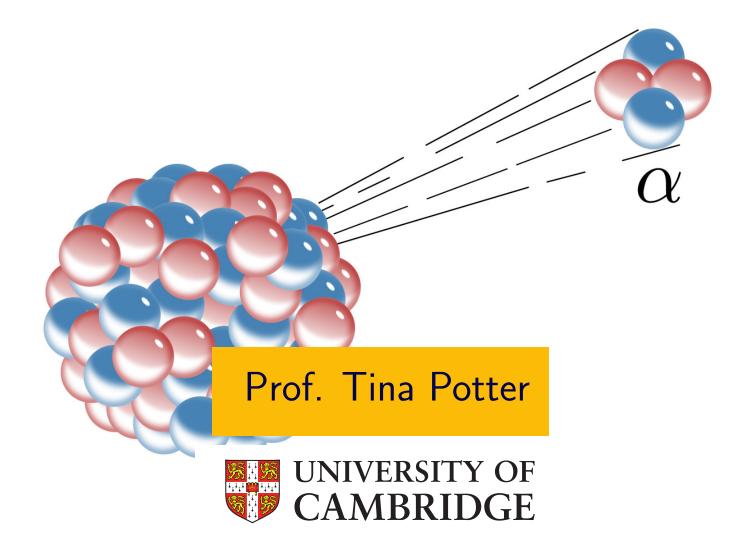
15. Nuclear Decay Particle and Nuclear Physics



15. Nuclear Decay

- Radioactive decays
- Radioactive dating
- α decay
- β decay
- γ decay

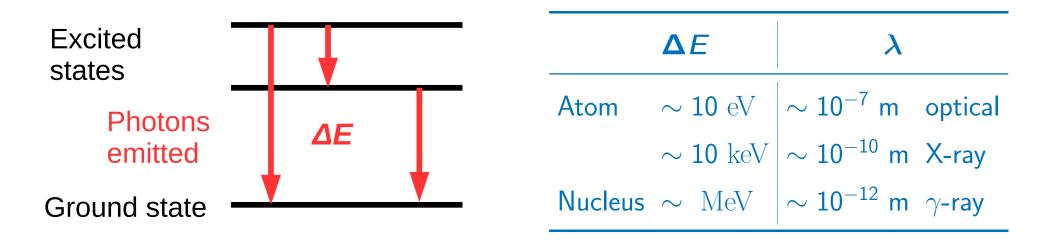
Radioactivity

Natural radioactivity: three main types α , β , γ , and in a few cases, spontaneous fission.

 α decay ⁴₂He nucleus emitted. $^{A}_{7}X \rightarrow ^{A-4}_{7-2}Y + ^{4}_{2}He$ Occurs for $A \ge 210$ For decay to occur, energy must be released Q > 0 $Q = m_{\mathrm{X}} - m_{\mathrm{Y}} - m_{\mathrm{He}} = B_{\mathrm{Y}} + B_{\mathrm{He}} - B_{\mathrm{X}}$ β decay emission of electron e^- or positron e^+ $n \rightarrow p + e^- + \bar{\nu}_e \qquad {}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e^- + \bar{\nu}_e \qquad \beta^- \text{ decay}$ $p \rightarrow n + e^+ + \nu_e \qquad {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + e^+ + \nu_e \qquad \beta^+ \text{ decay}$ $p + e^- \rightarrow n + \nu_e$ ${}^A_Z X + e^- \rightarrow {}^A_{Z-1} Y + \nu_e$ Electron capture n.b. of these processes, only $n \rightarrow p e \nu$ can occur outside a nucleus.

Radioactivity

 γ decay Nuclei in excited states can decay by emission of a photon γ . Often follows α or β decay.



A variant of γ decay is Internal Conversion:

- an excited nucleus loses energy by emitting a virtual photon,
- the photon is absorbed by an atomic e^- , which is then ejected
- n.b. not β decay, as nucleus composition is unchanged (e^- not from nucleus)

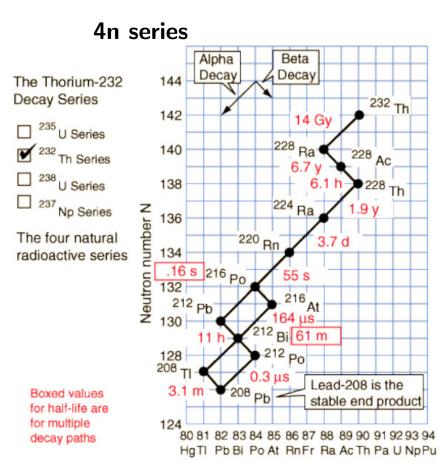
Natural Radioactivity

The half-life, $\tau_{1/2}$, is the time over which 50% of the nuclei decay $\tau_{1/2} = \frac{\ln 2}{\lambda} = 0.693\tau$ λ Transition rate τ Average lifetime

Some $\tau_{1/2}$ values may be long compared to the age of the Earth.

Series Name	Туре	Final Nucleus (stable)	Longest- lived Nucleus	$ au_{1/2}$ (years)
Thorium	4n	²⁰⁸ Pb	²³² Th	$1.41 imes10^{10}$
Neptunium	4n+1	²⁰⁹ Bi	²³⁷ Np	$2.14 imes10^{6}$
Uranium	4n+2	²⁰⁶ Pb	²³⁸ U	$4.47 imes10^9$
Actinium	4n+3	²⁰⁷ Pb	²³⁵ U	$7.04 imes10^8$

n is an integer



200

<ロト <回ト < 三ト < 三ト :

Radioactive Dating Geological Dating

Can use β^- decay to age the Earth, 87 Rb $\rightarrow {}^{87}$ Sr $(\tau_{1/2} = 4.8 \times 10^{10} \text{ years})$ $N_1 N_2$ 87 Sr is stable $\rightarrow \lambda_2 = 0$

So in this case, we have (using expressions from Chapter 2)

 $N_2(t) = N_1(0) \left[1 - e^{-\lambda_1 t}\right] + N_2(0) = N_1(t) \left[e^{\lambda_1 t} - 1\right] + N_2(0)$

Assume we know λ_1 , and can measure $N_1(t)$ and $N_2(t)$ e.g. chemically. But we don't know $N_2(0)$.

