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In this section...

Radioactive decays

Radioactive dating

α decay

β decay

γ decay
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Radioactivity

Natural radioactivity: three main types α, β, γ, and in a few cases,
spontaneous fission.

α decay 4
2He nucleus emitted.

A
ZX → A−4

Z−2Y + 4
2He Occurs for A ≥ 210

For decay to occur, energy must be released Q > 0

Q = mX −mY −mHe = BY + BHe − BX

β decay emission of electron e− or positron e+

n → p + e− + ν̄e
A
ZX → A

Z+1Y + e− + ν̄e β− decay

p → n + e+ + νe
A
ZX → A

Z−1Y + e+ + νe β+ decay

p + e− → n + νe
A
ZX + e− → A

Z−1Y + νe Electron capture

n.b. of these processes, only n → peν can occur outside a nucleus.
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Radioactivity

γ decay Nuclei in excited states can decay by emission of a photon γ.
Often follows α or β decay.

  

ΔE

Excited 
states

Ground state

Photons 
emitted

∆E λ

Atom ∼ 10 eV ∼ 10−7 m optical

∼ 10 keV ∼ 10−10 m X-ray

Nucleus ∼ MeV ∼ 10−12 m γ-ray

A variant of γ decay is Internal Conversion:

an excited nucleus loses energy by emitting a virtual photon,

the photon is absorbed by an atomic e−, which is then ejected

n.b. not β decay, as nucleus composition is unchanged (e− not from
nucleus)
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Natural Radioactivity

The half-life, τ1/2, is the time over which 50% of the nuclei decay

τ1/2 =
ln 2

λ
= 0.693τ

λ Transition rate

τ Average lifetime

Some τ1/2 values may be long compared to the age of the Earth.

Series
Name

Type Final
Nucleus
(stable)

Longest-
lived
Nucleus

τ1/2 (years)

Thorium 4n 208Pb 232Th 1.41× 1010

Neptunium 4n+1 209Bi 237Np 2.14× 106

Uranium 4n+2 206Pb 238U 4.47× 109

Actinium 4n+3 207Pb 235U 7.04× 108

n is an integer

4n series
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Radioactive Dating Geological Dating

Can use β− decay to age the Earth, 87Rb → 87Sr (τ1/2 = 4.8× 1010 years)
N1 N2

87Sr is stable → λ2 = 0

So in this case, we have (using expressions from Chapter 2)

N2(t) = N1(0)
[
1− e−λ1t

]
+ N2(0) = N1(t)

[
eλ1t − 1

]
+ N2(0)

Assume we know λ1, and can measure N1(t) and N2(t) e.g. chemically.
But we don’t know N2(0).

Solution is to normalise to another (stable) isotope – 86Sr – for which number
is N0(t) = N0(0). N2(t)

N0
=

N1(t)

N0

[
eλ1t − 1

]
+
N2(0)

N0

Method: plot N2(t)/N0 vs N1(t)/N0 for lots of minerals.

Gradient gives
[
eλ1t − 1

]
and hence t.

Intercept = N2(0)/N0, which should be the same for all minerals

(determined by chemistry of formation).
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Radioactive Dating Dating the Earth

N2(t)

N0
=

N1(t)

N0

[
eλ1t − 1

]
+

N2(0)

N0

Method: plot N2(t)/N0 vs N1(t)/N0 for lots of
minerals.
Gradient gives

[
eλ1t − 1

]
and hence t.

Intercept = N2(0)/N0, which should be the same for
all minerals (determined by chemistry of formation).

Using minerals from the Earth, Moon
and meteorites.

Intercept gives N2(0)/N0 = 0.70

Slope gives the age of the Earth = 4.5× 109 yrs
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Radioactive Dating Radio-Carbon Dating

For recent organic matter, use 14C dating

  

Continuously formed in 
the upper atmosphere at 

approx. constant rate.
14N + n → 14C + p

Atmospheric carbon 
continuously exchanged 

with living organisms.
Equilibrium: 1 atom of 14C 

to every 1012 atoms of other 
carbon isotopes

(98.9% 12C, 1.1% 13C)

Undergoes β- decay
14C → 14N + e- + νe τ1/2 = 5730 yrs

No more 14C intake for dead 
organisms.

