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Abstract

An organelle which absorbs (or secretes) a particular factor will find its mass transfer rate diffusion-limited if it is stationary with

respect to its ambient cytoplasm; but organellar motion will raise that limit as a non-decreasing function of the Peclet number P. It is

shown analytically that (i) no Whitehead paradox need be encountered in the creeping flow regime and (ii) the flux of the factor will be an

even function of the Peclet number, P. By a novel analytic solution method, the flux is shown numerically to increase as P2 for Pt1. For

P\10, a quasi-planar approximating geometry yields analytically a flux which increases as P1/3. These two solutions overlap smoothly in

the range 1tPt10. For P � 1, convection should increase the mass flux by roughly 100%.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A currently burgeoning field within cell biology is that of
traffic, a term which broadly denotes all aspects of
intracellular transport, including but not limited to:
membrane protein and lipid movement, protein transloca-
tion, molecular motors, and organelle motion. Its focus is
normally upon achieving understanding in depth of the
world-line (i.e. trajectory) of a particular intracellular
entity. A collateral issue, which has been raised only
inconspicuously (Reuzeau et al., 1997; Pickard, 2003), is
that of whether organellar motion itself might confer some
benefit upon the organelle: in particular, whether an
organelle whose operation was impaired by the slow arrival
of a diffusion-limited factor might become more productive
if it were towed continuously into regions where the factor
was relatively less depleted.1 Since the organelle exists
within a cell whose dimensions may be less than a 100-fold
e front matter r 2005 Elsevier Ltd. All rights reserved.
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entary problem of dispersal of a secretion can be treated
greater than those of the organelle2, this is intrinsically an
interior (bounded) problem in mass transport; and the
solutions of such problems may be qualitatively different
from those in which the cellular dimensions are presumed
infinite (cf., Batchelor, 1979).
Nevertheless, analogous intrinsically exterior (un-

bounded) problems of mass transport from/to bacteria or
phytoplankton are of importance in marine biology,
wastewater treatment, chemoreception, etc. (e.g., Berg
and Purcell, 1977; Logan and Dettmer, 1990; Karp–Boss
et al., 1996; Kiørboe et al., 2001).
Interior and exterior problems alike share the common

characteristics: (i) that factor flux across the surface of a
target particle diffusively alters factor concentration in the
neighboring external medium of the particle; and (ii) that
agitation of the fluid surrounding the particle is believed to
bring fresh medium into the vicinity of the particle, thereby
increasing diffusive flux. This is beautifully summarized by
2The cytoplasm (contents of a cell) can simplistically be subdivided into

organelles, cytoskeletal elements, and putatively fluid ground substance

called the cytosol.
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Nomenclature

a radius of a spherical organelle being translated
through a macroscopically uniform cytosol

a unified atomic mass unit, 1.660 y� 10–27

nAq one of a set of QðN þ 1Þ unknown constants
generated by the polynomial expansions of Eq. (41)

AmðeÞ a sequence of positive constants defined at (A.5)
AðZÞ;BðZÞ;B0ðZÞ functions related to the Airy functions

and defined in Eq. (A.9)
cðx; zÞ in the planar model of Section 5, the dimension-

less concentration of a key substance within the
cytosol, c ¼ C=C0

c̄ðx; sÞ Laplace transform of c with respect to z
~c c̄� 1=s

ĉðx;oÞ Fourier cosine transform of c with respect to z
C local concentration of a key substance within

the cytosol
C0 nominal background concentration of the a key

substance far from any sources or sinks
D effective diffusivity (diffusion constant) of a key

substance within a macroscopically uniform cytosol
Dx, Dy, Dz components of a non-tensor diffusivity along

the x,y,z Cartesian directions
Daq diffusion constant of a large molecule in a

simple aqueous solution
Deff effective diffusion constant of a large molecule

in an aqueous solution densely packed with
macromolecules

D
2

tensor diffusivity, a generalization of D

d density of a compound
EPN in the parallel plate model, the normalized

enhancement of flux to a suitable region of the
bottom plate; it is homologous to the FNðPÞ �

1 of the spherical model
~f vector flux density of a substance suspended in

the cytosol
f ðrÞ radial variation of the r-directed component of

the cytosolic velocity
FE enhancement by cytosol motion of the flux

density into the bottom plate of a planar
geometry; note that the moving cytosol is
diffusively anisotropic

FD flux density into the bottom plate of the planar
approximating geometry due solely to normal
diffusion

F total reactant flux integrated over the surface of
a moving sphere of radius a

FN total steady-state key substance flux F into a
spherical organelle, normalized with respect to
the limiting case of zero organellar motion (i.e.
diffusion limitation). See Eq. (9)

F constant multiplier of the power law asymptotic
behavior of FN at large Peclet number

gðrÞ azimuthal variation of the y-directed component
of the cytosolic velocity

Ka, Kb constants which appear in solving the parallel
plate problem of Section 5

Knorm a normalizing constant which sets the peak of
f ðrÞ to 1

Lf, Lg, nLm uncalculated functions of r which are
bounded over [0,1]

M molecular weight of a compound
M a matching constant to conform the predictions

of Eq. (A.10) with those of Eq. (36)
N angular degree of a truncated Legendre expan-

sion for cðr; yÞ
NA Avogadro number 6.022y� 1023

P Peclet number of a spherical organelle of radius
a being translated at a constant velocity U

through a macroscopically uniform cytosol
within which a key reactant had diffusivity D :
P ¼ Ua=D