Solution is to normalise to another (stable) isotope $-\frac{86}{5}$ sr - for which number is $N_0(t) = N_0(0)$. $\frac{N_2(t)}{N_0} = \frac{N_1(t)}{N_0} \left[e^{\lambda_1 t} - 1\right] + \frac{N_2(0)}{N_0}$

> **Method:** plot $N_2(t)/N_0$ vs $N_1(t)/N_0$ for lots of minerals. Gradient gives $[e^{\lambda_1 t} - 1]$ and hence t. Intercept = $N_2(0)/N_0$, which should be the same for all minerals (determined by chemistry of formation).

Prof. Tina Potter

Radioactive Dating Dating the Earth

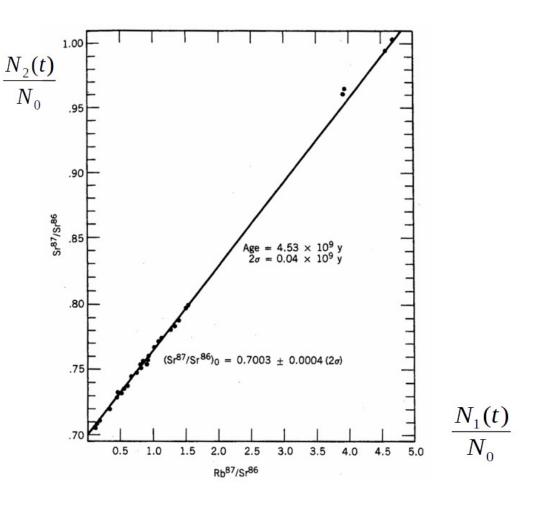
$$\frac{N_2(t)}{N_0} = \frac{N_1(t)}{N_0} \left[e^{\lambda_1 t} - 1 \right] + \frac{N_2(0)}{N_0}$$

Method: plot $N_2(t)/N_0$ vs $N_1(t)/N_0$ for lots of minerals. Gradient gives $[e^{\lambda_1 t} - 1]$ and hence t. Intercept = $N_2(0)/N_0$, which should be the same for all minerals (determined by chemistry of formation).

Using minerals from the Earth, Moon and meteorites.

Intercept gives $N_2(0)/N_0 = 0.70$

Slope gives the age of the Earth = 4.5×10^9 yrs



Radioactive Dating Radio-Carbon Dating

For recent organic matter, use ¹⁴C dating

Continuously formed in the upper atmosphere at approx. constant rate. ${}^{14}N + n \rightarrow {}^{14}C + p$

Atmospheric carbon continuously exchanged with living organisms. Equilibrium: 1 atom of ¹⁴C to every 10¹² atoms of other carbon isotopes (98.9% ¹²C, 1.1% ¹³C) $\frac{\text{Undergoes }\beta^{-} \text{ decay}}{^{14}\text{C} \rightarrow ^{14}\text{N} + e^{-} + \overline{\nu}_{e}} \qquad \tau_{_{1/2}} = 5730 \text{ yrs}$

No more ¹⁴C intake for dead organisms.

Fresh organic material ~11 decays/minute/gram of carbon.

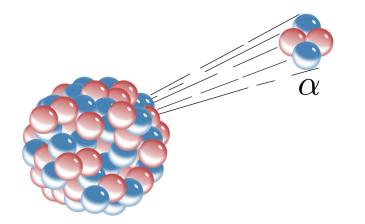
Measure the **specific activity** of material to obtain age, i.e. number of decays per second per unit mass

Complications for the future!

Burning of fossil fuels increases ¹²C in atmosphere, Nuclear bomb testing (adds ¹⁴C to atmosphere)

Prof. Tina Potter

α Decay



- α decay is due to the emission of a ⁴₂He nucleus.
- ${}_{2}^{4}$ He is doubly magic and very tightly bound.
- α decay is energetically favourable for almost all with A \geq 190 and for many A \geq 150.

Why α rather than any other nucleus?

Consider energy release (Q) in various possible decays of 232 U

	п	р	² H	³ H	³ He	⁴ He	⁵ He	⁶ Li	⁷ Li
$Q/{ m MeV}$	-7.26	-6.12	-10.70	-10.24	-9.92	+5.41	-2.59	-3.79	-1.94

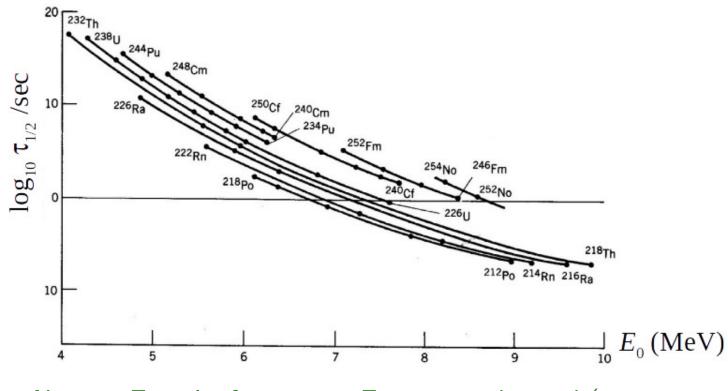
 α is easy to form inside a nucleus $2p \uparrow \downarrow + 2n \uparrow \downarrow$

