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Abstract

User simulators are valuable tools for training task-oriented dialogue systems. In past work,
they have generally either been based on hand-crafted rules or trained using maximum
likelihood estimation (MLE). In this dissertation, we build the first such simulator based on a
generative adversarial network (GAN). The proposed model uses a long short-term memory
encoder-decoder architecture. It takes in structured inputs representing dialogue context, and
outputs sequences of user dialogue acts.

We carry out a number of experiments with the goal of improving the adversarial training
process. We then compare the resulting model with an MLE trained simulator. We measure
the simulators’ performances directly, based on metrics such as the F-score, and indirectly,
by using them to train dialogue system policies via reinforcement learning, and evaluating
these policies against several different simulators. Our results suggest that, even though the
GAN simulator obtains worse results on direct metrics, it trains better policies than the MLE
simulator.
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Chapter 1

Introduction

1.1 Motivation

Task-oriented dialogue systems are programs that interact with human users through natural
language to achieve specific goals, such as booking a flight or setting an alarm. Well known
examples of such systems include Amazon’s Alexa, Apple’s Siri and Google’s assistant.

State-of-the-art systems from the literature are usually trained using reinforcement learn-
ing (RL) methods. This process generally requires a large number of interactions between
the system and a user. To avoid the high cost of involving humans in development, a common
approach is to replace the user with a simulator during training. The simulator is a model
that interacts with the dialogue system, making requests and communicating in the same way
that a human user would.

For such training to translate into good performance against real users, the simulator must
closely imitate human behaviour. It must act rationally, but also produce diverse behaviours
that will prepare the dialogue system for a wide variety of situations. This is challenging, and
a large literature exists which tries to improve such simulators. A range of approaches have
been proposed, from rule-based to neural models. To the best of our knowledge however, no
work has looked at using a generative adversarial network (GAN) for this purpose.

GANs are intuitively appealing for this task as their training objective aligns well with the
goal of user simulation. Indeed, they are trained to fool a discriminator model into thinking
that their generated output is genuine data from human users, essentially learning to pass
an automated Turing test. Of course, since the discriminator’s only reference for human
behaviour is the training corpus, we do not expect GANs to be able to stray too far from the
data in their output. Even so, we hypothesise that, relative to traditional supervised learning
approaches, adversarial training will put less emphasis on reproducing the training examples
exactly and may produce more useful simulators.
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Also encouraging is the fact that GANs have shown impressive performance on other data
generation tasks. Admittedly, many of these applications revolved around image generation,
and GANs have generally performed worse in the context of sequence generation, particularly
text generation. We do not think that this rules them out as promising approaches to user
simulation for two reasons. First, recent papers have investigated ways of stabilising and
improving adversarial training for discrete outputs, and we take these findings into account
when developing our own model. Second, the task of user simulation is distinct from text
generation. In particular, our own model will focus on generating sequences of dialogue acts,
producing semantic content rather than natural language.

1.2 Contributions

Our most important contribution is building the first task-oriented dialogue system user
simulator based on a GAN architecture. Our results suggest that the proposed model trains
better dialogue systems than a baseline simulator trained with maximum likelihood estimation
(MLE), encouraging further investigation into this use for GANs.

We also make two secondary contributions. First, we add to the body of work that
investigates how adversarial training can be improved for sequence generation by describing
how various aspects of the training process affect our model’s performance.

Second, our results are interesting for the problem of simulator evaluation. We provide
evidence of a discrepancy between direct evaluation metrics such as the F-score, and indirect
evaluation methods which measure a simulator’s quality by the performance of dialogue
policies trained against it. Indeed, we show that while the GAN simulator is outperformed
by an MLE baseline on the former, it obtains better results on the latter. We will argue
that indirect evaluation is more relevant to the actual goal of user simulation, and should be
privileged when available.

1.3 Outline

The dissertation is organised into seven chapters, starting with this introduction. The next
chapter reviews relevant literature around user simulation and adversarial training, and
provides theoretical background relating to GANs. Chapter 3 describes our proposed model.
Chapter 4 provides details on our experimental methods, including a description of the
training corpus. In chapter 5, we discuss and justify the various choices that have been made
with respect to the adversarial training process. Chapter 6 presents our main results, which
compare our proposed simulator with an MLE trained baseline. We conclude in chapter 7
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by summarising our contributions, exploring their limitations and making suggestions as to
further work.



Chapter 2

Background

This section provides context for this dissertation, including an overview of the relevant
literature. We first describe the problem of user simulation for task oriented dialogue systems
and discuss how simulators are evaluated. We then introduce GANs and describe past work
employing them for sequence generation.

2.1 User Simulation for Task-Oriented Dialog Systems

2.1.1 Why Do We Need User Simulation?

The purpose of a task-oriented dialogue system is to assist users in accomplishing specific
tasks. The system interacts with users through natural language to identify what it is they
want to achieve. In the relatively simple example of a restaurant booking system, the system
must interact with the user to determine their preferences, for example in terms of cuisine or
geographical area, and can then suggest restaurants, and provide the user with information.
In the process, the system can ask for clarifications, or can suggest that the user change their
constraints if no relevant option is available. Therefore, even for such a simple goal, the
system’s task is complex, and its success is only determined at the end of the interaction.
This is why RL methods are generally used to train such systems (Dhingra et al., 2017; Peng
et al., 2017; Su et al., 2016; Young et al., 2013; Zhou et al., 2017).

Unfortunately, training a policy with RL necessitates that the system have many inter-
actions, which is costly to do with human users. One common solution is to employ a user
simulator during training. A corpus of existing dialogues is still needed to train the simulator,
but once this is done, the dialogue system can have a large number of interactions with it.
The system is also able to explore the policy space in a way that would not be possible
using a static corpus. Indeed, in the corpus, the system (or sometimes human operator)



2.1 User Simulation for Task-Oriented Dialog Systems 5

interacting with the user is itself following a policy, and that policy may not be optimal.
Using a simulator allows the RL training process to explore strategies not used in the corpus1.

We now describe a number of approaches to user simulation. We distinguish between
agenda-based and neural approaches, and between simulation at the semantic and at the word
level.

2.1.2 Agenda-Based User Simulation

One common approach to user simulation is the Agenda-Based User Simulator (ABUS)
proposed in Schatzmann et al. (2007). In this case, the simulator consists of a goal and an
agenda. The goal is made up of a list of constraints and a list of requests. The constraints
are slot-value pairs representing the user’s preferences. An example of such a constraint in
the restaurant booking domain would be (food,Thai), indicating that the simulated user is
looking for a restaurant serving Thai food. The requests are a list of slots that the user wants
information on. For instance, the list of requests could be (number, address), indicating
that the simulated user needs to obtain the phone number and address of the selected venue.

The agenda is a list of dialogue acts needed to reach the user’s goal, for example informing
the system of the Thai food preference. The acts are removed from the agenda once they
have been carried out by the simulator. The goal is constructed by randomly sampling a
set of constraints and requests from a pre-defined domain ontology. The agenda is initially
constructed from the goal, and at each turn one or more of the remaining acts are output by
the system.

The ABUS can be entirely hand-crafted, but some of its parameters can also be estimated
from data. Schatzmann and Young (2009) describe how the expectation maximisation
algorithm can be used to achieve this. Keizer et al. (2010) propose a different approach to
parameter estimation, introducing random decision points that can be encountered at each
dialogue turn, and putting distributions on the available options at each point. The parameters
of said distributions are then estimated from empirical counts. Unlike Schatzmann and Young
(2009), this approach allows for changes in the user’s goal during the dialogue.