Pnðcos yÞ Legendre polynomial of the first kind of
degree n

Q radial degree of a truncated Taylor expansion of
the functions RnðrÞ

RnðrÞ radial function of the nth term of the Legendre
polynomial expansion for the dimensionless
concentration cðr; yÞ. See Eq. (35)

s Laplace transform variable associated with z
s3 volume of a single molecule (idealized as a cube)
t time
~u vector velocity of the cytosol about a moving

organelle
U constant translational velocity of an infinite

cytosol relative to a fixed spherical organelle
~u normalized velocity defined by ~u ¼ ~u=U

x,y,z Cartesian coordinates within the cytosol
a(l), b(l) linearly independent solutions of Eq. (A.2)

which are defined in (A.4)
gnðr; yÞ functional form of the nth term of the formal

perturbation expansion in P of the normalized
concentration cðr; yÞ see Eqs. (23)

nGmðrÞ function describing the radial variation of the
mth degree term of the Legendre polynomial
expansion of the nth degree term of the
perturbation expansion in P see Eq. (27)

d (Ps)1/3

z dimensionless variable z/a
Z variable of convenience defined as Ps

Zn negative real roots of BðZÞ ¼ 0
y azimuthal angle of a spherical coordinate system
k constant used to place the peak of the radial

component of the cytosolic velocity
l (Ps)1/3x
x dimensionless variable x/a
r normalized radial distance r/a in a spherical

coordinate system
c1, c2 functions of r defined near Eq. (32)
o Fourier sine transform variable associated

with z
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Purcell (1978, p. 552)3 as follows: ‘‘It [convection] can
[increase the factor flux] by bringing close to the absorber
parcels of fluid with the [undisturbed] concentration found
further out, thus increasing the concentration gradient
around the absorber. Indeed that is the only way
[convection] can increase the [flux] collected by the
absorber. It [convection] cannot convey [a factor]-molecule
directly to the surface; the last stage, so to speak, of the
molecule’s journey must be accomplished by diffusion
alone.’’ Biologists seldom ponder the relative contributions
of convection and diffusion, especially, as a function of
position about a moving particle; with physical scientists
and applied mathematicians it seems less rare but is by no
means marked. Instead, what many of both categories are
apt to do is simply cite a Sherwood number4.

Qualitatively, it might seem that one could obtain a
conceptual grasp of the situation by considering the
speciously simple problem of an infinite viscous medium
(i) within which the concentration of a diffusible factor is
initially uniform, (ii) with respect to which a sphere, that
perfectly absorbs the factor, executes a steady rectilinear
motion, and (iii) concerning which we desire to know only
F [mol s–1], the total steady-state flux of the factor into the
surface of the sphere.

Simple qualitative reasoning would suggest that the flux
across the surface of the sphere would reflect a balance
between the diffusivity D [m2 s–1] and the speed of the
sphere U [m s�1]; moreover, it should depend upon the
radius a [m] of the sphere. Historically, these three
parameters are combined into a single dimensionless
variable, the Peclet number P ¼ Ua=D.5 By convention,
when Pb1, convection is said to dominate the flux
behavior; and when P51, diffusion is said to dominate6.

The above problem is a classic which, for sufficiently
large Pb1, was long ago was addressed approximately by
Levich (1962) and, independently, by Friedlander (1961)
3Where appropriate, pointers will be given to page (p.), section (s.),

chapter (ch.), equation (eq.), figure (fig.), table (tab.), or experiment (expt.)

of the pertinent reference.
4The Sherwood number is defined as the ratio (total steady-state flux

across absorber surface with convective motion in the ambient medium)/

(total steady-state flux across absorber surface in the absence of convective

motion in the ambient medium).
5‘Peclet’ is the anglicized form of the French ‘Péclet’. Jean Claude

Eugène Péclet (1793–1857), despite a distinguished career in thermal

physics, may not have devised the Peclet number. The online edition of the

Oxford English Dictionary [http://dictionary.oed.com/cgi/entry/

00173688?single=1&query_type=word&queryword=Peclet&edition=

2e&first=1&max_to_show=10] attributes the dimensionless group of this

name to H. Gröber Die Grundgesetze der Wärmeleitung und des

Wärmeüberganges (1921) ii. 168. In addition to this memorial, Péclet also

has a street in the XVe Arrondissement named after him.
6In fact, this convention is really a rough rule of thumb. Although it is

unimportant in this paper, the author probably would quantify ‘dominate’

as follows: consider a stream-surface and a diffusion-limited factor which

is being transported inwards across it in the general direction of an

absorbing particle; diffusion is said to be ‘dominant sensu stricto’ wherever

the convective flux density of the factor parallel to the stream-surface is

less than the diffusive flux density perpendicular to that surface.
and by Acrivos and Goddard (1965) who showed that
F / P1=3. A rather more advanced and general derivation
of this result was given by Batchelor (1979); and experi-
mental verification has been provided by Kutateladze et al.
(1982).
An overview of these and similar studies has been given

by Coutelieris et al. (1995), who pointed out that such
approximations are ‘‘not valid for moderate or low P-
values’’; and an extension to the related case of a
‘‘squirming’’ sphere has been given by Magar et al.
(2003). The general problem, including behavior for small
P, has been studied in depth in a monograph by Leal (1992),
in a paper of Romero (1994), and in a review by Polyanin
and Vyaz’min (1995). What, however, is striking is that
there appear to be no studies which provide simple plots of
F versus P, whether experimental or theoretical, over the
entire range of P-values of relevance to intracellular traffic.
Moreover, in the references cited above in this paragraph,
there is a notable paucity of experimental data which might
be used to validate either the formal theoretical models or
the approximation techniques used for solving them.
The case of a motionless ideally absorbing sphere of

radius of radius a in an infinite cytosol7 within which the
concentration of a diffusible absorbable factor (reactant)
was initially C0 [molm�3], is known to yield a total flux