(though the extent to which α particles really exist inside a nucleus is still debatable)

α **Decay** Dependence of $\tau_{1/2}$ on E_0

(Geiger and Nuttall 1911)

A very striking feature of α decay is the strong dependence of lifetime on E_0



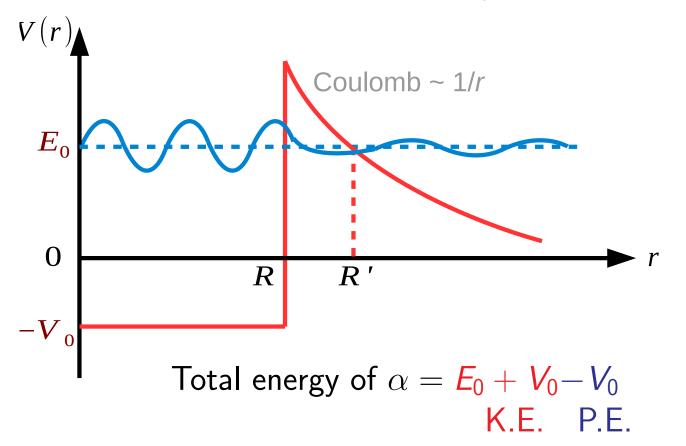
e.g. even N, even Z nuclei for a given Z see smooth trend ($\tau_{1/2}$ increases as Z does).

Prof. Tina Potter

15. Nuclear Decay

a Decay Quantum Mechanical Tunnelling

The nuclear potential for the α particle due to the daughter nucleus includes a Coulomb barrier which inhibits the decay.



Classically, α particle cannot enter or escape from nucleus. Quantum mechanically, α particle can penetrate the Coulomb barrier

 \Rightarrow Quantum Mechanical Tunnelling

Prof. Tina Potter

15. Nuclear Decay

α **Decay** Simple Theory (Gamow, Gurney, Condon 1928)

Assume α exists inside the nucleus and hits the barrier.

 α decay rate, $\lambda = f P$

f = escape trial frequency, P = probability of tunnelling through barrier semi – classically, $f \sim v/2R$

v = velocity of a particle inside nucleus, given by: $v^2 = (2E_{\alpha}/m_{\alpha})$ and R = radius of nucleus

Typical values: $V_0 \sim 35 \,\,\mathrm{MeV}$, $E_0 \sim 5 \,\,\mathrm{MeV} \Rightarrow E_lpha = 40 \,\,\mathrm{MeV}$ inside nucleus

$$f \sim rac{v}{2R} = rac{1}{2R} \sqrt{rac{2E_{lpha}}{m_{lpha}}} \sim 10^{22} \, \mathrm{s}^{-1} \qquad m_{lpha} = 3.7 \; \mathrm{GeV}$$

 $R \sim 2.1 \; \mathrm{fm}$

Obtain tunnelling probability, *P*, by solving Schrödinger equation in three regions and using boundary conditions.

$\alpha \text{ Decay Simple Theory (Gamow, Gurney, Condon 1928)}$ Transmission probability (1D square barrier): $P = \left[1 + \frac{V_0^2}{4(V_0 - E)E} \sinh^2 ka\right]^{-1}$ $\underbrace{\frac{\hbar^2 k^2}{2m}}_{=} = V_0 - E \qquad m = \text{reduced mass}$

For $ka \gg 1$, P is dominated by the exp. decay within barrier $\Rightarrow P \sim e^{-2ka}$. Coulomb potential, $V \propto 1/r$, and thus k varies with r. Divide into rectangular pieces and multiply together exponentials, i.e. sum exponents.

Probability to tunnel through Coulomb barrier

$$P = \prod_{i} e^{-2k_{i}\Delta R} = e^{-2G} \qquad k = \frac{\left[2m_{\alpha}(V(r) - E_{0})\right]^{1/2}}{\hbar}$$

The Gamow Factor
$$G = \int_{R}^{R'} \frac{\left[2m_{\alpha}(V(r) - E_{0})\right]^{1/2}}{\hbar} dr = \int_{R}^{R'} k(r) dr$$

α DecaySimple Theory(Gamow, Gurney, Condon 1928)For r > R, $V(r) = \frac{Z_{\alpha}Z'e^2}{4\pi\epsilon_0 r} = \frac{B}{r}$ $Z' = Z - Z_{\alpha}$ $(Z_{\alpha} = 2)$

 α -particle escapes at r = R', $V(R') = E_0 \Rightarrow R' = B/E_0$

$$\therefore G = \int_{R}^{R'} \left(\frac{2m_{\alpha}}{\hbar^{2}}\right)^{1/2} \left[\frac{B}{r} - E_{0}\right]^{1/2} \mathrm{d}r = \left(\frac{2m_{\alpha}B}{\hbar^{2}}\right)^{1/2} \int_{R}^{R'} \left[\frac{1}{r} - \frac{1}{R'}\right]^{1/2} \mathrm{d}r$$

See Appendix H

$$G = \left(\frac{2m_{\alpha}}{E_0}\right)^{1/2} \frac{B}{\hbar} \left[\cos^{-1}\left(\frac{R}{R'}\right)^{1/2} - \left\{\left(1 - \frac{R}{R'}\right)\left(\frac{R}{R'}\right)\right\}^{1/2}\right]$$