Fresh organic material 
~11 decays/minute/gram of carbon.

Measure the specific activity of 
material to obtain age, i.e. number of 

decays per second per unit mass

Complications for the future!
Burning of fossil fuels increases 12C in atmosphere,

Nuclear bomb testing (adds 14C to atmosphere)
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α Decay

α decay is due to the emission of a 4
2He nucleus.

4
2He is doubly magic and very tightly bound.

α decay is energetically favourable for almost
all with A≥190 and for many A≥150.

Why α rather than any other nucleus?
Consider energy release (Q) in various possible decays of 232U

n p 2H 3H 3He 4He 5He 6Li 7Li

Q/MeV -7.26 -6.12 -10.70 -10.24 -9.92 +5.41 -2.59 -3.79 -1.94

α is easy to form inside a nucleus 2p ↑↓ + 2n ↑↓
(though the extent to which α particles really exist inside a nucleus is still
debatable)
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α Decay Dependence of τ1/2 on E0

(Geiger and Nuttall 1911)

A very striking feature of α decay is the strong dependence of lifetime on E0

Example 232Th E0 = 4.08 MeV τ1/2 = 1.4× 1010 yrs
218Th E0 = 9.85 MeV τ1/2 = 1.0× 10−7 s
A factor of ∼2.5 in E0 ⇒ factor 1024 in τ1/2 !

e.g. even N , even Z nuclei for a given Z see smooth trend (τ1/2 increases as Z does)
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α Decay Quantum Mechanical Tunnelling

The nuclear potential for the α particle due to the daughter nucleus includes a
Coulomb barrier which inhibits the decay.

  

V (r )

r0
R R '

E0

−V 0

Coulomb ~ 1/r

Total energy of α = E0 + V0−V0

K.E. P.E.

Classically, α particle cannot enter or escape from nucleus.
Quantum mechanically, α particle can penetrate the Coulomb barrier

⇒ Quantum Mechanical Tunnelling
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α Decay Simple Theory (Gamow, Gurney, Condon 1928)

Assume α exists inside the nucleus and hits the barrier.

α decay rate, λ = f P

f = escape trial frequency, P = probability of tunnelling through barrier

semi− classically, f ∼ v/2R

v= velocity of a particle inside nucleus, given by: v 2 = (2Eα/mα)
and R = radius of nucleus

Typical values: V0 ∼ 35 MeV, E0 ∼ 5 MeV ⇒ Eα = 40 MeV inside nucleus

f ∼ v

2R
=

1

2R

√
2Eα
mα

∼ 1022 s−1 mα = 3.7 GeV

R ∼ 2.1 fm

Obtain tunnelling probability, P , by solving Schrödinger equation in three
regions and using boundary conditions.
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α Decay Simple Theory (Gamow, Gurney, Condon 1928)

Transmission probability (1D square barrier):

P =

[
1 +

V 2
0

4(V0 − E )E
sinh2 ka

]−1

ℏ2k2

2m
= V0 − E m = reduced mass

  

E V 0

0 r

1-D

For ka ≫ 1, P is dominated by the exp. decay within barrier ⇒ P ∼ e−2ka.

Coulomb potential, V ∝ 1/r , and thus k varies with r .
Divide into rectangular pieces and multiply together
exponentials, i.e. sum exponents.

Probability to tunnel through Coulomb barrier
  

V (r )

r
Δ r

P =
∏
i

e−2ki∆R = e−2G k =
[2mα(V (r)− E0)]

1/2

ℏ

The Gamow Factor G =

∫ R ′

R

[2mα(V (r)− E0)]
1/2

ℏ
dr =

∫ R ′

R

k(r) dr
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α Decay Simple Theory (Gamow, Gurney, Condon 1928)

For r > R, V (r) =
ZαZ

′e2

4πϵ0r
=

B

r
Z ′ = Z − Zα (Zα = 2)

α-particle escapes at r = R ′, V (R ′) = E0 ⇒ R ′ = B/E0

∴ G =

∫ R ′

R

(
2mα

ℏ2

)1/2 [B
r
− E0

]1/2
dr =

(
2mαB

ℏ2

)1/2 ∫ R ′

R

[
1

r
− 1

R ′

]1/2
dr

See Appendix H

G =

(
2mα

E0

)1/2 B

ℏ

[
cos−1

(
R

R ′

)1/2

−
{(

1− R

R ′

)(
R

R ′

)}1/2
]