F ¼ 4pDC0a, (1)

where D is the diffusivity of the reactant (Carslaw and
Jaege, 1959). Initially, when the sphere first begins
absorbing factor, the flux will be much, much greater than
this; and the steady-state prediction of Eq. (1) will hold
only as an equilibrium is reached between absorption at the
sphere’s surface and diffusion of fresh factor from distant
regions of the cytosol. As laminar flow past the sphere
increases from zero, regions a few radii from the sphere
should be renewed more quickly than by diffusion alone
andF should increase with increasing Peclet number. Only
the shape of F (P) should be in question, since it is unclear
how the balance between diffusion and convection will play
out as the Peclet number becomes progressively larger.
Section 2 will be devoted to mathematical preliminaries

in which the question is cast as a problem of anisotropic
diffusion in a infinite medium that flows past a fixed sphere
with a velocity that is specified a priori; however, it will be
argued that this velocity is not precisely knowable and that
its uncertainty is sufficiently large to admit of a specified
form which squelches the Whitehead paradox8. In Section
3, a Maclaurin expansion in P will be derived for factor
7The cytoplasm (contents of a cell) can simplistically be subdivided into

organelles, cytoskeletal elements, and putatively fluid ground-substance

called the cytosol.
8Actually, there are two related Whitehead paradoxes in fluid

mechanics, both of which refer to situations in which higher-order terms

of a perturbation expansion over an infinite volume fail to satisfy the

prescribed boundary conditions on both a surface near the origin and a

surface at infinity (Leal, 1992). The one referred to in this paper is

Whitehead’s paradox for convective mass (or heat) transfer.

http://dictionary.oed.com/cgi/entry/00173688?single=1&amp;query_type=word&amp;queryword=Peclet&amp;edition=2e&amp;first=1&amp;max_to_show=10
http://dictionary.oed.com/cgi/entry/00173688?single=1&amp;query_type=word&amp;queryword=Peclet&amp;edition=2e&amp;first=1&amp;max_to_show=10
http://dictionary.oed.com/cgi/entry/00173688?single=1&amp;query_type=word&amp;queryword=Peclet&amp;edition=2e&amp;first=1&amp;max_to_show=10
http://dictionary.oed.com/cgi/entry/00173688?single=1&amp;query_type=word&amp;queryword=Peclet&amp;edition=2e&amp;first=1&amp;max_to_show=10
http://dictionary.oed.com/cgi/entry/00173688?single=1&amp;query_type=word&amp;queryword=Peclet&amp;edition=2e&amp;first=1&amp;max_to_show=10
http://dictionary.oed.com/cgi/entry/00173688?single=1&amp;query_type=word&amp;queryword=Peclet&amp;edition=2e&amp;first=1&amp;max_to_show=10
http://dictionary.oed.com/cgi/entry/00173688?single=1&amp;query_type=word&amp;queryword=Peclet&amp;edition=2e&amp;first=1&amp;max_to_show=10
http://dictionary.oed.com/cgi/entry/00173688?single=1&amp;query_type=word&amp;queryword=Peclet&amp;edition=2e&amp;first=1&amp;max_to_show=10
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9FN and its analogues in this paper are analogous to the Nusselt

number of heat transfer and the Sherwood number of chemical reaction

engineering. However, as this contribution is intended for physicists and

biologists and as the definitions of these numbers are not uniform

throughout science and engineering, these terms will not be employed; and

symbols defined locally with precise referents will be used instead.
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concentration; in this expansion, the coefficients of the
powers of P are well-behaved as the medium is allowed to
become infinite and lead to an F(P) which increases
quadratically for adequately small values of P. In Section 4,
a Legendre function expansion will be introduced which
does not depend upon perturbation techniques, which
permits the numerical calculation of F(P) for small and
intermediate P, and which verifies the quadratic prediction
of Section 3. In Section 5, behavior for large Peclet number
will be examined with a novel approximation technique
which validates one’s expectations of F / P1=3.

Finally, in the discussion of Section 6, the relevance of
the paper’s findings to (i) theoretical heat and mass
transport (ii) practical plant biology are discussed.

The biologist who is disinterested in the abstruse
mathematics of the problem is advised to skip at once to
Fig. 3 which shows, relative to the flux expected from pure
diffusion and as a function of the Peclet number, the flux
enhancement due convective flow about the sphere (orga-
nelle). The biological significance of this enhancement is
examined in the Discussion.

2. Mathematical preliminaries

The equation in moving cytosol of vector velocity
~u½ms�1� for the vector flux ~f [molm2 s–1] of a dissolved

factor with tensor diffusivity D
2
½m2 s�1� is (Carslaw and

Jaeger, 1959)

~f ¼ � D
2
�gradC þ C~u, (2)

where C [molm–3] is the concentration (number density) of
the entity. The equation for the conservation of species
number is (Carslaw and Jaeger, 1959)

@C

@t
¼ �div~f , (3)

where t[s] is the time. For steady-state anisotropic diffusion
in an incompressible fluid medium (i.e. div~u ¼ 0) of
homogeneous orthorhombic diffusivity, Eqs. (2) and (3)
combine to yield

0 ¼ ~u � gradC � Dx

@2C

@x2
þDy

@2C

@y2
þDz

@2C

@z2

� �
, (4)

where x; y; z [m] are rectangular position variables. In the
remainder of this paper Eq. (4) will be solved for C, but
only after the velocity ~u has been specified independently.