To perform integration, substitute $r = R' \cos^2 \theta$

In most practical cases $R \ll R'$, so term in $[...] \sim \pi/2$ $G \sim \left(\frac{2m_{\alpha}}{E_0}\right)^{1/2} \frac{B}{\hbar} \frac{\pi}{2}$ $B = \frac{Z_{\alpha} Z' e^2}{4\pi\epsilon_0}$

e.g. typical values: $Z = 90, E_0 \sim 6 \text{ MeV} \Rightarrow R' \sim 40 \text{ fm} \gg R$ $G \sim Z' \left(\frac{3.9 \text{ MeV}}{E_0}\right)^{1/2}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

α Decay Simple Theory (Gamow, Gurney, Condon 1928)

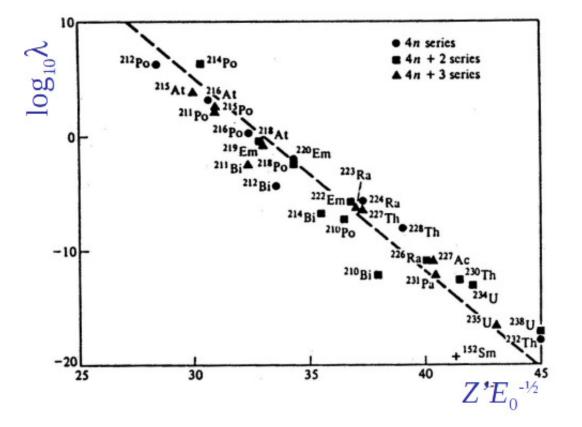
Lifetime
$$\tau = \frac{1}{\lambda} = \frac{1}{fP} \sim \frac{2R}{v} e^{2G}$$

 $\Rightarrow \ln \tau \sim 2G + \ln \frac{2R}{v}$
 $\ln \lambda \sim -\frac{Z'}{-1/2} + \text{constant}$

Geiger-Nuttall Law

Not perfect, but provides an explanation of the dominant trend of the data

 $E_{0}^{+/-}$



Simple tunnelling model accounts for

- strong dependence of $\tau_{1/2}$ on E_0
- $au_{1/2}$ increases with Z
- disfavoured decay to heavier fragments e.g. ^{12}C

 $G \propto m^{1/2}$ and $G \propto$ charge of fragment

Prof. Tina Potter

Deficiencies/complications with simple tunnelling model:

- Assumed existence of a single α particle in nucleus and have taken no account of probability of formation.
- Assumed "semi-classical" approach to estimate escape trial frequency, $f \sim v/2R$, and make absolute prediction of decay rate.
- If α is emitted with some angular momentum, *L*, the radial wave equation must include a centrifugal barrier term in Schrödinger equation

$$V' = rac{L(L+1)\hbar^2}{2\mu r^2}$$
 $L =$ relative a.m. of $lpha$ and daughter nucleus $\mu =$ reduced mass

which raises the barrier and suppresses emission of α in in high L states.

α Decay Selection rules

Nuclear Shell Model: α has $J^P = 0^+$

Angular momentum

e.g. $X \to Y + \alpha$ L_{α} conserve J: $J_X = J_Y \oplus J_{\alpha} = J_Y \oplus L_{\alpha}$ L_{α} can take values from $J_X + J_Y$ to $|J_X - J_Y|$

Parity

Parity is conserved in α decay (strong force). Orbital wavefunction has $P = (-1)^L$

X, Y same parity $\Rightarrow L_{\alpha}$ must be even X, Y opposite parity $\Rightarrow L_{\alpha}$ must be odd e.g. if X, Y are both even-even nuclei in their ground states, shell model predicts both have $J^P = 0^+ \Rightarrow L_{\alpha} = 0$.

More generally, if X has $J^P = 0^+$, the states of Y which can be formed in α decay are $J^P = 0^+, 1^-, 2^+, 3^-, 4^+, \dots$

β Decay

$$\begin{array}{ccc} \beta^{-} & n \rightarrow p + e^{-} + \bar{\nu}_{e} & {}^{A}_{Z} X \rightarrow {}^{A}_{Z+1} Y + e^{-} + \bar{\nu}_{e} \\ \\ \beta^{+} & p \rightarrow n + e^{+} + \nu_{e} & {}^{A}_{Z} X \rightarrow {}^{A}_{Z-1} Y + e^{+} + \nu_{e} \\ \\ \text{electron capture} & p + e^{-} \rightarrow n + \nu_{e} & {}^{A}_{Z} X + e^{-} \rightarrow {}^{A}_{Z-1} Y + \nu_{e} \end{array}$$

- β decay is a weak interaction mediated by the W boson.
- Parity is violated in β decay.
- Responsible for Fermi postulating the existence of the neutrino.
- Kinematics: Decay is possible if energy release $E_0 > 0$ Nuclear Masses $\beta^- \quad E_0 = m_X - m_Y - m_e - m_\nu$ $\beta^+ \quad E_0 = m_X - m_Y - m_e - m_\nu$ e.c. $E_0 = m_X - m_Y + m_e - m_\nu$ (and note that $m_\nu \sim 0$) n.b. electron capture may be possible even if β^+ not allowed Prof. Tina Potter • Kinematics: Decay Atomic Masses $E_0 = M_X - M_Y - m_\nu$ $E_0 = M_X - M_Y - 2m_e - m_\nu$ $E_0 = M_X - M_Y - 2m_e - m_\nu$ $E_0 = M_X - M_Y - m_\mu$ $E_0 = M_X - M_Y - m_\mu$ $E_0 = M_X - M_Y - m_\mu$

