 0$ for all $y \in \mathrm{III}(E/k)[\phi]$.

Proof. This was proved by Cassels [CaIV] in the case $\phi = [m]$ for m a rational integer. The general case follows by his methods and is explained in [F]. \square

The pairing was later generalised to abelian varieties by Tate, and so is known as the Cassels-Tate pairing. The most striking applications in the case of elliptic curves come from the following easy lemma.

Lemma 5.2 If a finite abelian group admits a non-degenerate alternating bilinear pairing, then its order must be a perfect square.

The weak form of Conjecture 4.7 is a special case of

Corollary 5.3 Let $\phi: E \to E'$ be an m-isogeny of elliptic curves over k. Then the subgroup $\widehat{\phi}(\mathrm{III}(E'/k)[m]) \subset \mathrm{III}(E/k)[\phi]$ has index a perfect square.

Proof. According to Theorem 5.1 the pairing (13) restricted to $\coprod(E/k)[\phi]$ has kernel $\widehat{\phi}(\coprod(E'/k)[m])$. We are done by Lemma 5.2.

Let us assume that $\mathrm{III}(E/k)$ is finite. So by Theorem 5.1 and Lemma 5.2 the order of $\mathrm{III}(E/k)$ is a perfect square. If $\phi: E \to E'$ is an isogeny of elliptic curves over k then the same conclusions will hold for E'. We define

$$\langle , \rangle_{\phi} : \coprod (E/k) \times \coprod (E'/k) \to \mathbf{Q}/\mathbf{Z}; \quad (x,y) \mapsto \langle \phi x, y \rangle = \langle x, \widehat{\phi} y \rangle \quad (14)$$

where the equality on the right is [CaVIII, Theorem 1.2]. The strong form of Conjecture 4.7 is a special case of

Corollary 5.4 Let $\phi: E \to E'$ be an isogeny of elliptic curves over k. If $\coprod(E/k)$ is finite then the order of $\coprod(E/k)[\phi]$ multiplied by the order of $\coprod(E'/k)[\widehat{\phi}]$ is a perfect square.

Proof. According to Theorem 5.1 the left and right kernels of \langle , \rangle_{ϕ} are $\mathrm{III}(E/k)[\phi]$ and $\mathrm{III}(E'/k)[\widehat{\phi}]$. We obtain a non-degenerate pairing

$$\coprod (E/k)/\coprod (E/k)[\phi] \times \coprod (E'/k)/\coprod (E'/k)[\widehat{\phi}] \to \mathbf{Q}/\mathbf{Z}.$$

We deduce that these quotients have the same order and are done since $\coprod (E/k)$ and $\coprod (E'/k)$ each have order a perfect square.

Another well known consequence is

Corollary 5.5 Let E be an elliptic curve over k whose Tate-Shafarevich group is finite, and let m be a rational integer. Then the order of $\coprod (E/k)[m]$ is a perfect square.

Proof. According to Theorem 5.1 the kernel of \langle , \rangle_m is $\coprod (E/k)[m]$. We obtain a non-degenerate alternating pairing

$$\coprod (E/k)/\coprod (E/k)[m] \times \coprod (E/k)/\coprod (E/k)[m] \to \mathbf{Q}/\mathbf{Z}.$$

We apply Lemma 5.2 to this pairing and are done since $\mathrm{III}(E/k)$ has order a perfect square.

Remark 5.6 We could equally deduce Corollary 5.4 from Corollaries 5.3 and 5.5.

Proof of Theorem 1.1. Let E be an elliptic curve over k with complex multiplication by $\mathbf{Z}[\omega]$ and suppose that [K:k]=2. Lemma 2.1 tells us that

$$\coprod (E/K)[\sqrt{-3}] \simeq \coprod (E/k)[\phi] \oplus \coprod (\widetilde{E}/k)[\widehat{\phi}].$$

Assuming $\mathrm{III}(E/k)$ is finite, Corollary 5.4 shows that the group on the right has order a perfect square. So the group on the left has order a perfect square, and this is precisely the statement of Theorem 1.1.