Regardless of whether parameters are estimated from data, the agenda based approach
has two major drawbacks. Firstly, it relies on a manually defined and domain specific
rules, which can get intractable for complex tasks. Secondly, it simulates user behaviour
at the semantic level (returning dialogue acts rather than natural language), which prevents
the natural language understanding component of the dialogue system from being trained

1Clearly, the policy from the corpus cannot be completely dissociated from the one learnt by RL, since
it influences the behaviour of the simulator, which itself will affect the types of situations that the system is
exposed to during training.
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jointly with the dialogue manager. Li et al. (2016) address this by adding a natural language
generation module on top of an agenda based simulator. Another approach, which can
potentially address both limitations, is to replace the agenda based generator with neural
architectures. This possibility has been investigated by a number of recent papers, which we
describe in the next section.

2.1.3 Neural User Simulation

Even when we restrict our attention to methods which rely on neural models, there remains
a lot of variability in the approaches proposed in the literature. One obvious source of
variability is model architecture, but models also vary in terms of their input and output
formats. Some models are fully natural language to natural language, whereas others take in
structured inputs from hand-crafted feature extractors, and others output only dialog acts,
leaving the task of natural language generation to a separate module.

One of the first attempts at using neural methods for user simulation was made by Asri
et al. (2016). Their simulator is based on an encoder and a decoder, both with long short
term memory (LSTM) architectures. While their method arguably requires less manual
intervention than agenda-based simulators, it is not fully natural language to natural language.
Goal generation is done in the same way as in Schatzmann et al. (2007), and the decoder
outputs sequences of dialogue acts rather than words. Furthermore, the input fed to the
encoder is a sequence of context vectors encoding the state of the dialogue at each turn, with
n-hot vectors indicating things like the latest system output. We have adopted their approach
for feature extraction, so it is described in further detail in chapter 3.

Kreyssig et al. (2018) take a similar approach to Asri et al. (2016). They also use LSTMs
for both the encoder and decoder, and adopt the same feature extractor. The main difference
between the two approaches is that Kreyssig et al. (2018) produce natural language rather
than semantics. As they point out, this means that the simulator can be trained on data
which is not annotated with dialogue acts on the user side, as was the case for example for
initial versions of the multiWOZ data set (Eric et al., 2019). Nie et al. (2019) take a similar
approach, but replace the handcrafted feature extractor used in Kreyssig et al. (2018) with a
graph convolutional network.

Before Kreyssig et al. (2018), Crook and Marin (2017) also produced a simulator gener-
ating natural language. Importantly, their model takes in natural language as input. The main
drawback of their approach is that they do not define or condition on a specific user goal.
This means that the simulator can’t be used to train a policy, as the system would be able to
dictate the user’s goal and not be penalised for it. Consequently, Crook and Marin (2017)’s
focus is on system evaluation rather than training. Gür et al. (2018) are also able to bypass
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feature extraction, by using a hierarchical sequence-to-sequence model which first encodes
the user goal and system actions, and then the full dialogue history. However, their proposed
simulator outputs dialogue acts and not natural language. Hou et al. (2019) propose a state
to sequence model which can output semantics or natural language, but needs structured
inputs. They show that this requirement allows the model to perform better than a sequence
to sequence alternative.

More recently, Lin et al. (2021) employ transformer architectures to construct a domain-
independent simulator. The proposed model takes in structured input similar to Asri et al.
(2016) and produces output in semantic form. Relative to existing neural simulators, the
main improvement of the approach is therefore in the ease of domain adaptation. Tseng et al.
(2021) also focus on domain adaptation. They propose a framework for joint optimisation of
the dialogue system and user simulator, which relies on pre-training both through supervised
learning, and then continued optimisation through interactions using RL methods. Other
papers which jointly train the simulator and dialogue system include Takanobu et al. (2020),
Liu and Lane (2017) and Papangelis et al. (2019).

We end this section by noting that, although neural methods have shown promise and
generated a lot of excitement, as evidenced by the papers mentioned above, their superiority
over agenda-based approaches is far from well established. For instance, Shi et al. (2019)
compare them, combining them with various methods for natural language generation, and
they find that agenda-based methods perform better, though they do not expand on why that
might be the case.

2.1.4 Other Approaches

While agenda-based and neural approaches are the most relevant to our work, we briefly
mention other methods that have been employed for user simulation. Eckert et al. (1997),
Georgila et al. (2005), Pietquin and Dutoit (2006), and Eshky et al. (2012) all employ Markov
models, conditioning on various amounts of context, with and without including user goal.
Scheffler and Young (2001) model user intentions through a lattice structure, while Jung et al.
(2009) employ a linear-chain conditional random field. Finally, Chandramohan et al. (2011)
and Chandramohan et al. (2012) instead propose to look at user simulation as an inverse
reinforcement learning problem, formulating user behaviour as a Markov decision process.

Despite the wide range of approaches present in the literature, to the best of our knowl-
edge, no work has used GANs for user simulation in the context of task oriented dialogue
systems. Before we introduce these models and related work in section 2.2, we must first
discuss the important and rather difficult question of how to compare the performance of
different simulators.
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2.1.5 Evaluation of User Simulators

There is no obvious single method to compare the performance of two user simulators. Both
Keizer et al. (2012) and Pietquin and Hastie (2013) provide surveys of the different metrics
used in the literature.

We can distinguish two approaches to evaluation: direct and indirect evaluation. Direct
evaluation involves computing statistical metrics to compare the simulator’s output with
data coming from human users. Indirect evaluation methods look at features of interactions
between the simulator and dialogue systems. The most common of such methods is to use
the simulator to train a dialogue system, and to use the performance of the trained system as
the measure of the simulator’s quality.

Among direct metrics, Pietquin and Hastie (2013) include some measures related to natu-
ral language generation, such as perplexity on test data, and bilingual evaluation understudy
(BLEU). More relevant to simulation at the dialogue act level, which is the focus of this
work, they also include measures of the divergence between the distributions of real and
simulated user actions. These are precision, recall, balanced F-score, Kullback–Leibler (KL)
divergence, and Discourse BLEU (D-BLEU). They are discussed in further detail when we
describe our experimental methods in chapter 4.

Pietquin and Hastie (2013) also describe five indirect evaluation methods. The first is
task completion, which lets the simulator interact with an existing dialogue system and
measures how often the system correctly understands the goal, relative to what would happen
if the simulator was performing random actions. The second measure looks at how well the
simulator can predict the performance of different systems, by computing the Cramér-von
Mises divergence between the distribution of performance scores of the system against the
simulator and against real users. In the third strategy they propose to use statistical learning
to develop metrics that correlate well with human evaluations, or, in other words, build
models to predict human assessments. The fourth strategy, perhaps the most intuitive, is to
evaluate dialogue policies trained with the simulator. As the authors point out however, this
strategy requires testing a new dialogue system against real users, even though the goal of
user simulation is precisely to avoid having to involve humans. We will come back to this
difficulty in chapter 4. For the fifth and final evaluation strategy, they propose to train an
optimal dialogue policy using the simulator, then take an existing dialogue corpus against
human users, and, for each dialogue, measure how similar the policy used is to the learned
optimal policy, and compute a measure of the quality of the dialogue (for instance using the
rewards that would have been attributed by the RL algorithm). They then argue that if the
simulator is realistic, there should be a positive correlation between the quality measure and
the similarity between policies. Indeed, if the simulator behaves exactly like real users, the
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optimal strategy against the simulator should also be optimal against real users. As they point
out, the difficulty of this evaluation strategy lies in defining the similarity measure between
policies.