β **Decay** *Nuclear stability against* β *decay*

Consider nuclear mass as a function of N and Z

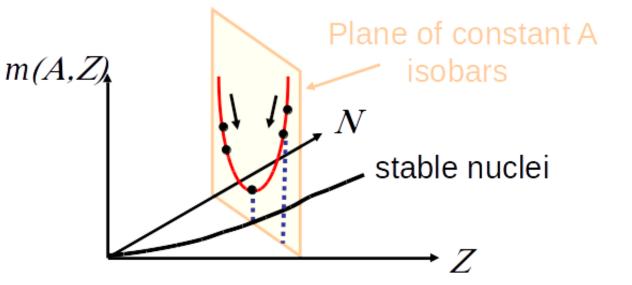
$$m(A, Z) = Zm_p + (A - Z)m_n - a_VA + a_SA^{2/3} + \frac{a_CZ^2}{A^{1/3}} + a_A\frac{(N - Z)^2}{A} - \delta(A)$$

using SEMF

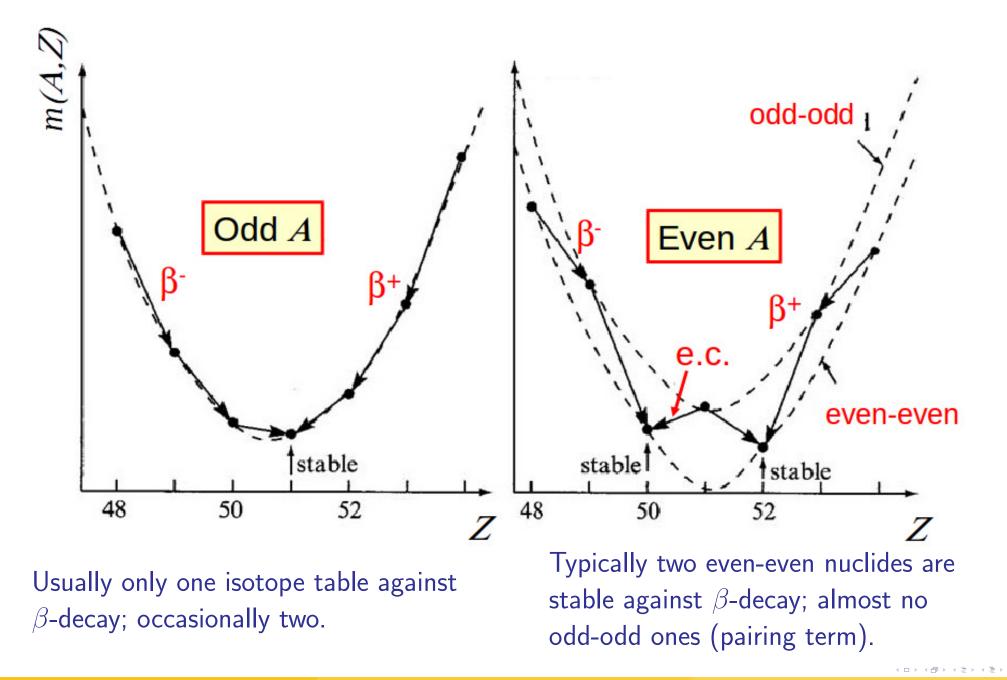
For
$$eta$$
 decay, A is constant, but Z changes by ± 1 and $m(A,Z)$ is quadratic in Z

Most stable nuclide when

$$\left[\frac{\partial m(A,Z)}{\partial Z}\right]_A = 0$$



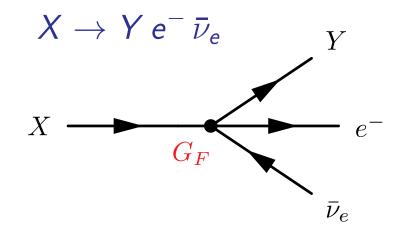
β **Decay** Typical situation at constant A



DQC

Fermi Theory of β -decay

In nuclear decay, weak interaction taken to be a 4-fermion contact interaction:



No "propagator" – absorb the effect of the exchanged W boson into an effective coupling strength given by the Fermi constant $G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2}$.

Use Fermi's Golden Rule to get the transition rate $\Gamma = 2\pi |M_{\rm fi}|^2 \rho(E_{\rm f})$

where $M_{\rm fi}$ is the matrix element and $\rho(E_{\rm f}) = \frac{\mathrm{d}N}{\mathrm{d}E_{\rm f}}$ is the density of final states.

$$\Gamma = \frac{G_F^2 |M_{\text{nuclear}}|^2}{2\pi^3} \int_0^{E_0} (E_0 - E_e)^2 E_e^2 \, \mathrm{d}E_e$$

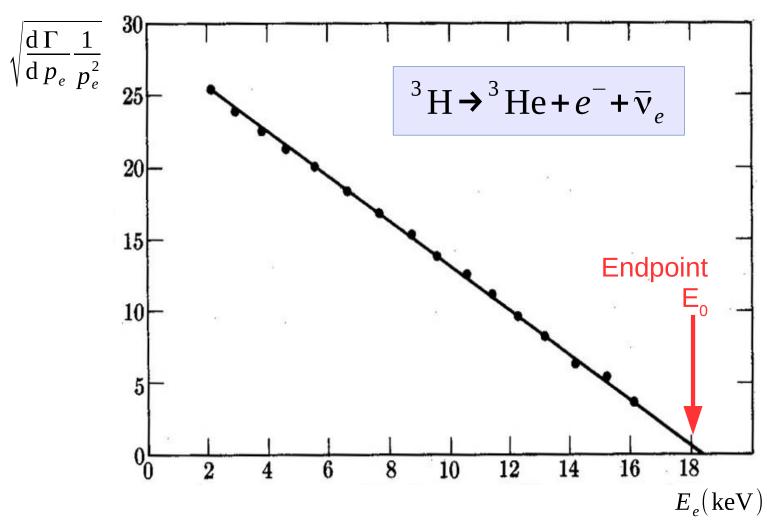
Total decay rate given by Sargent's Rule, $\Gamma \propto E_0^5$