For the two following Sections (3 and 4), it is convenient
to assume: (i) that diffusivity is isotropic so that the tensor
D
2

collapses into the scalar D and Eq. (4) reduces to

0 ¼ ~u � gradC �Dr2C; (5)

(ii) that the organelle is a sphere of radius a fixed at the
origin of spherical (r; y;f) coordinate system; (iii) that ~u ¼
urr̂þ uyŷ (angular symmetry about the polar z-axis); and
(iv) that suitable boundary conditions are C ¼ 0 at r ¼ a

and C! C0 for rba.
Under these assumptions, Eq. (5) reduces to

0 ¼ ur
@C

@r
þ uy

@C

r@y

� �
�D

@

r2@r
r2
@C

@r

� ��

þ
@

r2 sin y @y
sin y

@C

@y

� ��
ð6Þ

and the integrated inward flux over the surface of the
organelle becomes

F ¼ 2pa2D

Z p

0

@C

@r

����
r¼a

sin ydy. (7)

If then one makes the transformations ~u ¼ U~u, P ¼ Ua=D,
r ¼ a=r, and C ¼ C0c,

r2
1

sin y
@

@y
sin y

@c

@y

� �
þ r4

@2c

@r2
¼ P �urr2

@c

@r
þ uyr

@c

@y

� �
(8)

(where c ¼ 0 at r ¼ 1 and c! 1 as r! 0) and

FN ¼
F

4paDC0
¼ �

1

2

Z p

0

@c

@r

����
r¼1

sin y dy. (9)

(FN � 1) is the quantity desired, and Eq. (8) must be
solved to provide it.9

Another specialized case (Section 5) is that of the
parallel-plate region. This is quite unrealistic biologically,
but nevertheless is very useful for studying the limit
P!1. The key to simplifying this case is to assume that
the fluid velocity is so great the z-directed diffusion can be
neglected in comparison to the z-directed convection: that
is, Dz ¼ 0 and Dx ¼ Dy ¼ D. It is further assumed that the
flow is equivalent to that induced by translating the top
plate with a speed U in the z-direction, producing a velocity
field (Langlois, 1964)

uz ¼ U
x

a

h i
. (10)

With the substitutions x ¼ xa and z ¼ za,
Eq. (5) reduces to

q2cðx; zÞ

qx2
¼ Px

qc

qz
(11)

with the boundary conditions c ¼ 1 at z ¼ 0, c ¼ 0 at
x ¼ 0, and qc=qx ¼ 0 at x ¼ 1. In this planar model, the
variation of flux with large Peclet number can be studied by
evaluating, for arbitrary z the enhanced flux density FE

[molm2 s–1] into the bottom plate at x ¼ 0:

FEðzÞ ¼ D
qC

qx

����
x¼0

¼
DC0

a

qc

qx

����
x¼0

. (12)

This enhancement should be compared to F DðzÞ
[molm2 s–1], the flux density to the bottom plate due to
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isotropic diffusion in the absence of convection. In
particular, the integral of F EðzÞ over a suitable interval of
length p (corresponding half an equatorial circumference
on a sphere), then divided by a similar integral of FDðzÞ,
and finally multiplied by an appropriate matching constant
yields a function of P comparable to FNðPÞ � 1, the
enhancement in the spherical case.
3. Formal Maclaurin expansion for the sphere

3.1. Specification of the normalized velocity ~u

Given that diffusion is a physical process which smears
out irregularities, it seems reasonable to assume that
cðP; r; yÞ is well behaved. Therefore, it should admit of a
power series expansion in P within a sufficiently small
neighborhood of P ¼ 0, where the coefficients of the
expansion are well behaved functions of r and y. The
radius of convergence of this series is not, however,
obvious.

In treating this problem, it is necessary first to settle
upon a functional form for the normalized cytosol velocity,
~u, relative to the organelle in question. Because such flows
seem to occur only with very low Reynolds numbers
(Pickard, 2003), the simplifications associated with viscos-
ity-dominant flow will be valid and creeping flow solutions
will obtain.

For many years, physiologists modelling the cytoplasm
of a cell divided roughly into two camps: one ‘‘assumes that
cell behavior is quite similar to that expected for a watery
bag of enzymes and ligands’’ and therefore that the cell has
a homogeneous cytoplasm; the other ‘‘assumes that three-
dimensional order and structure constrain and determine
metabolite behavior’’ (Hochachka, 1999) and therefore
that the cell has a heterogeneous cytoplasm. If one accepts
the first model, then a low-Reynolds-number creeping-flow
solution of the Navier–Stokes equations should suffice. If
one accepts the second model, then the Navier–Stokes
equations are inappropriate because the cytosol is not an
homogeneous fluid but more like a saturated porous
medium through which fluid percolates and for which
Darcy’s equation is more appropriate (Bear, 1988). For a
sphere moving with respect to an infinite medium, the
solutions to both flow problems are well known. The
Navier–Stokes (homogeneous cytoplasm) case yields (Lan-
glois, 1964; Milne-Thomson, 1950)

ur ¼ � cos y½1� ð3
2
Þrþ 1

2
r3� ¼ � cos y½ð1� rÞ2ð1þ 1

2
rÞ�,

(13)

uy ¼ sin y½1� 3
4
r� 1

4
r3� ¼ sin y½ð1� rÞð1þ 1

4
rþ r2Þ�.

(14)

The Darcy (heterogeneous cytoplasm) case yields (Romero,
1994)

ur ¼ � cos y½1� r3� ¼ � cos y½ð1� rÞð1þ rþ r2Þ�, (15)
uy ¼ sin y½1þ 1
2
r3�. (16)

However, neither case takes account of the biological
complications that: (i) the cytoplasm is finite, not infinite;
(ii) the cytoplasm contains a cytoskeleton which will
rapidly damp flow; (iii) cytoskeletal structure metamor-
phoses with a time-scale of minutes; and (iv) neighboring
organelles are moving within the cytoplasm, thereby
distorting the flow field in unpredictable fashions. That
is, ~u is an unknown which cannot be predicted rigorously
but which, possibly, can be usefully approximated.
Eqs. (13)–(16) have the similarity that they are of the

forms

ur ¼ � cos y½f ðrÞ�, (17)

uy ¼ sin y½gðrÞ�. (18)