Table 2.1 summarises the evaluation strategies adopted by the papers mentioned above2. It
shows that a considerable amount of diversity exists in the literature, but that it is common for
papers to combine several evaluation strategies. In particular, for papers focusing on building
simulators for training (rather than, say, evaluation), one popular option is to combine a form
of direct evaluation (e.g. F-score), with measuring the performance of a policy trained with
the simulator. This is the approach we adopt, but we defer a detailed description to chapter 4.
In the next section, we cover useful background related to GANs.

2.2 Generative Adversarial Networks for Sequences

We begin this section by explaining the idea behind GANs and the specificities of using them
in the context of discrete and sequential data. We then discuss a number of papers that have
used GANs for text generation, the application closest to ours.

2.2.1 Conditional Generative Adversarial Networks

GANs were first introduced by Goodfellow et al. (2014) for the task of image generation.
We will work with conditional GANs, an extension proposed by Mirza and Osindero (2014).
The idea behind GANs is to train two models in parallel: a generator and a discriminator.
The generator is the model of interest, while the discriminator is simply used for training.
Adversarial training can be thought of as a two player game between the generator and
discriminator. The goal of the generator is to produce fake data which is similar to data drawn
from a given population, e.g., a set of images, or a text corpus, and to fool the discriminator
into classifying generated samples as real. The goal of the discriminator is to correctly
classify samples as either generated or real. A high-level illustration of this architecture is
presented in Figure 2.1.

Equation 2.1 gives the objective function corresponding to this adversarial training set up.
θG and θD denote the parameters of the generator and discriminator, respectively. p(x,y) is
the real data distribution. x is information on which generation is conditioned. In our case,
this will be dialogue contexts drawn from the data. y is the data we aim to imitate. z is the

2We exclude papers that train the simulator and dialogue system jointly from this table as their focus tends
to be on measuring the quality of the dialogue system rather than the simulator.
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Paper Evaluation Strategies Used

Eckert et al. (1997) None

Scheffler and Young (2001) Task completion (# of turns)

Georgila et al. (2005) Perplexity and task completion ( % slots filled)

Pietquin and Dutoit (2006) Performance of learnt policy (own-model evaluation)

Schatzmann et al. (2007) Performance of learnt policy (human evaluation)

Schatzmann and Young (2009) Performance of learnt policy (cross-model and human
evaluation)

Jung et al. (2009) BLEU, D-BLEU and KL-divergence

Keizer et al. (2010) F-score, KL-divergence and performance of learnt pol-
icy (cross-model evaluation)

Chandramohan et al. (2011) Task completion (reward and # of turns)

Chandramohan et al. (2012) None

Eshky et al. (2012) Perplexity

Li et al. (2016) Performance of learnt policy (own-model evaluation)

Asri et al. (2016) F-score

Crook and Marin (2017) Perplexity and direct human evaluation

Kreyssig et al. (2018) Performance of learnt policy (cross-model and human
evaluation)

Gür et al. (2018) Perplexity and task completion (% slots filled and # of
turns)

Nie et al. (2019) BLEU

Hou et al. (2019) F-score and performance of learnt policy (cross-model
and human evaluation)

Shi et al. (2019) Perplexity, direct human evaluation and performance
of learnt policy (human evaluation)

Lin et al. (2021) F-score and performance of learnt policy (cross-model
and human evaluation)

Table 2.1 Summary of evaluation strategies used in the literature
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Fig. 2.1 Illustration of the conditional GAN architecture

synthetic data produced by the generator, and pG(z|x;θG) is the generator output distribution.
D(·) is the output from the discriminator.

min
θG

max
θD

Ex,y∼p(x,y)log(D(x,y;θD))+Ex∼p(x),z∼pG(z|x;θG)log(1−D(x,z;θD)) (2.1)

During training, we alternate between updating the parameters of the generator and of
the discriminator according to equation 2.1. The updates to the generator aim to maximise
the probability that the discriminator assigns to generated samples being actually drawn from
real data. The updates to the discriminator correspond to the usual MLE training of a binary
classifier.

2.2.2 Adversarial Training in the Discrete Domain

When generating images, or any other continuous output, both types of updates described
in section 2.2.1 would be done using backpropagation. Unfortunately, this approach is
unavailable when producing discrete outputs, as is the case in user simulation.

Indeed, the generator update involves propagating gradients through both the discrimina-
tor and the generator. When the generator output is discrete, for example from a sampling or
max operation, this backpropagation is impossible. Several alternatives have been proposed,
principally in the context of text generation. One possibility is to replace sampling from
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the categorical distribution with a sample from a continuous approximation, e.g., a Gumbel-
Softmax distribution (Jang et al., 2016; Maddison et al., 2016). Gulrajani et al. (2017) show
that it is possible to train a character level language model by avoiding sampling altogether
and feeding the softmax output directly to the discriminator. However, the most common
approach, and the one that will be used to train our models, is to replace backpropagation
with the REINFORCE algorithm (Williams, 1992), using the output from the discriminator
as the reward. Equation 2.2 provides the corresponding gradient estimator.

∇θGEx∼p(x),z∼pG(z|x;θG)[D(x,z)] = Ex∼p(x),z∼pG(z|x;θG)[D(x,z)∇θGlog(pG(z|x;θg))] (2.2)

2.2.3 GANs for Text Generation

Although no work has used GANs for user simulation for training task oriented dialogue
systems, a number of papers have focused on using them for text generation. While our
application aims to generate dialogue acts rather than text, this is the most relevant part
of the literature surrounding GANs. Indeed, our application shares a lot of the challenges
and specificities of text generation. In both cases, the output is discrete, raising the issues
discussed in section 2.2.2.

Another commonality is that both outputs are sequences, though generation at the word
level tends to produce much longer sequences than at the dialogue act level. The sequential
nature of the data raises the question of how to apply rewards to earlier parts of the sequence.
Our description in section 2.2.2 treats the entire output as one whole, meaning that the same
reward would be applied to every element of the output sequence. Several papers (de Mas-
son d'Autume et al., 2019; Li et al., 2017) have found that they obtain better performance by
providing the model with dense rewards, meaning rewards at every generation step. We will
explore this in our experiments.

While several papers have explored using GANs for text generation, their advantage over
models trained by MLE remains uncertain. For instance, Caccia et al. (2020) explore the
trade-off between output quality (realism) and diversity for both types of models by adding
and varying a temperature parameter to the softmax output layers. Using a variety of metrics,
they argue that the MLE models outperform GANs in their applications.

One concern is that GANs may end up at a solution that is very close to the MLE one,
while being generally more difficult and expensive to train. This problem is due to the fact
that GANs are often pre-trained with MLE, because adversarial training can otherwise be
very unstable. If a large amount of MLE pre-training is carried out relative to the adversarial
fine-tuning, GANs will generally behave similarly to MLE models. de Masson d'Autume
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et al. (2019) show that MLE pre-training can be avoided altogether, though they do not claim
to improve on the performance of the MLE baseline, only to match it using only adversarial
training. They make a number of useful recommendations for stabilising adversarial train-
ing, in particular providing the generator with dense rewards, using large batch sizes, and
regularising the discriminator.

While de Masson d'Autume et al. (2019) provide useful guidance that we will refer to
when training our own models, Li et al. (2017)’s goal is closer to ours. They use GANs
for dialogue generation, though they do not focus specifically on task-oriented dialogues.
Their system learns to respond to prompts drawn from movie subtitles with appropriate
natural language. In terms of evaluation, they look both at using the success rate in fooling
the discriminator, and at direct human evaluations of generated dialogues. They find that
adversarial training performs better than MLE in terms of human evaluations, but they do
not use a temperature parameter on the output, which means that their results are potentially
vulnerable to the critique made by Caccia et al. (2020).