Fermi Theory of β -decay

 β decay spectrum described by

$$\sqrt{rac{\mathrm{d}\Gamma}{\mathrm{d}p_e}}rac{1}{p_e^2}\propto (E_0-E_e)$$

Kurie Plot



●●● 単一 ▲田 ● ▲田 ● ▲ ●

Fermi Theory of β -decay

BUT, the momentum of the electron is modified by the Coulomb interaction as it moves away from the nucleus (different for e^- and e^+). \Rightarrow Multiply spectrum by Fermi function $F(Z_Y, E_e)$

$$\Gamma = \frac{G_F^2 |M_{\text{nuclear}}|^2}{2\pi^3} \int_0^{E_0} (E_0 - E_e)^2 E_e^2 F(Z_Y, E_e) \, \mathrm{d}E_e$$

All the information about the nuclear wavefunctions is contained in the matrix element. Values for the complicated Fermi Integral are tabulated.

$$f(Z_Y, E_0) = \frac{1}{m_e^5} \int_0^{E_0} (E_0 - E_e)^2 E_e^2 F(Z_Y, E_e) dE_e$$

Mean lifetime $\tau = 1/\Gamma$, half-life $\tau_{1/2} = \frac{\ln 2}{\Gamma}$

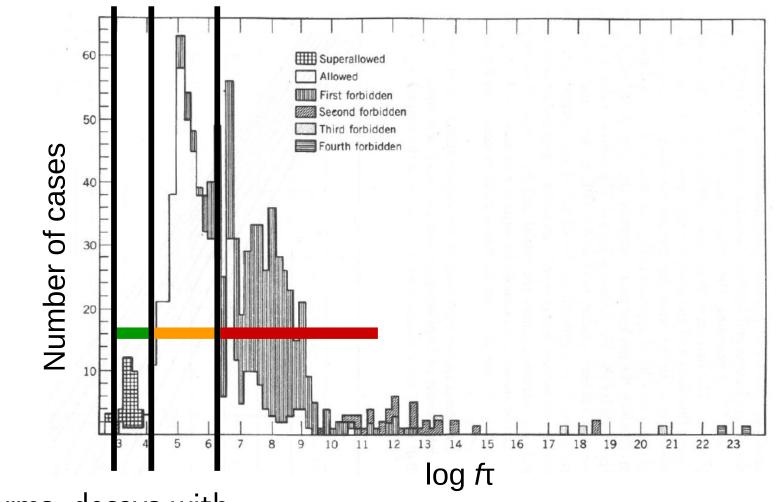
$$f \tau_{1/2} = \ln 2 \frac{2\pi^3}{m_e^5 G_F^2 |M_{\text{nuclear}}|^2}$$

Comparative half-life

this is rather useful because it depends

only on the nuclear matrix element

Fermi Theory of β -decay Comparative half-lives



In rough terms, decays with

$$\begin{array}{ll} \log f\tau_{1/2} & \sim 3-4 & \text{known as super-allowed} \\ & \sim 4-7 & \text{known as allowed} \\ & \geq 6 & \text{known as forbidden (i.e. suppressed, small } M_{\text{if}}) \end{array}$$

Prof. Tina Potter

DQC.

Fermi theory
$$M_{\rm fi} = G_F \int \psi_p^* e^{-i(\vec{p}_e + \vec{p}_\nu) \cdot \vec{r}} \psi_n \, \mathrm{d}^3 \vec{r}$$

e, ν wavefunctions

Allowed Transitions $\log_{10} f \tau_{1/2} \sim 4 - 7$ Angular momentum of $e\nu$ pair relative to nucleus, L = 0. Equivalent to: $e^{-i(\vec{p_e} + \vec{p_\nu}) \cdot \vec{r}} \sim 1$

Superallowed Transitions $\log_{10} f \tau_{1/2} \sim 3-4$

subset of Allowed transitions: often **mirror nuclei** in which *p* and *n* have approximately the same wavefunction

$$M_{\rm nuclear} \sim \int \psi_p^* \psi_n \, \mathrm{d}^3 \vec{r} \sim 1$$

e, ν both have spin $1/2 \Rightarrow$ Total spin of $e\nu$ system can be $S_{e\nu} = 0$ or 1. There are two types of allowed/superallowed transitions depending on the relative spin states of the emitted *e* and ν ...