In the first of his celebrated series of papers, Cassels [CaI] defines a pairing $S^{(\sqrt{-3})}(E_A/K) \times S^{(\sqrt{-3})}(E_A/K) \to \mu_3$. It is of course a special case of the pairing (13). He uses it to prove the weak form of Conjecture 4.7 in the case [K:k]=1. However in the introduction to the same paper he misquotes the strong form of Selmer's conjecture. The statement he gives is equivalent to

• If [K:k]=1 then the order of $\coprod (E_A/K)[\sqrt{-3}]$ is a perfect square.

It is this statement to which we have found a counterexample. It is possible that Cassels was mislead by earlier work of Selmer at a time when he did not appreciate the need to combine the contributions from ϕ and $\widehat{\phi}$ in the strong form of his conjecture.

Remark 5.7 It is tempting to try and prove Theorem 1.1 in the case [K:k]=1 by imitating the proof of Corollary 5.5. However the isogeny $[\sqrt{-3}]$ has dual $[-\sqrt{-3}]$ and this extra sign means that the pairing $\langle \ , \ \rangle_{\sqrt{-3}}$ is symmetric rather than alternating. Lemma 5.2 does not apply.

6 A new example

In this section we take $K = \mathbf{Q}(\omega)$. Let E_A be the elliptic curve $x^3 + y^3 = Az^3$. We aim to find $A \in K$ such that the order of $\mathrm{III}(E_A/K)[\sqrt{-3}]$ is not a perfect square. As in Example 4.3 our method is to compare a 3-descent with a 2-descent. The form of the curves E_A makes the 3-descent easy. We use the results of §3 to compute the Selmer group $S^{(\sqrt{-3})}(E_A/K)$. For the 2-descent we would like to use John Cremona's program mwrank [Cr]. But mwrank is written specifically for elliptic curves over \mathbf{Q} , whereas Theorem 1.1 tells us that there are no examples of the required form with $A^2 \in \mathbf{Q}$. Fortunately we were able to use a program of Denis Simon [Si1], [Si2], written using pari [BBBCO], that extends Cremona's work on 2-descents to general number fields (in practice of degrees 1 to 5).

We consider all cube-free $A \in \mathbf{Z}[\omega]$ with $A^2 \notin \mathbf{Q}$ and $\operatorname{Norm}(A) \leq 150$. We ignore repeats of the form $\pm \sigma(A)$ for $\sigma \in \operatorname{Gal}(K/\mathbf{Q})$. In all 123 cases a calculation based on Lemmas 3.2 and 3.3 shows that $S^{(\sqrt{-3})}(E_A/K)$ is isomorphic to either $\mathbf{Z}/3\mathbf{Z}$ or $(\mathbf{Z}/3\mathbf{Z})^2$. In the 98 cases where $S^{(\sqrt{-3})}(E_A/K) \simeq \mathbf{Z}/3\mathbf{Z}$ it follows immediately that rank $E_A(K) = 0$. In the remaining 25 cases we run Simon's program. For 20 of these curves the program exhibits a point of infinite order. Since $E_A(K)$ has the structure of $\mathbf{Z}[\omega]$ -module, we are able to deduce that rank $E_A(K) = 2$. The remaining 5 cases are

$$A = \pm(3+7\omega), \pm(9+\omega), \pm(12+5\omega), \pm(6+13\omega), \pm(13+7\omega)$$

and their Galois conjugates. In each case Simon's program reports that rank $E_A(K) = 0$. Reducing modulo some small primes we find $E_A(K) \simeq \mathbb{Z}/3\mathbb{Z}$.

Thus

$$\coprod (E_A/K)[\sqrt{-3}] \simeq \mathbf{Z}/3\mathbf{Z}.$$

For the remainder of this article we restrict attention to the first of these examples, namely $A=3+7\omega$, and give further details of the descent calculations involved. In particular we establish the counterexample of the title in a way that is independent of Simon's program.