Finally, in recent years, several papers (Croce et al., 2020; Wu et al., 2021) have used
adversarial fine-tuning on large pre-trained language models such as BERT (Devlin et al.,
2019) and GPT-2 (Radford et al., 2019). As we have chosen to focus on user simulation
at the dialogue act level, this avenue for research is less relevant and we do not discuss it
further, but it could be an interesting approach to consider for future work focusing on natural
language simulation.

Armed with a better understanding of both user simulation and GANs, we now describe
how we combine them to create a GAN user simulator.



Chapter 3

The GAN User Simulator

In this chapter, we describe the different components of our model. Most of them are also
shared by the baseline MLE simulator as the models are identical except for the way they
are trained. Therefore all of the descriptions below are also relevant to the baseline model,
except for section 3.4 which discusses the discriminator.

Figure 3.1 shows how the different components of the simulator are related to each other
during training and testing. It may be useful to refer back to it as we describe each component
individually in the sections that follow.

3.1 Goal Generator

During training, user goals are taken from the training examples in the corpus. We allow for
goal changes in the same way as Kreyssig et al. (2018). The hidden goal associated with
each turn contains all of the constraints and requests expressed throughout the dialogue, not
just the ones that have been expressed so far. If the user expresses conflicting constraints, the
goal is unchanged up until the conflict is expressed, and updated afterwards. So for instance
if the user says at turn 2 that they would like a restaurant in the East, and at turn 4 that they
would like one in the North, the goal associated with turns 0-3 inclusive will indicate the
desired area as East, and 4 onward as North.

At test time, the user goal is randomly constructed from the domain ontology as follows.
Initially, each informable slot, a slot which the user can express a preference over, has a
probability of 0.4 of being excluded from the goal. If no slot is included, one is sampled at
random. A value is picked at random from the ontology for each slot included in the goal.
One (with probability 0.7) or two (with probability 0.3) of the requestable-only slots, slots
which the user can want information about but not have preferences over, are included in the
requests, chosen at random. Additionally, one of the informable slots excluded from the goal
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(a) Training set-up

(b) Testing set-up
Fig. 3.1 Illustration of the overall training and testing set ups

is included in the requests with probability 0.3. The goal is resampled whenever the system
says that the constraints cannot be met.

3.2 Feature Extractor

The simulator takes in structured inputs from the feature extractor representing the current
dialogue context. This is not ideal, as it requires data to be labelled and makes domain
adaptation more complicated, but it simplifies the simulator’s task, relative to using natural
language turns directly.

Our feature extractor is similar to the one used in Asri et al. (2016). Each dialogue turn
has an associated context vector, which encodes the state of the dialogue before the user
speaks as well as the underlying user goal. The context vector is made up of four subvectors,
whose elements are all binary variables.

First, the constraints vector constt encodes which of the informable slots still need to be
communicated by the user. Any constraint which is not part of the user goal is set as informed
from the start, which is denoted with value 1. Constraints that are part of the goal are initially
set as to be informed and encoded as zeros, and switched to ones as the user communicates
them to the system. When the system requests information about a slot, or misunderstands
a constraint expressed by the user, the corresponding element in the constraints vector is
changed to 0.
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Similarly, the requests vector reqt encodes which slots are still to be requested. Slots
are tagged as filled as the system informs the user of their value for a specific venue under
consideration. When discussion moves on to a new venue, the requests vector is reset to its
original value. Unfortunately this means we assume that there is only ever one venue under
discussion at a time, and rules out things like referring expressions.

The third vector is the inconsistency vector, inct . This vector is usually all zeros, except
when one of the system actions from the latest turn indicates that the system has misun-
derstood one of the user constraints. In that case the corresponding element is changed to
1.

The final component of the context vector, actt encodes the latest system action(s). There
are 16 possible system actions, listed in appendix Table A.1. They are a combination of
action type and, in some cases, slot.

The overall context vector, xt is then the concatenation of all four vectors:

xt = constt ⊕ reqt ⊕ inct ⊕actt (3.1)

where ⊕ denotes concatenation.
We now illustrate the feature extractor by showing an example dialogue and corresponding

context vectors.

Example Dialogue

USER GOAL
Constraints: pricerange=moderate, area=south
Requests: address

DIALOGUE
Turn 0
SYSTEM – Welcome to the Cambridge restaurant system. How may
I help you?

USER – I want a restaurant in the South.

Turn 1
SYSTEM – What kind of food would you like?
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=



inform food
inform area

inform pricerange
request food
request area

request pricerange
request name

request address
request phone

request postcode
request signature

inconsistency food
inconsistency area

inconsistency pricerange
act welcomemsg

act offer
act inform

act canthelp
act canthelp exception

act confirm domain
act reqmore

act impl-conf
act expl-conf

act repeat
act request food
act request area

act request pricerange
act select food
act select area

act select pricerange



(3.2)
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x1 =
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=



inform food
inform area

inform pricerange
request food
request area

request pricerange
request name

request address
request phone

request postcode
request signature

inconsistency food
inconsistency area

inconsistency pricerange
act welcomemsg

act offer
act inform

act canthelp
act canthelp exception

act confirm domain
act reqmore

act impl-conf
act expl-conf

act repeat
act request food
act request area

act request pricerange
act select food
act select area

act select pricerange



(3.3)

Equation 3.2 shows the context vector in the first turn, after the system greets the user, but
before the user says anything. Indicators corresponding to the two constraints present in the
user goal, area and price range, are set to 0, as is the one relating to the single request to be
made, the address. There are no misunderstandings, so the inconsistency vector is entirely
zeros. In the act vector, only the element corresponding to the welcome act is set to 1.

Equation 3.3 shows the second context vector. In the constraints vector, the area has been
informed so is set to 1, whereas the element corresponding to the food slot is set to 0, because
it has been requested by the system (even though it is not present in the user goal, meaning
that the user is indifferent towards it). The only other change is in the acts vector, where the
element corresponding to the act request food is now the only non-zero element.

3.3 Generator

The generator takes as input the sequence of past context vectors, and outputs a sequence of
dialogue acts. Figure 3.2 illustrates its overall architecture. It is made up of an encoder and a
decoder. Both are Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs),
with a single LSTM layer.
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Fig. 3.2 Illustration of the generator architecture

3.3.1 LSTMs

The LSTM layer is recurrent, meaning that, while processing a sequence, at every time
step, the network takes in as input the network output from the previous time step. The
particularity of an LSTM unit is that it possesses a cell, ct , which can record information
from previous parts of the input sequence. Three gates regulate the flow of information
through the network. The forget gate, ft , regulates how much of the previous cell value is
retained. The input gate, it regulates the extent to which new information is written into
the cell. The output gate ot regulates the link between the current cell and the hidden state
ht . Equations 3.4-3.9 formalise the relationship between each of these elements, where σ

denotes the sigmoid function, and ⊙ the Hadamard product. W s are weight matrices to be
trained.

it = σ (Wiixt +bii +Whiht−1 +bhi) (3.4)

ft = σ
(
Wi f xt +bi f +Wh f ht−1 +bh f

)
(3.5)

gt = tanh
(
Wigxt +big +Whght−1 +bhg

)
(3.6)

ot = σ (Wioxt +bio +Whoht−1 +bho) (3.7)

ct = ft ⊙ ct−1 + it ⊙gt (3.8)

ht = ot ⊙ tanh(ct) (3.9)
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3.3.2 Encoder

The input sequence to the encoder is the sequence of all past context vectors, up to the
dialogue turn for which we want to predict the user’s actions. The hidden state has size 32,
and is initialised to the zero vector. The final hidden and cell states are kept and fed to the
decoder.