Our first approximation therefore is that, near the

organelle, ~u will have the form given by Eqs. (17)–(18).
This simplicity of variation with polar angle (i.e. latitude) is
not surprising since the Reynolds number is orders of
magnitude below unity (Pickard, 2003), and the flow is
expected to creep around the organelle without complica-
tions of pattern. Our second approximation is that, by the
continuity equation for incompressible fluids of uniform
density (Milne–Thomson, 1950), div~u ¼ 0 and

gðrÞ ¼ f ðrÞ �
r
2

df ðrÞ
dr

. (19)

Since there will be many organelles within a cell, each
affecting both the dimensionless concentration c and the
dimensionless cytosolic velocity ~u relative to the organelle
of interest, neither Eq. (8) nor the choice of f ðrÞ will be
exact. This conclusion is only strengthened by the
observation that as much as 30% of the intracellular
volume of a eukaryotic cell can be occupied by macro-
molecules (Ellis, 2001), a density which would both
increase the effective viscosity and decrease the effective
diffusion constant. Our third approximation is then that
the cell can be considered to be of infinite extent (r!1 &
r! 0). But these uncertainties mean that any behavior
deduced for cðP; r; yÞ, though qualitatively useful, should

probably not be trusted beyond one significant figure.
The interior of the cell is more highly organized than

most biologists would have thought, even a few years ago
(Pickard, 2003), and hence Eqs. (13)–(14) cannot be the
whole truth. On the other hand, highly structured and
heterogeneous though it may be, the cytosol seems quite
unlike the water-saturated granular particulate for which
the model of Eqs. (15)–(16) was devised. Moreover, the
structure of the cytosol is not time-invariant, so that one has
to think in terms of time-average or ‘‘effective’’ cytosolic
flows; that is, traffic exists (Schroer, 2000), and the
ultrastructure of the organelle’s heterogeneous ambient is
constantly changing. Because (i) the velocity field far from
the organelle will be strongly affected by the structure of
the cytosol and motions of neighboring organelles and (ii)
the concentration cðP; r; yÞ will presumably be affected
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more by neighboring organelles than by f ðrÞ, our fourth
approximation is that for, rt0:1 (r\10a), the choice of
f ðrÞ is not of great importance as long as it varies slowly
and smoothly, is nonnegative, and tends rapidly to zero as
r! 0. Therefore, since the effective cytosolic velocity
relative to the organelle is at present so poorly known,
there is some justification for picking a convenient f ðrÞ and
constraining it: (i) near r ¼ 1, to lie between Eqs. (13) and
(15); (ii) to peak at 1 several radii out from the organelle’s
surface; (iii) to decay strongly beyond this peak, reflecting
thereby our lack of knowledge concerning the effects of a
heterogeneous cytosol containing other organelles; (iv) to
vary smoothly and to generate a gðrÞ which also varies
smoothly; (v) as r! 0, to vanish strongly enough to
suppress phenomena akin to the Whitehead paradox (Leal,
1992) and thereby enable perturbation-like solutions. Since
the Whitehead paradox appears only at singularities of the
governing equations, this constraint could be viewed as an
analytically convenient way of compensating for the
simplifying assumption of an infinitely large cell.

The variation selected here is

f CðrÞ ¼ Knormð1� rÞ2 exp k
r� 1

r

� �
, (20)

where k is a dimensionless constant used to locate the peak
of f ðrÞ at an appropriate rmax, and Knorm is a dimensionless
constant used to normalize the peak to 1; the subscript C

denotes cytoplasmic. By Eqs. (19)–(20),

gCðrÞ ¼ Knormð1� rÞ 1�
1

2
k
1� r
r

� �
exp k

r� 1

r

� �
. (21)

Forms (20)–(21) will be used in this and the following
section:
3.2. Existence of a Maclaurin expansion in P2

With the substitutions described,

r2
1

sin y
@

@y
sin y

@c

@y

� �
þ r4

@2c

@r2

¼ P cos yf CðrÞr
2 @c

@r
þ sin ygCðrÞr

@c

@y

� �
. ð22Þ

Suppose that, for sufficiently small Peclet number, there is
a formal Maclaurin series of the form

c ¼
X1
n¼0

gnðr; yÞP
n, (23)

where in accordance with the boundary conditions: if
n ¼ 0, g0ð1; yÞ ¼ 0 and g0ð0; yÞ ¼ 1; if n^1 gnð1; yÞ ¼ 0 and
gnð0; yÞ ¼ 0. If Eq. (23) is substituted into Eq. (22) and
terms in Pn equated, it follows that

r2
1

sin y
q
qy

sin y
qg0
qy

� �
þ r4

q2g0
qr2
¼ 0; n ¼ 0, (24)
r2
1

sin y
@

@y
sin y

@gn

@y

� �
þ r4

@2gn

@r2

¼ cos yf Cr
2 @gn�1

@y
þ sin ygCr

@gn�1

@y

� �
; n^1. ð25Þ

Eqs. (24)–(25) define an infinite system of differential
equations from which important properties of the gn,
although not their exact forms, must be deduced.
First, as can be verified by direct substitution, the unique

solution to (24) subject to the boundary conditions is
(Carslaw and Jaeger, 1959)

g0ðr; yÞ ¼ 1� r. (26)

Second, diffusion is a process which flattens peaks, fills
valleys, and blurs edges: as a result, the several gn should be
mathematically well behaved throughout the inverted
sphere 0oro1. In particular, for any surface of constant
r, there should be a valid expansion of gnðr; yÞ in terms of
Legendre polynomials (Churchill, 1941). Moreover, since
gnðr; yÞ presumably is well behaved, the coefficients of this
expansion should vary smoothly so that

gnðr; yÞ ¼
X1
m¼0

nGmðrÞPmðcos yÞ; (27)

where the nGmðrÞ are well-behaved functions of r. When,
for n^1, Eq. (27) is substituted into Eq. (25) and the
resulting expression multiplied by 1