For allowed/superallowed transitions, $L_{e\nu} = 0$

 $X \rightarrow Y + e + \nu$ $J_X = J_Y \oplus S_{e_{1}} \oplus L_{e_{1}}$ e.g. $n \rightarrow pe^- \bar{\nu}_e$ 4 spin states of $e\nu$ (3 G-T, 1 Fermi)

$$S_{e\nu} = 0 \text{ Fermi transitions}$$

$$n \uparrow \rightarrow p \uparrow + \frac{1}{\sqrt{2}} \left[\left(e^- \uparrow \bar{\nu}_e \downarrow \right) - \left(e^- \downarrow \bar{\nu}_e \uparrow \right) \right] \qquad \Delta J = 0$$

$$S_{e\nu} = 0, \, m_s = 0 \qquad J_X = J_Y$$

 $S_{e\nu} = 1$ Gamow-Teller transitions

$$n\uparrow \rightarrow p\uparrow + \frac{1}{\sqrt{2}} \begin{bmatrix} (e^-\uparrow \bar{\nu}_e \downarrow) + (e^-\downarrow \bar{\nu}_e \uparrow) \end{bmatrix} \qquad \Delta J = 0$$

$$0 \rightarrow 0 \text{ forbidden}$$

$$S_{e\nu} = 1, m_s = 0 \qquad J_X = J_Y$$

$$n \uparrow \rightarrow p \downarrow + e^- \uparrow + \overline{\nu}_e \uparrow \qquad \Delta J = \pm 1$$
 $S_{e\nu} = 1, m_s = \pm 1 \qquad J_X = J_Y \pm 1$

No change in angular momentum of the $e\nu$ pair relative to the nucleus, $L_{e\nu} = 0$ \Rightarrow Parity of nucleus unchanged

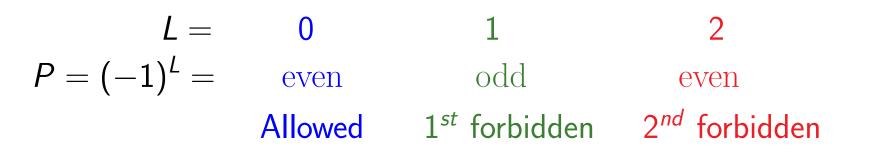
Prof. Tina Potter

15. Nuclear Decay

イロト イポト イヨト イヨト

Forbidden Transitions $\log_{10} f \tau_{1/2} \ge 6$ Angular momentum of $e\nu$ pair relative to nucleus, $L_{e\nu} > 0$.

$$e^{-i(\vec{p_e}+\vec{p_\nu}).\vec{r}} = 1 - i(\vec{p_e}+\vec{p_\nu}).\vec{r} + \frac{1}{2}[(\vec{p_e}+\vec{p_\nu}).\vec{r}]^2 - \dots$$



Transition probabilities for L > 0 are small \Rightarrow forbidden transitions (really means "suppressed").

Forbidden transitions are only competitive if an allowed transition cannot occur (selection rules). Then the lowest permitted order of "forbiddeness" will dominate.

In general, n^{th} forbidden $\Rightarrow e\nu$ system carries orbital angular momentum L = n, and $S_{e\nu} = 0$ (Fermi) or 1 (G-T). Parity change if L is odd.

Examples

 $^{34}\text{Cl}(0^+) \rightarrow ^{34}\text{S}(0^+)$

 $^{14}\text{C}(0^+) \rightarrow ^{14}\text{N}(1^+)$

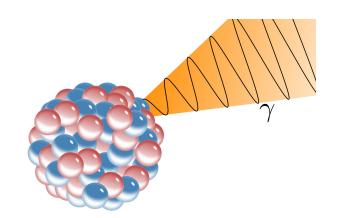
 $n(1/2^+)
ightarrow p(1/2^+)$

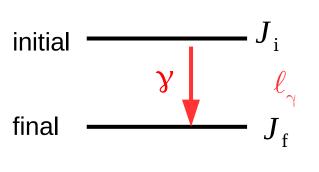
 $^{39}\text{Ar}(7/2^{-}) \rightarrow ^{39}\text{K}(3/2^{+})$

 ${}^{87}\text{Rb}(3/2^{-}) \rightarrow {}^{87}\text{Sr}(9/2^{+})$

Jecay

Emission of γ -rays (EM radiation) occurs when a nucleus is created in an excited state (e.g. following α , β decay or collision).





The photon carries $J^P = 1^- \Rightarrow L_{\gamma} \ge 1$.

 \Rightarrow Single γ emission is forbidden for a transition between two J = 0 states. (0 \rightarrow 0 transitions can only occur via internal conversion (emitting an electron) or via the emission of more than one γ .)

$\gamma \,\, {\rm Decay}$

Radiative transitions in nuclei are generally the same as for atoms, except **Atom** $E_{\gamma} \sim \text{eV}$; $\lambda \sim 10^8 \text{ fm} \sim 10^3 \times r_{\text{atom}}$; $\Gamma \sim 10^9 \text{ s}^{-1}$ Only dipole transitions are important.

Two types of transitions:

Electric (E) transitions arise from an oscillating charge which causes an oscillation in the external electric field.

Magnetic (M) transitions arise from a varying current or magnetic moment which sets up a varying magnetic field.

Obtain transition probabilities using Fermi's Golden Rule

 $\Gamma = 2\pi |M_{\rm if}|^2 \rho(E_{\rm f})$

 γ Decay Electric Dipole Transitions (E1) L = 1

Insert dipole matrix element into FGR

$$\Gamma_{i\to f} = \frac{\omega^3}{3\pi\epsilon_0 c^3\hbar} \mid \langle \psi_f | e\vec{r} | \psi_i \rangle \mid^2$$

see Adv. Quantum Physics; after averaging over initial and summing over final states

Order of magnitude estimate of this rate,

 $|\langle \psi_{\rm f} | e\vec{r} | \psi_{\rm i} \rangle|^2 \sim |eR|^2 \Rightarrow \Gamma \sim \frac{4}{3} \alpha E_{\gamma}^3 R^2 \qquad \begin{array}{l} R = {\rm radius \ of \ nucleus,} \\ \alpha = \frac{e^2}{4\pi\epsilon_0 c\hbar}, \ E_{\gamma} = \hbar\omega, \ \hbar = c = 1. \end{array}$

e.g.
$$E_{\gamma} = 1$$
 MeV, $R = 5$ fm $(\hbar c = 197 \text{ MeVfm}, \hbar = 6.6 \times 10^{-22} \text{ MeVs})$
 $\Gamma(E1) = 0.24 \text{ MeV}^3 \text{fm}^2 = \frac{0.24}{(197)^2 \times 6.6 \times 10^{-22}} \text{s}^{-1} = 10^{16} \text{s}^{-1}$ (c.f. atoms $\Gamma \sim 10^9 \text{s}^{-1}$)