3.3.3 Decoder

The first decoder layer is an LSTM layer with hidden state of size 32, just like the encoder. It
is followed by a linear layer:

yt = htW +b (3.10)

(3.11)

and a softmax activation:

pit =
exp(yit)

∑ j exp(y jt)
(3.12)

where i denotes one of the possible user acts.
The hidden and cell states of the decoder are initialised to the final values from the

encoder. It is given a start of sequence token as input. This is fed through the LSTM layer,
the linear layer and the softmax activation. The latter gives a probability distribution over 28
dialogue acts (listed in Table A.2), plus an end of sequence token. One of these is sampled
from this distribution. Then one of two things can happen. Either the dialogue act from
real user data is fed as the next element in the input sequence to the decoder. This is called
teacher forcing. Or, the sampled act is used instead. This process is repeated until the end of
sequence token is sampled (or reached, if using teacher forcing).

3.4 Discriminator

The discriminator is a simple 2-layer feed forward network with a softmax on the output.
The first layer has 64 units, and the output layer has two. The input to the discriminator is
the concatenation of a context vector and following user response. The user response can
either come from the data, or have been predicted by the generator, and it is the task of the
discriminator to distinguish between these.



3.5 Training 21

To transform the sequence of user acts into a single vector, one hot encodings of each user
act in the sequence are concatenated, and zero padding is used to keep the length fixed. We
have experimented with using an RNN for the discriminator, to allow it to take into account
the full dialogue history, but we have found that doing so does not affect performance.

3.5 Training

We carry out two types of training, adversarial, and MLE. The latter is used mainly for
training a baseline model, but will also be used as pre-training for GANs. In both cases, we
use the Adam optimiser (Kingma and Ba, 2015) with default PyTorch settings, and teacher
forcing with probability 0.5.

Adversarial training proceeds as follows. A dialogue turn is sampled from the data. The
dialogue history and hidden goal are fed to the feature extractor. The resulting sequence of
context vectors is fed to the generator, which outputs a sequence of predicted dialogue acts.
The real and predicted dialogue acts are separately fed to the discriminator, along with the last
context vector. For each, the discriminator outputs a probability that the example came from
real data, and its parameters are updated via maximum likelihood using the Adam optimiser.
The probability assigned to the predicted example is used as a reward for the generator, which
is updated using equation 2.2 (REINFORCE). In chapter 5, we will investigate how various
aspects of this process can be modified, and describe their effect on model performance.
First, we describe our experimental methods in detail.
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Experimental Methods

This section describes the data and metrics used in our experiments.

4.1 The DSTC-2 Data Set

We base our experiments on the corpus provided for the second Dialogue State Tracking
Challenge (DSTC-2) (Henderson et al., 2014). The training and development sets consist
of a total of 2,118 dialogues between human users and a dialogue system. The test set
contains 1,117 dialogues, which we reserve for evaluation in section 6.1. Each user is looking
for a restaurant which satisfies a number of constraints, and wants to make a number of
information requests relative to the chosen establishment.

Eight pieces of information can be requested by users: area, food, price range, name,
address, phone number, postcode, and signature dish. Of these, only area, food and price
range can be specified as constraints in the user’s preferences.

The data is provided with semantic labels, meaning that each natural language utterance
made by either the user or the system is associated with a dialogue act, consisting of an act
type, and zero or more associated slots and values.1 For instance, if the user said “I would
like to find an Italian restaurant”, the associated act type would be inform, the slot food and
the value Italian.

These dialogue acts are used to extract features input to the simulator, and as targets for
the simulator to predict (in the case of dialogue acts performed by the user). Throughout
our experiments, we simplify the dialogue acts by omitting the values, and filling them in
as needed from the user goal or dialogue context. This means that in the example given
above, the simulator’s task would have been to predict an act inform and slot food, but

1On the user side, these are manually annotated. On the system side, they are taken from system logs.
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the associated value Italian would have been filled in using the user goal. This approach
has the advantage that values in the domain ontology can be modified without changing the
simulator.

4.2 Direct Evaluation Metrics

We carry out two types of model evaluation, direct and indirect. In direct evaluation, we
measure how closely the simulated behaviour replicates real user behaviour when provided
with contexts sampled from DSTC-2.

4.2.1 F-score

The F-score (F) measures how well the simulator predicts user dialogue acts from training
examples. It combines precision (P) and recall (R) as defined in equations 4.1, 4.2 and 4.3.

P =
number of correctly predicted dialogue acts

number of predicted dialogue acts
(4.1)

R =
number of correctly predicted dialogue acts

number of dialogue acts in real user data
(4.2)

F =
2PR

P+R
(4.3)

4.2.2 KL-Divergence

The KL-divergence (Kullback and Leibler, 1951) measures how similar one probability
distribution P is to another, reference distribution Q. For discrete probability distributions, it
is defined as:

DKL(P||Q) =
M

∑
i=1

pilog(
pi

qi
) (4.4)

In the context of dialogue simulation, we take pi to be the relative frequency of dialogue act i
in user data, and qi its relative frequency in simulated data.

While we will sometimes consider overall dialogue act distributions, we will also be
interested in what we call context specific or conditional KL-divergence. In this case, we
will subset the data to only include user actions and simulator predictions in response to a
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specific context vector (defined in section 3.2), and compute the KL-divergence based on
these frequencies. We then report the average of the resulting divergences over all contexts.2

4.3 Indirect Evaluation

The direct metrics described above may be useful indicators of simulator quality, especially
because they can be computed quickly and can therefore be used during simulator develop-
ment. However, the end goal of user simulation is to train good dialogue systems. For that
reason, the best measure of simulator quality will be the performance of a policy trained
against it. Accordingly, we train policies using both the GAN and the MLE simulator, and
compare their performances.

4.3.1 Policy Training

We interact Toshiba’s existing dialogue system with both simulators. Each simulator is used
to train 10 different policies with different initialisations. Training is done via reinforcement
learning (Monte-Carlo control with linear value function approximation (Sutton and Barto,
2018)) with learning rate of 0.01, which is linearly decayed by a factor of 2.475E-07 after
every dialogue. We train each policy for 40,000 dialogues. Dialogues are limited to 30
turns. The agent receives a reward of +100 upon successful task completion, and -1 for each
dialogue turn. There is also a “social penalty” of -5 applied when the system is thanked or
said farewell to, and does not respond appropriately. During training and testing, we include
an error model so that the system misunderstands the user dialogue act with probability 0.25.
A dialogue is considered successful if the user says goodbye while all requests made by the
user have been fulfilled by the system, and the restaurant currently under discussion fulfils
all the user’s expressed constraints. All interactions are done in dialogue acts, and no natural
language generation or understanding modules are used.

4.3.2 Policy Evaluation

Ideally, policy performance should be measured against human users. While this may seem
to defeat the purpose of user simulation by reintroducing humans into system development,
evaluation requires far fewer interactions than training, making this approach sensible. Indeed,
it is adopted by many papers as shown in Table 2.1.

2In practice, we cannot compute this for all contexts, as some appear too rarely. We restrict our attention to
contexts which appear at least 20 times in whatever subset of the data is being used to compute the divergences.
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Unfortunately, we have not had enough time to involve human participants in the eval-
uation of our dialogue systems. Instead, we rely on cross-model evaluation, meaning that
we evaluate the learnt strategies against simulators other than the one they are trained on.
Schatzmann et al. (2005) have shown that models trained on “good” simulators will tend to
perform well even when tested against a variety of simulators. On the other hand, policies
trained against poor simulators may perform well against their own simulator, because of
overfitting, but not against others.