2
ð2pþ 1Þ sin yPpðcos yÞ

and integrated over ð0; pÞ, the left-hand side of Eq. (25)
becomes

r4
d2nGmðrÞ

dr2
�mðmþ 1Þr2nGmðrÞ

� �
, (28)

where use has been made of Legendre’s differential
equation (Churchill, 1941). Similarly, the right-hand side
becomes

½f CðrÞr
2�

mþ 1

2mþ 3

dn�1Gmþ1ðrÞ
dr

þ
m

2m� 1

dn�1Gm�1ðrÞ
dr

� ��

þ ½gCðrÞr� �
ðmþ 1Þðmþ 2Þ

2mþ 3
n�1Gmþ1ðrÞ

�

þ
mðm� 1Þ

2m� 1
n�1Gm�1ðrÞ

��
, ð29Þ

where use has been made of the recurrence relations of the
Legendre polynomials (Abramowitz and Stegun, 1964).
Third, assuming good behavior of the nGmðrÞ, the import

of Eqs. (28)–(29) is that a Legendre polynomial of degree m

in the development of gnðr; yÞ gives rise to Legendre
polynomials Pmþ1 and Pm�1 in gnþ1ðr; yÞ. Because gnðr; yÞ
involves only P0 , this leads cascade in which: for even n,
gnðr; yÞ involves only Legendre polynomials of even order
up to n; and, for odd n, gnðr; yÞ involves only Legendre
polynomials of odd order up to n. The higher-order nGmðrÞ
may, however, be of some complexity.
Fourth, the Whitehead paradox, which leads to solutions

poorly behaved as r!1, is well known. Therefore, the
assumed good behavior of the nGmðrÞ as r! 0 cannot be



ARTICLE IN PRESS
W.F. Pickard / Journal of Theoretical Biology 240 (2006) 288–301294
taken for granted, as in the formal expansion above: it must
be demonstrated! Observe, therefore, that if the formal
expansion of order n� 1 has n�1GmðrÞ which are well
behaved in the sense that both n�1GmðrÞ and dn�1GmðrÞ=dr
are bounded over [0,1], then the right-hand side term in
Pmðcos yÞ on the nth-order equation can be expressed as

f CðrÞLf ðrÞ þ gCðrÞLgðrÞ, (30)

where Lf ðrÞ and LgðrÞ are also bounded over [0,1]. It then
follows that the mth degree term of the nth-order equation
is of the form

r2
d2nGmðrÞ

dr2
�mðmþ 1ÞnGmðrÞ ¼ e�k=rnLmðrÞr�2, (31)

where nLmðrÞ is likewise bounded over [0,1]. The funda-
mental solutions of the homogeneous reduced Eq. (31) are
obviously C1ðrÞ ¼ r�m and C2ðrÞ ¼ rmþ1. Following
standard methodology (Ince, 1956), the complete solution
of Eq. (31) will be

nGmðrÞ ¼ K2c2ðrÞ �
c1ðrÞ
2mþ 1

Z r

0

c2ðoÞe
�k=o

nLmðoÞo�2 do

þ
c2ðrÞ
2mþ 1

Z r

0

c1ðoÞe
�k=o

nLmðoÞo�2 do, ð32Þ

if, to meet the boundary conditions on gnðr; yÞ, (i) the last
two terms on the right-hand side tend to zero as r! 0 and
(ii) the constant K2 is chosen to set nGmð1Þ ¼ 0. To
demonstrate (i), note thatZ r

0

c1ðoÞe
�k=o

nLmðoÞo�2 do
����

����
o
Z r

0

e�k=ojnLmðoÞjo�ðmþ2Þ do

oe�k=2r
Z r

0

e�k=2ojnLmðoÞjo�ðmþ2Þ do

¼ Oðe�k=2rÞ.

Thus, Arrhenius-type decay of f CðrÞ is sufficiently power-
ful to squelch the singularity at r ¼ 0 that generates the
Whitehead paradox: using the normalized radial velocity
function f CðrÞ, a formal Maclaurin expansion of the form
(23) does exist.

Fifth, this means that the normalized flux across the
organelle surface will by Eqs. (18), (23) and (27) be

FN ¼
1

2

X1
n¼0

Pn
X1
m¼0

dnGmðrÞ
dr

�����
r¼1

Z p

0

Pmðcos yÞ sin ydy.

(33)

With Eq. (26) and the orthogonality relation for the
Legendre polynomials (Churchill, 1941), this reduces to

FN ¼ 1�
d2G0ðrÞ

dr

����
r¼1

P2�
d4G0ðrÞ

dr

����
r¼1

� P4 �
d6G0ðrÞ

dr

����
r¼1

P6 � � � � . ð34Þ
ThatFN should be turn out to be even function of P is not,
after the fact, surprising because FN should be insensitive
to the sign of U. That is, the total uptake should not
depend upon the direction of the flow.
Sixth, Eq. (34) neither provides explicit analytic forms

for the coefficients nor predicts a radius of convergence for

the series.
Seventh, the result (34), that the convection-driven

increase in reactant flux to the organelle surface is
OðP2Þ at low Peclet numbers, is not a commonplace.
To the author’s knowledge, such a behavior has been
predicted only twice previously (Frisch, 1954; Berg
and Purcell, 1977) and is not in harmony with recent
expectations (Leal, 1992). Frisch (1954) obtained his
result by a perturbation technique and has been sharply
criticized for the velocity distribution he used (Acrivos and
Taylor, 1962). Berg and Purcell (1977) obtained theirs by a
poorly documented numerical technique and have been
criticized by Brunn (1981) for allegedly warping an
exterior-unbounded problem into an interior-bounded
problem, which in turn alters the influence of convection.
However, actual experimental measurements by Purcell
(1978) show, for Peclet numbers slightly below one, a
quadratic variation; but they were obtained using a biaxial
straining flow rather than a uniform streaming flow and
have been considered by Batchelor (1979) as at risk of
being interior-bounded. From the viewpoint of the
intracellular mass transfer problem of interest here, one
finds encouraging the qualitative expectations voiced
by both Batchelor (1979, p. 392) and Brunn (1981, p. 34)
that P2 variation should result for an interior-bounded
problem.
4. Legendre expansion for arbitrary Peclet number