To perform integration, substitute r = R ′ cos2 θ

In most practical cases R ≪ R ′, so term in [...] ∼ π/2

G ∼
(
2mα

E0

)1/2 B

ℏ
π

2
B =

ZαZ
′e2

4πϵ0

e.g. typical values: Z = 90, E0 ∼ 6 MeV ⇒ R ′ ∼ 40 fm ≫ R
G ∼ Z ′

(
3.9 MeV

E0

)1/2
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α Decay Simple Theory (Gamow, Gurney, Condon 1928)

Lifetime τ =
1

λ
=

1

fP
∼ 2R

v
e2G

⇒ ln τ ∼ 2G + ln
2R

v

lnλ ∼ − Z ′

E
1/2
0

+ constant

Geiger-Nuttall Law
Not perfect, but provides an explanation of the

dominant trend of the data

Simple tunnelling model accounts for
strong dependence of τ1/2 on E0
τ1/2 increases with Z
disfavoured decay to heavier fragments e.g. 12C

G ∝ m1/2 and G ∝ charge of fragment
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α Decay Simple Theory (Gamow, Gurney, Condon 1928)

Deficiencies/complications with simple tunnelling model:

Assumed existence of a single α particle in nucleus and have taken no
account of probability of formation.

Assumed “semi-classical” approach to estimate escape trial frequency,
f ∼ v/2R , and make absolute prediction of decay rate.

If α is emitted with some angular momentum, L, the radial wave equation
must include a centrifugal barrier term in Schrödinger equation

V ′ =
L(L + 1)ℏ2

2µr 2
L = relative a.m. of α and daughter nucleus

µ = reduced mass

which raises the barrier and suppresses emission of α in in high L states.
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α Decay Selection rules

Nuclear Shell Model: α has JP = 0+

Angular momentum
e.g. X → Y + α Conserve J : JX = JY ⊕ Jα = JY ⊕ Lα

Lα can take values from JX + JY to |JX − JY |
Parity
Parity is conserved in α decay (strong force).
Orbital wavefunction has P = (−1)L

X , Y same parity ⇒ Lα must be even
X , Y opposite parity ⇒ Lα must be odd

e.g. if X , Y are both even-even nuclei in their ground states,
shell model predicts both have JP = 0+ ⇒ Lα = 0.

More generally, if X has JP = 0+, the states of Y which can be formed in α
decay are JP = 0+, 1−, 2+, 3−, 4+, ...
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β Decay
β− n → p + e− + ν̄e

A
ZX → A

Z+1Y +e− + ν̄e

β+ p → n + e+ + νe
A
ZX → A

Z−1Y +e+ + νe

electron capture p + e− → n + νe
A
ZX +e− → A

Z−1Y +νe

β decay is a weak interaction mediated by the W boson.

Parity is violated in β decay.

Responsible for Fermi postulating the existence of the neutrino.

Kinematics: Decay is possible if energy release E0 > 0
Nuclear Masses Atomic Masses

β− E0 = mX −mY −me −mν E0 = MX −MY −mν

β+ E0 = mX −mY −me −mν E0 = MX −MY − 2me −mν

e.c. E0 = mX −mY +me −mν E0 = MX −MY −mν

(and note that mν ∼ 0) using M(A,Z ) = m(A,Z ) + Zme

n.b. electron capture may be possible even if β+ not allowed
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β Decay Nuclear stability against β decay

Consider nuclear mass as a function of N and Z

m(A,Z ) = Zmp + (A− Z )mn − aVA + aSA
2/3 +

aCZ
2

A1/3
+ aA

(N − Z )2

A
− δ(A)

using SEMF
For β decay, A is constant,

but Z changes by ±1 and m(A,Z ) is quadratic in Z

Most stable nuclide when

[
∂m(A,Z )

∂Z

]
A

= 0
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β Decay Typical situation at constant A

Usually only one isotope table against

β-decay; occasionally two.