We use three simulators for evaluation: the GAN and MLE simulators used in training,
and an agenda-based simulator, which is used exclusively for evaluation. We report success
rates, average rewards and average dialogue lengths averaged over 3,000 evaluation dialogues.
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Adversarial Training Experiments

In this section, we describe how various choices regarding adversarial training affect the
performance of the simulator. For these experiments, we use only direct evaluation metrics.
We then select one GAN simulator, based on its F-score on validation data, to compare
against the MLE simulator by direct and indirect methods in chapter 6.

5.1 MLE Pre-Training

As mentioned in chapter 2, it is common to pre-train GANs for text generation using
maximum likelihood (Caccia et al., 2020; Li et al., 2017; Yu et al., 2017). We investigate
how different amounts of pre-training affect the performance of the GAN simulator model.

We pre-train the generator, and optionally the discriminator, for various numbers of
epochs via MLE, then further train each model via adversarial training for 20 epochs. We
then report the maximum F-scores and context specific KL-divergences over the adversarial
training epochs.

The results are shown in Figure 5.1. As expected, MLE pre-training of the generator
improves performance relative to using adversarial training exclusively. Most of the benefits
of pre-training are gained after a single epoch, though we do observe further improvements
from additional pre-training, especially in terms of KL-divergence.

The effect of pre-training the discriminator is ambiguous. It has a large positive effect on
the performance of the model with 0.1 epochs of pre-training, but a large negative effect on
the performance of the model with 10 epochs of pre-training. One possible explanation is
that the fully trained discriminator has had enough time to partially memorise the training
data. In that case the rewards it provides will be very close to one for replicating training
examples exactly, and zero otherwise. This lack of smoothness in the reward signal may
make learning difficult for the generator.



5.2 Larger Batch Sizes 27

(a) F-scores (b) Conditional KL-Divergences
Fig. 5.1 Effect of MLE pre-training on F-score (left) and average conditional KL-divergence
(right). Both measures are explained in chapter 4 and are calculated over a validation data-set.
Each model is pre-trained by MLE for the number of epochs given by the x-axis, and then
trained using adversarial training for a further 20 epochs, using Adam, a learning rate of
0.001 and batch size 1. The metric from the best epoch is shown. When the discriminator
is also pre-trained (green bars) it is pre-trained for the same number of iterations as the
generator.

Figure 5.2 shows the training history for the models with 0.1 and 1 epochs of pre-training.
We can see that the adversarial training process is very unstable, with performance being far
from monotonically increasing. The experiments in the remainder of this section attempt to
stabilise training.

Though the models with 0.1 and 1 epochs of pre-training perform similarly in terms of
maximum F-score, Figure 5.2 shows that they reach that point in very different ways. After a
full epoch of MLE pre-training, the simulator has already reached close to its highest F-score,
and adversarial training does not improve it significantly. For the model with only 0.1 epochs
of pre-training on the other hand, adversarial training determines most of the performance.
To ensure that the comparison we make in the next chapter between the GAN and MLE
simulators is meaningful, and does not compare two mainly MLE trained simulators, the
remainder of this chapter focuses on models with 0.1 epochs or no MLE pre-training.

5.2 Larger Batch Sizes

The next three sections experiment with recommendations made in de Masson d'Autume
et al. (2019). First, we look at increasing batch sizes to stabilise training. Table 5.1, shows
the model performance when we vary batch size during adversarial training, for the GANs
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Fig. 5.2 Adversarial training history for models with different levels of pre-training. This
graph shows F-scores (left scale) on validation data after each epoch of adversarial training,
for the models with 0.1 and 1 epochs of MLE pre-training. We also include adversarial loss
(right scale), averaged over 1,000 training examples at a time. Other training details are as
described for Figure 5.1.
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No Pre-Training 0.1 Epoch Pre-Training
Batch Size F-score Cond. KL F-score Cond. KL

1 0.40 0.92 0.51 1.10

5 0.42 0.77 0.42 0.75

10 0.41 0.77 0.40 0.65

15 0.42 0.58 0.41 0.68

20 0.38 0.61 0.40 0.72

Table 5.1 Effect of batch size on F-score and average conditional KL-divergence. The model
with pre-training has pre-training both for the generator and discriminator. The best statistic
over 30 epochs of adversarial training calculated over the validation data set is shown.

with no pre-training and 0.1 epochs of pre-training. As explained above, we do not want to
rely on large amounts of MLE pre-training, which is why we focus on these two models.

Overall, Table 5.1 shows that using batch sizes larger than 1 is helpful, especially in
terms of conditional KL-divergence, but the effect is not large, and is ambiguous for the
F-score. Figure 5.3 shows that, even though the effect on final model performance is not
large, increasing the batch size does stabilise training, as desired. It shows training history
for the model with no MLE pre-training, trained with batch size of 1 and 15. The F-scores
reported for the model trained with batch size 1 are clearly more noisy than those reported
for the model trained with batch size 15.

5.3 Dense Rewards

As mentioned in chapter 2, a practice that some papers (de Masson d'Autume et al., 2019; Li
et al., 2017) find useful when training GANs for text generation is to provide the model with
rewards for partially decoded sequences, rather than assigning the same value to each word.

We have implemented this by training the discriminator to distinguish real and synthetic
data based on sub-sequences of dialogue acts. During adversarial training, for each training
example, we randomly truncate both the real and generated sequence by 0 or more dialogue
acts. The discriminator outputs a reward based on the chosen sub-sequence, which is then
used to update both generator and discriminator parameters in the usual way.

Figure 5.4 shows how this affects performance for the model with no MLE pre-training
and trained using a batch size of 15. Clearly, providing the generator with dense rewards
improves training, especially in early epochs. The model trained with dense rewards achieves
F-scores comparable to the models with 1 or 10 epochs of MLE pre-training shown in Figure
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Fig. 5.3 Adversarial training history for different batch sizes. This graph shows F-scores (left
scale) on validation data after each epoch of adversarial training, when using batch size of 1
and 15, for the no MLE pre-training. The right scale shows adversarial loss averaged over
1,000 training examples at a time.
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Fig. 5.4 Adversarial training history for models with and without dense rewards. This graph
shows F-scores (left scale) on validation data after each epoch of adversarial training. We
also include adversarial loss (right scale), averaged over 1,000 training examples at a time.
Both models use batch size of 15, learning rate of 0.001, and no MLE pre-training.

5.1, despite not relying on any pre-training itself. We therefore keep using dense rewards and
remove pre-training in further experiments.

5.4 Discriminator Regularisation

de Masson d'Autume et al. (2019) recommend adding regularisation to the discriminator. We
therefore experimented with various amounts of L2 regularisation. This type of regularisation
adds the L2 norm of the weight matrix to the discriminator’s loss function, multiplied by
some weight γ , thus encouraging simpler models with weights closer to 0. Larger values for
γ put a larger penalty on complex models.

As shown in Figure 5.5, we have experimented with different levels for γ but none
improved performance. The discriminator is potentially already simple enough, with only 2
hidden layers and 7,682 parameters in total.
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#gen. updates/disc. update F-score Conditional KL-divergence

0.5 0.51 1.21

1 0.50 1.28

2 0.50 1.17

Table 5.2 Effect of update schedule on performance. None of the models have any MLE
pre-training. For each model we use batch size 15, dense rewards, learning rate of 0.001.
The best statistics over 30 epochs of adversarial training are shown.

5.5 Update Schedule

The final decision relating to adversarial training which we discuss is the relative frequency
with which we update parameters from the generator versus the discriminator. In our default
training set up, the discriminator’s parameters are updated twice as often as the generator,
because for every training example, we provide the discriminator separately with the true
and the synthetic user acts, and update parameters based on the loss for each. This may not
be a reasonable choice, especially given that the discriminator has only 7,682 parameters,
compared with the generator’s 13,695.