Because the predictions of the previous section were
unexpected when the project was commenced, it was
thought advisable to test them by solving Eqs. (8)–(9)
using an unrelated technique. No size limitations are
imposed upon P in the technique developed below except
the current practical limits of computability. Let

c ¼ ½1� r� þ
X1
n¼0

R0ðrÞPnðcos yÞ. (35)

The [1� r] term is clearly the solution in the limit P! 0.
By itself, it satisfies the boundary conditions thereby
requiring for all n that Rnð1Þ ¼ 0 and Rnð0Þ ¼ 0.
The RnðrÞ are unknown functions which vary with P

and which will be presumed analytic over [0,1]. When
Eq. (35) is combined with Eq. (9), the normalized flux
becomes

FN ¼ 1�
dR0ðrÞ
dr

����
r¼1
¼ 1� R00ð1Þ. (36)
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10Determinants have of course fallen out of favor for solving linear

systems. However, when the system matrix is ill conditioned, only a few of

the unknowns are needed, and computer time is abundant, they seemed a

marked convenience to the author.
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When Eq. (35) is substituted into Eq. (8) and the recurrence
relations for the Legendre polynomials employed

Pf CðrÞr
2P1ðcos yÞ

¼ �
X1
n¼0

fr4R00nðrÞ � nðn� 1Þr2RnðrÞgPnðcos yÞ

þ P
X1
n¼0

fr2f CðrÞR
0
nðrÞg

1

2nþ 1

� ½ðnþ 1ÞPnþ1ðcos yÞ þ nPn�1ðcos yÞ�

þ P
X1
n¼0

frgCðrÞRnðrÞg
nðnþ 1Þ

2nþ 1

� ½Pnþ1ðcos yÞ � Pn�1ðcos yÞ�. ð37Þ

Applying the orthogonality properties of the Legendre
functions, expands this single equation involving infinite
sums into the following infinite set of simple differential
equations:

n ¼ 0 : 0 ¼ �r4R000 þ
1
3
Pfr2f cR01 � 2rgcR1g, (38)

n ¼ 1 : Pr2f c ¼ � r4R001 þ 2r2R1 þ Pfr2f c½R
0
0 þ

2
5
R02�

þ rgc½�
6
5R2�g, ð39Þ

n41 : 0 ¼ � r4R00n þ nðnþ 1Þr2Rn

þ P r2f C

n

2n� 1
R0n�1 þ

nþ 1

2nþ 3
R0nþ1

� �� �

þ P rgC

ðn� 1ÞðnÞ

2n� 1
Rn�1 �

ðnþ 1Þðnþ 2Þ

2nþ 3
Rnþ1

� �� �
.

ð40Þ

These equations were used to generate numerical values as
follows.

First, it was assumed that the expansion of Eq. (35)
could be successfully truncated. This forced RnðrÞ � 0 for
n4N and yielded (N þ 1) coupled differential equations
for R0ðrÞ;R1ðrÞ ; . . . ; RNðrÞ. Given the known ultrastruc-
tural heterogeneity of the cytosol, to choose an N outside
the one digit range would be to pretend to a level precision
which present day biological knowledge cannot support.
For the computations of this paper, the choice was N ¼ 8,
large enough to offer a degree of azimuthal resolution but
not blatantly pretentious.

Second, RnðrÞ was assumed to be adequately approxi-
mated by a polynomial of the form

RnðrÞ
XQ

q¼1

nAqrq, (41)

where the nAq are a set of QðN þ 1Þ unknown constants.
This approximation guarantees the demand that Rnð0Þ ¼ 0.
The requirement that Rnð1Þ ¼ 0 provides (N þ 1) of the
equations needed to find the nAq.

Third, the remaining (Q� 1)(N þ 1) equations needed
were supplied by requiring that the polynomials defined by
Eq. (41) satisfy the differential equations (38)–(40) at the
points of the grid r ¼ 1=Q, 2=Q ; . . . ; ðQ� 1Þ=Q. It should
be noted that, in r-space, these points are densely clumped
near the organelle’s surface, where they can sample the
diffusive boundary layer. Obviously, Q must be chosen
large enough to resolve R0ðrÞ effectively near the organelle
surface. Therefore, a priori, it seemed risky to pick a Q

which was not in the two-digit range, even though this
necessarily boosted the computational burden significantly.
Fourth, upon beginning computations using MATLAB

s

Version 6.5.0, it was discovered that, as Q was increased
past 10, the linear systems generated became progressively
more ill conditioned and resisted solution by normal
elimination techniques. This was circumvented in two
ways: (i) because, surprisingly, the determinant of a matrix
is not usefully related to its condition number (Watkins,
2002), Cramer’s rule10 was used to find only the Q

coefficients 0Aq; (ii) computations were carried out with
48-digit precision using MATLAB’s Symbolic Math Toolbox.
For technical reasons, the latter strategy made it con-
venient to substitute for Eqs. (20)–(21) high degree
polynomial approximations which contained no zeroth or
first degree terms but which well-represented the velocity
functions near the organelle (cf. Fig. 1).
Fifth, assuming that P ¼ 1 could still be deemed