Typically two even-even nuclides are

stable against β-decay; almost no

odd-odd ones (pairing term).
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Fermi Theory of β-decay

In nuclear decay, weak interaction taken to be a 4-fermion contact interaction:

X → Y e− ν̄e

GF

X

ν̄e

e−

Y No “propagator” – absorb the effect of the
exchanged W boson into an effective coupling
strength given by the Fermi constant
GF = 1.166× 10−5 GeV−2.

Use Fermi’s Golden Rule to get the transition rate Γ = 2π|Mfi|2ρ(Ef)

where Mfi is the matrix element and ρ(Ef) =
dN
dEf

is the density of final states.

Γ =
G 2
F |Mnuclear|2

2π3

∫ E0

0

(E0 − Ee)
2E 2

e dEe
Total decay rate given by
Sargent’s Rule, Γ ∝ E 5

0
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Fermi Theory of β-decay

β decay spectrum described by Kurie Plot

√
dΓ

dpe

1

p2e
∝ (E0 − Ee)

  

√d Γ

d pe

1

pe
2

Ee(keV)

Endpoint
E

0

3 H→
3 He+e−

+ν̄e
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Fermi Theory of β-decay

BUT, the momentum of the electron is modified by the Coulomb interaction as
it moves away from the nucleus (different for e− and e+).
⇒ Multiply spectrum by Fermi function F (ZY ,Ee)

Γ =
G 2
F |Mnuclear|2

2π3

∫ E0

0

(E0 − Ee)
2E 2

e F (ZY ,Ee) dEe

All the information about the nuclear wavefunctions is contained in the matrix
element. Values for the complicated Fermi Integral are tabulated.

f (ZY ,E0) =
1

m5
e

∫ E0

0

(E0 − Ee)
2E 2

e F (ZY ,Ee) dEe

Mean lifetime τ = 1/Γ, half-life τ1/2 =
ln 2
Γ

f τ1/2 = ln 2
2π3

m5
eG

2
F |Mnuclear|2

Comparative half-life
this is rather useful because it depends

only on the nuclear matrix element
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Fermi Theory of β-decay Comparative half-lives

  

N
um

be
r 

of
 c

as
es

log fτ
In rough terms, decays with

log f τ1/2 ∼ 3− 4 known as super-allowed
∼ 4− 7 known as allowed
≥ 6 known as forbidden (i.e. suppressed, small Mif)
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Fermi Theory of β-decay Selection Rules

Fermi theory Mfi = GF

∫
ψ∗
p e

−i(p⃗e+p⃗ν).r⃗ ψn d
3r⃗

e, ν wavefunctions

Allowed Transitions log10 f τ1/2 ∼ 4− 7
Angular momentum of eν pair relative to nucleus, L = 0.

Equivalent to: e−i(p⃗e+p⃗ν).r⃗ ∼ 1

Superallowed Transitions log10 f τ1/2 ∼ 3− 4
subset of Allowed transitions: often mirror nuclei in which p and n have
approximately the same wavefunction

Mnuclear ∼
∫
ψ∗
pψn d

3r⃗ ∼ 1

e, ν both have spin 1/2 ⇒ Total spin of eν system can be Seν = 0 or 1.
There are two types of allowed/superallowed transitions depending on the
relative spin states of the emitted e and ν...
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Fermi Theory of β-decay Selection Rules

For allowed/superallowed transitions, Leν = 0

GF

X

ν̄e

e−

Y

X → Y + e + ν

JX = JY⊕Seν⊕Leν

e.g. n → pe−ν̄e
4 spin states of eν

(3 G-T, 1 Fermi)

Seν = 0 Fermi transitions

n ↑ → p ↑ +
1√
2

[(
e− ↑ ν̄e ↓

)
−
(
e− ↓ ν̄e ↑

)]
∆J = 0

Seν = 0,ms = 0 JX = JY

Seν = 1 Gamow-Teller transitions

n ↑ → p ↑ +
1√
2

[(
e− ↑ ν̄e ↓

)
+
(
e− ↓ ν̄e ↑

)]
∆J = 0

0 → 0 forbidden
Seν = 1,ms = 0 JX = JY

n ↑ → p ↓ + e− ↑ + ν̄e ↑ ∆J = ±1

Seν = 1,ms = ±1 JX = JY±1

No change in angular momentum of the eν pair relative to the nucleus, Leν = 0

⇒ Parity of nucleus unchanged
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Fermi Theory of β-decay Selection Rules

Forbidden Transitions log10 f τ1/2 ≥ 6
Angular momentum of eν pair relative to nucleus, Leν > 0.

e−i(p⃗e+p⃗ν).r⃗ = 1 − i(p⃗e + p⃗ν).r⃗ +
1

2
[(p⃗e + p⃗ν).r⃗ ]

2 − ...