We therefore tried increasing the relative number of updates to the generator parameters,
but did not find an improvement in performance. The results can be seen in Table 5.2

5.6 Discussion and Model Selection

Overall, our experiments corroborate findings present in the literature for text-generating
GANs. We have found that pre-training the generator by MLE improved its performance.
We have also found that the recommendations made by de Masson d'Autume et al. (2019) for
stabilising adversarial training, specifically using large batch sizes and dense rewards, were
helpful in our application. One exception to this is adding regularisation to the discriminator,
which did not improve our results.

These improvements to the adversarial training process allow us to avoid MLE pre-
training altogether, while still obtaining a model which performs well in terms of F-score.
We think avoiding MLE pre-training is valuable because it makes it more likely that we will
obtain a simulator which is truly different from the baseline MLE trained one.

In the next chapter, we therefore focus on the best performing GAN that has no MLE pre-
training, where performance is measured by F-score on validation data. Table 5.3 summarises
the chosen model’s training settings.
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Parameter Value

MLE pre-training epochs 0

Batch size 15

Dense rewards True

#gen. updates/disc. update 0.5

Weight decay on discriminator 0

Learning rate 0.001

# of adv. training epochs 30

Table 5.3 Summary of the selected GAN simulator’s training parameters.



34 Adversarial Training Experiments

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.0

0.1

0.2

0.3

0.4

0.5

F
s

co
re

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
dv

er
sa

ria
l L

os
s

Fscore
adv. loss

(a) γ = 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.0

0.1

0.2

0.3

0.4

0.5

F
s

co
re

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
dv

er
sa

ria
l L

os
s

Fscore
adv. loss

(b) γ = 0.0001
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(c) γ = 0.001
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(d) γ = 0.01
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(e) γ = 0.1
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Fig. 5.5 Training history for varying weight decay parameters. Each figure shows F-score on
validation data (left scale) and adversarial loss (right scale). The models use dense rewards,
batch size 15, learning rate of 0.001 and no MLE pre-training.



Chapter 6

Comparison with an MLE Simulator

In this chapter we compare the performance of the GAN simulator selected through the
experiments of chapter 5 with that of a simulator trained with MLE. We first evaluate both
simulators on the direct metrics used in the previous chapter, calculated on a held-out test
data-set. We then use both simulators to train dialogue policies, and report on the performance
of these using cross-model evaluation.

6.1 Direct Evaluation

We begin by comparing the two simulators using the direct evaluation methods described in
chapter 4, measured on a held out test set1. Figure 6.1 shows the two simulators’ performances
in terms of F-score, average conditional KL-divergence and overall KL-divergence. On each
of these metrics, the GAN simulator is outperformed by MLE.

While the results shown in Figure 6.1 are not encouraging, all three metrics included
are related to the maximum likelihood criterion, for which the MLE simulator is optimised.
Therefore the superiority of the MLE simulator on these measures is not surprising, and may
not be that meaningful. As previously discussed, the F-score and KL-divergence may be
helpful indicators of simulator quality, but they do not directly measure performance on the
end goal of user simulation, which is to train high performance dialogue systems. This is
why we now turn to indirect evaluation methods to compare the two simulators.

1Our test set lines up with the official DSTC-2 test set.
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Fig. 6.1 Direct comparison of the GAN and MLE simulators. The GAN simulator’s training
parameters are as shown in Table 5.3. The MLE simulator is trained for 20 epochs. The
metrics are as defined in chapter 4, and we measure them on a held out test set (separate from
the validation set used in chapter 5).
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6.2 Indirect Evaluation

We train 10 dialogue policies via reinforcement learning, against each of the simulators.
Training details are as described in chapter 4. We train several policies per simulator to
account for the randomness in different training runs. Average success rate of the resulting

Evaluation Simulator

MLE GAN ABUS

Training MLE 71.70 70.05 80.46

Simulator GAN 71.59 71.52 85.40

Table 6.1 Average success rate against different simulators for policies trained with the MLE
and GAN simulators. Success rates are calculated over 3,000 evaluation dialogues, and
averaged over 10 training runs for each training simulator. Policies are trained for 40,000
dialogues.

policies against all three simulators is shown in Table 6.1. Average rewards and number of
turns per dialogue are included as appendix tables. As could have been expected, on average
the policies that do best against the MLE simulator are the ones that were trained against
it, and likewise for the GAN simulator, though the differences are small, especially against
the MLE simulator. Against the ABUS, which should not particularly favour either training
method, policies trained against the GAN simulator perform better on average.

In Table 6.2 we report the success rate of the best performing policies for each training-
evaluation simulator pair. Against all three evaluation simulators, the best performing policy
is one trained against the GAN simulator.

There exists some variance in performance among policies trained against the same
simulator. This can be seen in Figure 6.2 where we show policy performance against the
ABUS versus against the MLE simulator in (a) and against the ABUS versus against the
GAN simulator in (b). We also include these results as appendix tables. Figure 6.2 shows
that there is a negative correlation between performance against the GAN simulator and
against the ABUS, for policies trained against the GAN simulator. This raises the concern
that the policies are overfitted to their training simulator. We do not believe that this is
actually the case, firstly because there is a positive correlation between their performance
against the GAN and against the MLE simulator, and secondly because we have looked at
the performance against the ABUS of policies trained for only 20,000 dialogues and found
that it was significantly worse.
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(a) Success rates against ABUS and MLE simulators

(b) Success Rate against ABUS and GAN simulators
Fig. 6.2 Success rate of individual policies, measured over 3,000 evaluation dialogues.
Policies are trained for 40,000 dialogues.

A potential worry when looking at these results is that the two simulators may not be
doing anything fundamentally different from each other, but that the GAN simulator has
been trained slightly less efficiently, and thus fits the data less closely, and that the extra
randomness in its output is helpful in training. If that is indeed the case, we should be
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Evaluation Simulator

MLE GAN ABUS

Training MLE 72.5 71.1 87.4

Simulator GAN 74.1 73.4 90.4

Table 6.2 Maximum success rate over 10 policies trained by each simulator. Success rates
are calculated over 3,000 dialogues. Policies are trained for 40,000 dialogues.

Evaluation Simulator

MLE GAN ABUS

Training MLE 71.70 70.05 80.46

Simulator w/ early stopping 71.16 72.07 82.37

Table 6.3 Average success rate against different simulators for policies trained with the fully
trained MLE simulator, or the MLE simulator trained for a single epoch (early stopping).
Success rates are calculated over 3,000 evaluation dialogues, and averaged over 10 training
runs for each training simulator. For evaluation, the fully trained MLE simulator is used.

concerned that the same level of performance could be achieved by an MLE simulator with
heavy regularisation, or early stopping, or a temperature parameter on the softmax output.

Investigating this issue fully would have been costly, as it would ideally involve a
temperature sweep, and training dialogue policies is time-consuming. We are therefore not
in a position to completely rule out this possibility, but we did train dialogue policies using
an MLE simulator with only one full epoch of training. This model already fits the data
reasonably closely, with an F-score of 0.48 and conditional KL-divergence of 0.33. The
dialogue policy training details are as before, meaning that early stopping is only used for
simulator training, not policy training. We look at performance of the trained policies against
all three simulators in Table 6.3. Performance against ABUS is still worse than that observed
for policies trained against the GAN simulator, but it is improved slightly relative to using
the fully trained MLE simulator. Interestingly, even when evaluating against the fully trained
MLE simulator, we do not observe much deterioration in average performance from training
with the partially trained MLE simulator.