As nuclear wavefunctions have definite parity, the matrix element can only be non-zero if the initial and final states have opposite parity.

$$e\vec{r} \xrightarrow{\hat{P}} - e\vec{r}$$
 ODD

E1 transition \Rightarrow parity change of nucleus

Prof. Tina Potter

15. Nuclear Decay

γ **Decay** Magnetic Dipole Transitions (M1) L = 1

Magnetic dipole matrix element $|\langle \psi_{\rm f} | \mu \vec{\sigma} | \psi_{\rm i} \rangle|^2$

 $\mu = \text{magnetic moment}, \ \vec{\sigma} = \text{Pauli spin matrices}$

Typically $\langle \mu \sigma \rangle \sim \frac{e\hbar}{2m_p} = \mu_N$ Nuclear magneton

For a proton $\frac{\overline{h}}{m_p} \sim 0.2 \text{fm} \sim \frac{R}{25}$ for R = 5 fmCompare to E1 transition rate $\frac{\Gamma(M1)}{\Gamma(E1)} = \left(\frac{e\hbar}{2m_e}\right)^2 \frac{1}{(eR)^2} = 10^{-3}$

Magnetic moment transforms the same way as angular momentum

$$e\vec{r} imes \vec{p} \quad \stackrel{\hat{P}}{
ightarrow} e(-\vec{r}) imes (-\vec{p}) = e\vec{r} imes \vec{p} \qquad \mathsf{EVEN}$$

M1 transition \Rightarrow no parity change of nucleus

Prof. Tina Potter

γ Decay Higher Order Transitions (EL, ML, where L > 1)

If the initial and final nuclear states differ by more than 1 unit of angular momentum

\Rightarrow higher multipole radiation

The perturbing Hamiltonian is a function of electric and magnetic fields and hence of the vector potential $\langle \psi_f | H'(\vec{A}) | \psi_i \rangle$

 \vec{A} for a photon is taken to have the form of a plane wave

$\vec{Ae}^{i\vec{p}.\vec{r}} = 1$		$-i\vec{p}.\vec{r}$	$+\frac{1}{2}(\vec{p}.\vec{r})^{2}+$	$\ldots \frac{(-\mathrm{i}\vec{p}.\vec{r})^n}{n!}$		
	Dipole	Quadrupole	Octupole			
L =	1	2	3			
	E1,M1	E2,M2	E3,M3			

Each successive term in the expansion of \vec{A} is reduced from the previous one by a factor of roughly $\vec{p}.\vec{r}.$

e.g. Compare E1 to E2 for
$$p \sim 1$$
 MeV, $R \sim 5$ fm
 $\Rightarrow pR \sim 5$ MeVfm ~ 0.025 , $|pR|^2 \sim 10^{-3}$

$$\frac{\Gamma(E2)}{\Gamma(E1)} \sim 10^{-3} \sim \frac{\Gamma(M1)}{\Gamma(E1)}$$

The matrix element for E2 transitions $\sim r^2$ i.e. even under a parity transformation.

イロト イポト イヨト

$\gamma \operatorname{Decay}$ Transitions

In general, EL transitions $Parity = (-1)^L$ ML transitions $Parity = (-1)^{L+1}$

Rate	1	10^{-3}	10^{-6}	10 ⁻⁹
	E1	E2	E3	E4
		M1	M2	M3
Parity change	\checkmark	×	\checkmark	×
J^P of γ E:	1-	2+	3-	4+
M:		1^+	2-	3+

In general, a decay will proceed dominantly by the lowest order (i.e. fastest) process permitted by angular momentum and parity.

e.g. if a process has $\Delta J = 2$, no parity change, it will go by the E2, even though M3, E4 are also allowed.

γ Decay Transitions

Information about the nature of transitions (based on rates and angular distributions) is very useful in inferring the J^P values of states.

Please note: this discussion of rates is fairly naïve. More complete formulae can be found in textbooks.

Also collective effects may be important if

- many nucleons participate in transitions,
- nucleus has a large electric quadrupole moment, Q, \rightarrow rotational excited states enhance E2 transitions.

Summary

- Radioactive decays and dating.
- α -decay Strong dependence on E, ZTunnelling model (Gamow) – Geiger-Nuttall law $\ln \tau_{1/2} \sim \frac{Z'}{E_0^{1/2}} + \text{ const.}$
 - $\beta\text{-decay} \qquad \beta^+, \ \beta^-, \ \text{electron capture; energetics, stability} \\ \text{Fermi theory} 4\text{-fermion interaction plus 3-body phase space.} \\ \Gamma = \frac{G_F^2 |M_{\text{nuclear}}|^2}{2\pi^3} \int_0^{E_0} (E_0 E_e)^2 p_e^2 \, \mathrm{d}p_e$

Electron energy spectrum; Kurie plot. Comparative half-lives.

Selection rules; Fermi, Gamow-Teller; allowed, forbidden.

- γ -decay Dipole, quadrupole; electric, magnetic transitions. Selection rules.
- Problem Sheet: q.37-41

Up next... Section 16: Fission and Fusion