L = 0 1 2

P = (−1)L = even odd even

Allowed 1st forbidden 2nd forbidden

Transition probabilities for L > 0 are small ⇒ forbidden transitions (really
means “suppressed”).
Forbidden transitions are only competitive if an allowed transition cannot occur
(selection rules). Then the lowest permitted order of “forbiddeness” will
dominate.
In general, nth forbidden ⇒ eν system carries orbital angular momentum
L = n, and Seν = 0 (Fermi) or 1 (G-T). Parity change if L is odd.
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Fermi Theory of β-decay Selection Rules

Examples

34Cl(0+) →34S(0+)

14C(0+) →14N(1+)

n(1/2+) → p(1/2+)

39Ar(7/2−) →39K(3/2+)

87Rb(3/2−) →87Sr(9/2+)

Prof. Tina Potter 15. Nuclear Decay 28



γ Decay

Emission of γ-rays (EM radiation) occurs when a
nucleus is created in an excited state
(e.g. following α, β decay or collision).

  

final

initial J i

J f

γ ℓγ The photon carries away net angular momentum Lγ
when a proton in the nucleus makes a transition from
its initial a.m. state Ji to its final a.m. state Jf.

J⃗i = L⃗γ ⊕ J⃗f and |J⃗i − J⃗f| ≤ Lγ ≤ |J⃗i + J⃗f|

The photon carries JP = 1− ⇒ Lγ ≥ 1.

⇒ Single γ emission is forbidden for a transition between two J = 0 states.
(0 → 0 transitions can only occur via internal conversion (emitting an electron) or via the

emission of more than one γ.)
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γ Decay
Radiative transitions in nuclei are generally the same as for atoms, except

Atom Eγ ∼ eV ; λ ∼ 108 fm ∼ 103 × ratom ; Γ ∼ 109 s−1

Only dipole transitions are important.

Nuclei Eγ ∼ MeV ; λ ∼ 102 fm ∼ 25× rnucl ; Γ ∼ 1016 s−1

Collective motion of many protons lead to higher transition rates.
⇒ Higher order transitions are also important.

Two types of transitions:

Electric (E) transitions arise from an oscillating charge which causes an
oscillation in the external electric field.

Magnetic (M) transitions arise from a varying current or magnetic moment
which sets up a varying magnetic field.

Obtain transition probabilities using Fermi’s Golden Rule

Γ = 2π|Mif|2ρ(Ef)
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γ Decay Electric Dipole Transitions (E1) L = 1

Insert dipole matrix element into FGR Γi→f =
ω3

3πϵ0c3ℏ
| ⟨ψf|er⃗ |ψi⟩ |2

see Adv. Quantum Physics; after averaging over initial and summing over final states

Order of magnitude estimate of this rate,

| ⟨ψf|er⃗ |ψi⟩ |2 ∼ |eR |2 ⇒ Γ ∼ 4

3
αE 3

γR
2 R = radius of nucleus,

α = e2

4πϵ0cℏ, Eγ = ℏω, ℏ = c = 1.

e.g. Eγ = 1 MeV, R = 5 fm (ℏc = 197 MeVfm, ℏ = 6.6× 10−22 MeVs)

Γ(E1) = 0.24 MeV3fm2 =
0.24

(197)2 × 6.6× 10−22
s−1 = 1016 s−1

(c.f. atoms Γ ∼ 109s−1)

As nuclear wavefunctions have definite parity, the matrix element can only be
non-zero if the initial and final states have opposite parity.

er⃗
P̂−→ − er⃗ ODD

E1 transition ⇒ parity change of nucleus
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γ Decay Magnetic Dipole Transitions (M1) L = 1