Overall then, stopping the MLE simulator training early results in slightly better policies,
even though the simulator performs worse in terms of direct evaluation metrics. This once
again highlights the fact that metrics such as the F-score and KL-divergence may not be good
indicators of simulator quality for the purposes of policy training.
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Generally, the results presented in this section are encouraging. They suggest that the
GAN simulator may be a better choice to train dialogue systems than MLE simulators. There
are two main caveats to this conclusion. Firstly, as we have just discussed, we cannot entirely
rule out that a regularised MLE simulator might perform just as well. Secondly, we will need
to confirm these results by carrying out policy evaluations against human users.



Chapter 7

Conclusion

7.1 Summary

In this dissertation, we have built and evaluated a user simulator for task oriented dialogue
systems based on a generative adversarial network.

Our proposed simulator generates dialogue acts, and does not produce any natural
language. It relies on a handcrafted feature extractor which produces context vectors that
summarise the state of the dialogue at each turn. The main component of our simulator is
the generator, which is made up of an LSTM encoder and an LSTM decoder. Based on a
sequence of context vectors corresponding to a specific dialogue turn, it predicts a sequence
of dialogue acts that form the user’s response. The generator is trained adversarially, through
interactions with a discriminator. Its objective is to produce output that the discriminator is
unable to distinguish from human user data.

We carried out a number of experiments aimed at stabilising the adversarial training
process, which were inspired by the literature on GANs for text generation. In particular,
we looked at the effect of maximum likelihood pre-training of both the generator and
discriminator, and found that it improved performance. We also reported that using (relatively)
large batch sizes stabilised training and that providing the generator with rewards for partial
sequences improved performance. We described two additional experiments which did not
affect results, namely regularising the discriminator model and updating the generator’s
parameters more often than the discriminator’s.

For these experiments, we measured performance by direct methods that compare the
output from the simulator to real user data. We relied on two metrics, the F-score and
KL-divergence. Based on these results, we selected one version of the model to compare to
an identical model trained with MLE.
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We compared the two simulators using direct and indirect evaluation methods. Direct
evaluation favoured the MLE trained simulator, which obtained higher F-scores and lower
KL-divergences with respect to test data. However, our main results related to the indirect
evaluation of the two simulators. We used both to train dialogue policies, and then evaluated
said policies against the GAN and MLE simulators, and an ABUS.

Unsurprisingly, for the two simulators used in training, the best performing policies on
average were the ones they had trained. Against the ABUS, which should be neutral with
respect to both training methods, results were very encouraging for the proposed model, with
policies trained with the GAN simulator having higher success rates, both on average and
when looking at the best performing policies.

7.2 Limitations and Directions for Future Work

While our results are encouraging, several aspects of this research topic could be investigated
further. First, we have done no exploration of the architecture for the generator model.
LSTMs seemed appropriate, and are also used by Asri et al. (2016) and Kreyssig et al. (2018),
but other models may perform better, and in particular including an attention mechanism
could be helpful. The number of layers and size of the hidden state could also be changed,
and generally more systematic hyper-parameter tuning is necessary. Similarly, gains in
performance can probably be achieved by tuning the hyper-parameters of the RL algorithm
for policy optimisation.

We could also modify our model to produce predictions in natural language rather than
dialogue acts. In that case, it may be interesting to explore the possibility of relying on a pre-
trained transformer model, and using adversarial training for fine-tuning only, as suggested
in contexts other than user simulation by Wu et al. (2021) and Croce et al. (2020). Work by
Xu et al. (2018) which proposes a method to encourage GANs to produce diverse output may
also be relevant, since, as we have previously discussed, output diversity is a particularly
desirable property for a user simulator.

Even if focusing on the proposed model as it is, we would wish to carry out further
experiments to confirm our findings. As discussed in the previous chapter, we do not rule out
that the GAN simulator’s performance could be achieved through maximum likelihood with
appropriate regularisation. Most obviously though, the superiority of policies trained with
the GAN simulator over policies trained with the MLE simulator, for which we made a case
using cross-model evaluation, needs to be confirmed in interactions with real users.
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System Act Example

welcomemsg Hello , welcome to the Cambridge restaurant system?
You can ask for restaurants by area , price range or
food type . How may I help you?

offer nandos is a nice restaurant in the south of town in the
cheap price range

inform city stop restaurant is in the north part of town .

canthelp Sorry there is no mexican restaurant in the moderate
price range

canthelp.exception I am sorry but there is no other french restaurant that
matches your request

confirm-domain You are looking for a restaurant is that right?

reqmore Can I help you with anything else?

impl-conf There are restaurants serving irish food .

expl-conf Ok , a restaurant in any part of town is that right?

repeat Sorry I am a bit confused ; please tell me again what
you are looking for .

request_food What kind of food would you like?

request_area What part of town do you have in mind?

request_pricerange Would you like something in the cheap , moderate , or
expensive price range?

select_food Sorry would you like polynesian or chinese food?

select_area Sorry would you like something in the west or in the
south

select_pricerange Sorry would you like something in the moderate price
range or you dont care

Table A.1 List of system acts. Examples are copied verbatim from the DSTC-2 corpus.
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User Act Example

inform_food thai food

inform_area im looking for a restaurant in the south part of town

inform_this dont care

request_food what type of food do they serve

reqalts is there anything else

request_addr whats the address

request_phone what is the phone number

request_pricerange whats the price range

thankyou thank you

bye good bye

request_postcode whats the post code

hello hello

negate no i want halal food

inform_pricerange id like to find a moderately priced restaurant

request_area what is the area

affirm right

confirm_pricerange is it an expensive restaurant

confirm_food is it portuguese food

confirm_area is it in the center of town

ack okay um

restart oh jesus christ start over

repeat can you repeat that

inform_name do you have prezzo

deny_food not korean

deny_pricerange uh cheap moderate

reqmore more

deny_name i hate golden wok is there anything else

request_name okay what was the name

request_signature what is their special dish

Table A.2 List of user acts. Examples are copied verbatim from the DSTC-2 corpus.
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Additional Results

Evaluation Simulator

MLE GAN ABUS

Training MLE 59.32 57.23 71.08

Simulator GAN 59.21 59.30 75.67

Table B.1 Average rewards against different simulators for policies trained with the MLE
and GAN simulators. Average rewards are averaged over 3,000 evaluation dialogues, and
over 10 training runs for each training simulator.

Evaluation Simulator

MLE GAN ABUS

Training MLE 7.632 7.774 6.860

Simulator GAN 7.894 7.816 6.959

Table B.2 Average number of turns in a dialogue against different simulators for policies
trained with the MLE and GAN simulators. Turn counts are calculated over 3,000 evaluation
dialogues, and over 10 training runs for each training simulator.
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Success Rate versus

Policy Name MLE GAN ABUS

adv-0 72.0 70.9 84.9

adv-1 69.0 71.8 90.4

adv-2 74.1 73.4 83.5

adv-3 70.3 71.7 83.1

adv-4 73.4 72.5 79.5

adv-5 71.7 70.6 89.6

adv-6 71.2 71.5 83.8

adv-7 70.8 70.6 86.5

adv-8 72.5 71.9 86.4

adv-9 70.9 70.3 86.3

Table B.3 Success rates of individual policies trained against the GAN simulator. Success
rates are averaged over 3,000 evaluation dialogues.
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Success Rate versus

Policy Name MLE GAN ABUS

ML-0 72.4 71.1 77.5

ML-1 70.4 68.2 71.7

ML-2 72.3 70.7 81.2

ML-3 72.3 69.6 84.1

ML-4 71.6 70.2 79.7

ML-5 71.7 70.0 80.9

ML-6 71.9 70.7 81.0

ML-7 69.9 69.1 87.4

ML-8 72.5 71.1 85.0

ML-9 72.0 69.8 76.1

Table B.4 Success rates of individual policies trained against the MLE simulator. Success
rates are averaged over 3,000 evaluation dialogues.
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