We begin by checking the above computation of $S^{(\sqrt{-3})}(E_A/K)$ for $A = 3 + 7\omega$. Since (A) is prime, Lemma 3.2 tells us that

$$S^{(\sqrt{-3})}(E_A/K) \subset \langle \omega, 3+7\omega \rangle. \tag{15}$$

We check the local conditions at the primes (π) and (A) above 3 and 37 respectively.

- Since $37 \equiv 1 \pmod{9}$ we know that ω is a cube locally at (A).
- Lemma 3.3 gives im $\delta_{\pi} = \langle A, 1 \pi^3 \rangle \subset K_{\pi}^* / K_{\pi}^{*3}$. Since $A = \omega \pi^3$ it is clear that ω belongs to this subgroup.

It follows that equality holds in (15) as required.

Given the provisional nature of Simon's program we have taken the liberty of writing out the 2-descent for $A = 3 + 7\omega$ in the style of Cassels [CaL, p.72-73]. The curve E_A has Weierstrass form

$$Y^2 = X^3 - 2^4 3^3 (3 + 7\omega)^2. (16)$$

The 2-descent takes place over the field $L = K(\delta)$ where $\delta^3 = 4(3 + 7\omega)$. According to pari [BBBCO]¹, L has class number h = 3, and fundamental units

$$\eta_1 = (-7 - 3\omega) + (-3 - 2\omega)\delta + (-2 + \omega)\delta^2/2$$
 $\eta_2 = (-7 - 3\omega) + (2 - \omega)\delta + (3 + 2\omega)\delta^2/2.$

Furthermore pari is able to certify these results, independent of any conjecture. We have chosen η_1 and η_2 to be K-conjugates. They have minimal polynomial

$$x^{3} + (21 + 9\omega)x^{2} + (102 - 165\omega)x - 1.$$

If $(X,Y) = (r/t^2, s/t^3)$ is a solution of (16), with fractions in lowest terms, then a common prime divisor of any two of

$$r-3\delta^2t^2,\quad r-3\omega\delta^2t^2,\quad r-3\omega^2\delta^2t^2$$

¹These calculations were performed using Version 2.0.20 (beta)

must divide $2(1-\omega)(3+7\omega)$. Since $2, (1-\omega), (3+7\omega)$ ramify completely, $r-3\delta^2t^2$ must be a perfect ideal square. Since h is odd it follows that $S^{(2)}(E/K)$ is a subgroup of $\langle -1, \eta_1, \eta_2 \rangle \subset L^*/L^{*2}$. We claim that $S^{(2)}(E/K)$ is trivial. By considering norms from L to K, it suffices to show that the equation

$$r - 3\delta^2 t^2 = \eta \alpha^2$$
 with $\eta = \eta_1, \eta_2 \text{ or } 1/(\eta_1 \eta_2)$

is insoluble for $r, t \in K$ and $\alpha \in L$. The action of Gal(L/K) shows that we need only consider the case $\eta = \eta_1$. Put $\alpha = u + v\delta + w\delta^2$. Equating coefficients of powers of δ we obtain

$$0 = (-3 - 2\omega)u^{2} + (-14 - 6\omega)uv + (-26 - 36\omega)v^{2} + (-52 - 72\omega)uw + (40 - 104\omega)vw + (-148\omega)w^{2}$$
$$-3t^{2} = ((-2 + \omega)/2)u^{2} + (-6 - 4\omega)uv + (-7 - 3\omega)v^{2} + (-14 - 6\omega)uw + (-52 - 72\omega)vw + (20 - 52\omega)w^{2}.$$

On putting

$$u = (-8 + 6\omega)e + (-6 - 34\omega)f + (-20 + 15\omega)g$$

$$v = (-4 - 4\omega)e + (12 + 4\omega)f + (-10 - 11\omega)g$$

$$w = (1 - \omega)e + (1 + 4\omega)f + (2 - 2\omega)g$$

in the first equation, it becomes

$$0 = (3 + 7\omega)g^2 - 16ef.$$

Hence there are m, n such that

$$e: f: g = m^2: (3+7\omega)n^2: 4mn.$$

On substituting into the second equation, we get

$$-3t^{2} = 2(-1 - 4\omega)m^{4} + 8(-4 + 3\omega)m^{3}n + 4(21 + 12\omega)m^{2}n^{2} + 8(4 - 3\omega)mn^{3} + 2(-33 - 40\omega)n^{4}.$$

But this is impossible in K_2 . Hence $S^{(2)}(E_A/K)$ is trivial and rank $E_A(K) = 0$ as claimed.