Magnetic dipole matrix element | ⟨ψf|µσ⃗|ψi⟩ |2

µ = magnetic moment, σ⃗ = Pauli spin matrices

Typically Nuclear magneton⟨µσ⟩ ∼ eℏ
2mp

= µN

For a proton
ℏ
mp

∼ 0.2fm ∼ R

25
for R = 5 fm

Compare to E1 transition rate Γ(M1)

Γ(E1)
=

(
eℏ
2mp

)2 1

(eR)2
= 10−3

Magnetic moment transforms the same way as angular momentum

er⃗ × p⃗
P̂−→ e(−r⃗)× (−p⃗) = er⃗ × p⃗ EVEN

M1 transition ⇒ no parity change of nucleus
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γ Decay Higher Order Transitions (EL, ML, where L > 1)

If the initial and final nuclear states differ by more than 1 unit of angular momentum

⇒ higher multipole radiation

The perturbing Hamiltonian is a function of electric and magnetic fields and hence of the

vector potential ⟨ψf|H ′(A⃗)|ψi⟩
A⃗ for a photon is taken to have the form of a plane wave

A⃗eip⃗.r⃗ = 1 −ip⃗.r⃗ +
1

2
(p⃗.r⃗)2 + ...

(−ip⃗.r⃗)n

n!

Dipole Quadrupole Octupole

L = 1 2 3

E1,M1 E2,M2 E3,M3

Each successive term in the expansion of A⃗ is reduced from the previous one by a factor of

roughly p⃗.r⃗ .

e.g. Compare E1 to E2 for p ∼ 1 MeV, R ∼ 5fm

⇒ pR ∼ 5 MeVfm ∼ 0.025, |pR |2 ∼ 10−3

Γ(E2)

Γ(E1)
∼ 10−3 ∼ Γ(M1)

Γ(E1)

The matrix element for E2 transitions ∼ r 2 i.e. even under a parity transformation.
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γ Decay Transitions

In general, EL transitions Parity = (−1)L

ML transitions Parity = (−1)L+1

Rate 1 10−3 10−6 10−9 ...
E1 E2 E3 E4 ...

M1 M2 M3 ...
Parity change ✓ ✗ ✓ ✗

JP of γ E: 1− 2+ 3− 4+

M: 1+ 2− 3+

In general, a decay will proceed dominantly by the lowest order (i.e. fastest)
process permitted by angular momentum and parity.

e.g. if a process has ∆J = 2, no parity change, it will go by the E2, even
though M3, E4 are also allowed.
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γ Decay Transitions

e.g. 117
50 Sn

  
1/2+

3/2+ → 1/2+    M1 (E2 also allowed)

11/2– 

7/2+ 

J P

M1

M4

E2

11/2- → 3/2+   M4 
More likely than 11/2- → 1/2+  (E5)

7/2+ → 3/2+    E2 
 M2 7/2+ → 11/2-

 M3 7/2+ → 1/2+
less likely  

3/2+

Information about the nature of transitions (based on rates and angular
distributions) is very useful in inferring the JP values of states.

Please note: this discussion of rates is fairly näıve. More complete formulae
can be found in textbooks.
Also collective effects may be important if

many nucleons participate in transitions,

nucleus has a large electric quadrupole moment, Q, → rotational excited
states enhance E2 transitions.
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Summary

Radioactive decays and dating.

α-decay Strong dependence on E , Z

Tunnelling model (Gamow) – Geiger-Nuttall law ln τ1/2 ∼ Z ′

E
1/2
0

+ const.

β-decay β+, β−, electron capture; energetics, stability

Fermi theory – 4-fermion interaction plus 3-body phase space.

Γ =
G 2
F |Mnuclear|2

2π3

∫ E0

0

(E0 − Ee)
2p2e dpe

Electron energy spectrum; Kurie plot.

Comparative half-lives.

Selection rules; Fermi, Gamow-Teller; allowed, forbidden.

γ-decay Dipole, quadrupole; electric, magnetic transitions.

Selection rules.

Problem Sheet: q.37-41

Up next... Section 16: Fission and Fusion
Prof. Tina Potter 15. Nuclear Decay 36