Acknowledgements

The author would like to thank Laura Basile, Alexei Skorobogatov and Sir Peter Swinnerton-Dyer for useful conversations.

References

- [BF] C.L. Basile and T.A. Fisher, Diagonal cubic equations in four variables with prime coefficients, *Rational points on algebraic varieties*, 1–12, Progr. Math., **199**, Birkhäuser, Basel, 2001.
- [BBBCO] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, pari/gp, a computer algebra package, http://www.parigp-home.de
- [CaI] J.W.S. Cassels, Arithmetic on curves of genus 1, I. On a conjecture of Selmer, J. Reine Angew. Math. 202 (1959), 52–99.
- [CaIV] J.W.S. Cassels, Arithmetic on curves of genus 1, IV. Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95–112.
- [CaVIII] J.W S. Cassels, Arithmetic on curves of genus 1, VIII. On conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 217 (1965), 180–199.
- [CaL] J.W.S. Cassels, Lectures on elliptic curves, LMSST 24, Cambridge University Press, Cambridge, 1991.
- [CF] J.W.S. Cassels and A. Fröhlich (Eds.), Algebraic number theory, Academic Press, London, 1967.
- [CW] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer. *Invent. Math.* **39** (1977), no. 3, 223–251.
- [Cr] J.E. Cremona, mwrank, a program for performing 2-descent on elliptic curves over Q, http://www.maths.nottingham.ac.uk/personal/jec/ftp/progs
- [F] T.A. Fisher, The Cassels-Tate pairing and the Platonic solids, to appear in *J. Number Theory*.
- [HB] D.R. Heath-Brown, The solubility of diagonal cubic Diophantine equations, *Proc. London Math. Soc.* (3) **79** (1999), no. 2, 241–259.
- [K] N. Koblitz, Introduction to elliptic curves and modular forms, GTM 97. Springer-Verlag, New York, 1993.

- [M] B. Mazur, On the passage from local to global in number theory. *Bull. Amer. Math. Soc.* **29** (1993), no. 1, 14–50.
- [N] J. Nekovář, Class numbers of quadratic fields and Shimura's correspondence, *Math. Ann.* **287** (1990), no. 4, 577–594.
- [S1] E.S. Selmer, The diophantine equation $ax^3 + by^3 + cz^3 = 0$, Acta Math. **85** (1951), 203–362.
- [S2] E.S. Selmer, The diophantine equation $ax^3 + by^3 + cz^3 = 0$, completion of the tables, *Acta Math.* **92** (1954), 191–197.
- [S3] E.S. Selmer, A conjecture concerning rational points on cubic curves, *Math. Scand.* **2** (1954), 49–54.
- [Sil] J.H. Silverman, The arithmetic of elliptic curves, GTM 106, Springer-Verlag, New York, 1986.
- [Si1] D. Simon, Computing the rank of elliptic curves over number fields, LMS J. Comput. Math. 5 (2002), 7–17.
- [Si2] D. Simon, ell.gp, a program for calculating the rank of elliptic curves over number fields, http://www.math.unicaen.fr/~simon
- [St] N.M. Stephens, The diophantine equation $X^3 + Y^3 = DZ^3$ and the conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 231 (1968), 121–162.
- [SwD] H.P.F. Swinnerton-Dyer, The solubility of diagonal cubic surfaces, Ann. Sci. École Norm. Sup. (4) **34** (2001), no. 6, 891–912.