‘‘small’’, the normalized incremental flux FN � 1 was (for
N ¼ 8) computed over the Q-range 2(1)24 and found, as
expected, (a) to jump about erratically for small values of Q

and (b) to settle slowly towards an asymptote in the
interval 0.5570.05, for which the Q ¼ 24 value of 0.579 � � �
was deemed an adequate approximation. Higher values of
Q were prone to encounter limitations in the Toolbox’s
code. For Q ¼ 24, P ¼ 1, and N ¼ 6; 7; 8 it was then
verified that an azimuthal degree of N ¼ 8 closely
approached a putatively asymptotic limit.
Sixth, for P ¼ 1, N ¼ 8, Q ¼ 24, the 0Aq were found and

R0ðrÞ plotted over [0,1]. As illustrated in Fig. 2, the
variation is smooth over the entire range and nearly linear
near r ¼ 1.
Seventh, FNðPÞ � 1 was then computed over P 2 (10�3,

10+1.8) and plotted as the points 3 3 3 3 3 in Fig. 3; the solid
line is a quadratic power law fitted to the point at
P ¼ 0:001.
Eighth, and finally, FN ðPÞ � 1 was studied for several

flow distributions at P ¼ 1: (a) the polynomial approxima-
tion of Fig. 1 for the velocity about the organelle yielded
0.5791; (b) the Stokes flow approximation of Eqs. (13)–(14)
yielded 0.9052; and (c) the Darcy flow approximation of
Eqs. (15)–(16) yielded 1.2577. Clearly, details of the flow

about the organelle do matter significantly. But, since no
exact method has ever been found for predicting low
Reynolds number flow within a heterogeneous time-
varying geometry, one can conclude from these numbers
only (a) that convection at Peclet numbers below unity can
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Fig. 1. Normalized fluid velocities in the neighborhood of sphere moving

relative to the cytosol. (a) fS (———) denotes the radial velocity the Stokes

flow case (13); fD (� � � � � � � � � � �) denotes the Darcy flow case (15); fC ( - - - - -

- - - - ) denotes the biologically more realistic exponential paradigm case

(20); and the discrete circles (JJJJJJJJJ) represent a technically

convenient 23rd degree polynomial which was used to represent fC for

computations. (b) gS (————) denotes azimuthal velocity in the Stokes

flow case (14); gD (� � � � � � � � � � �) denotes the Darcy flow case (16); gC ( - - - -

- - - - - ) denotes the biologically more realistic exponential paradigm case

(21); and the discrete circles (JJJJJJJJJ) represent a technically

convenient 23rd degree polynomial which was used to represent gC for

computations.

Fig. 2. The radial distribution function R0(r) for the parameter values

P ¼ 1, N ¼ 8 , and Q ¼ 24.

Fig. 3. Predicted variations of the normalized incremental flux

FN ðPÞ � 1. The points JJJJJ are from the Legendre expansion; the

solid line ————— was fit at the point P ¼ 0:001 and is the quadratic

power law 0.6033P2. The points +++++ are from the anisotropic

diffusion approximation and have been scaled as described in the text; the

dashed line — — — — — was fit at the point P ¼ 1000 and is the cube-

root power law 7.906P1/3.
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yield a non-trivial increase in the normalized incremental
flux and (b) that the velocity distribution used for the low
Peclet regime of Fig. 3 probably does not overestimate that
increase.

5. Large Peclet limit

The behavior for small Reynolds number and large
Peclet number has been extensively reviewed by Leal (1992)
who emphasized its treatment as a problem in singular
perturbation theory. There is considerable agreement on a
large Peclet number behavior of the form

FNðrÞ � 1 ¼ FP1=3, (42)

where F is a constant presumably well within the range
[10�1,10+1]. Nevertheless, it seems worthwhile to reexa-
mine the issue. In this paper, the functional form of Eq.
(42) will be obtained by a rather different approximation
technique, thereby giving additional credence to its
validity.
Physically, a large Peclet number means that, except in

layers very close to the surface of the sphere, a diffusing
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particle on a streamline has virtually zero probability of
diffusing to the surface in the normal direction and being
absorbed before it has been convected past the sphere.
Further, diffusion tangential to the surface should be
largely outweighed by tangential convection. Under such
circumstances, convective diffusion near the surface of the
sphere should behave somewhat like convective diffusion in
the parallel plane geometry, only with r! x, ay! z, and
Eq. (5) collapsing to Eq. (11). The importance of working
with Eq. (11) rather than the system (8) is that the former
can be solved exactly. The recipe suggested for normalizing
involves integration over a ‘‘suitable’’ z-interval of length
p; in an effort to compensate for stagnation at the
upstream pole present in the spherical problem and to
avoid complications arising from the singularity at (0,y,0)
in the planar problem, this interval will be taken as
(p=6; 7p=6) . The problem is then conceptually straightfor-
ward but algebraically messy and has been relegated to an
Appendix, where it is shown that one procedure for
constructing a normalized enhanced flux EPN comparable
to FNðPÞ � 1 yields

EPN ¼M

R 7p=6
p=6 FEðzÞdzR 7p=6
p=6 F DðzÞdz

¼ 5:667P
X1
n¼1

1

�Zn

AðZnÞ

B0ðZnÞ

� exp
p
6

Zn

P

� 	h i
1� exp p

Zn

P

� 	h i
, ð43Þ

where M ¼ 3:379 is a matching constant chosen to make
EPN and FN ðPÞ � 1 comparable at the point P ¼ 3:98,
thereby crudely matching both their zeroeth and first
derivatives; where the Zn are a sequence of negative
constants discussed in the Appendix; and where AðZnÞ

and B0ðZnÞ are higher transcendental functions also
discussed in the Appendix.

Direct computation of EPN using Eq. (43) shows that it:
(i) increases as P1/3 above P ¼ 10; (ii) falls off faster than
P
2 below P ¼ 1; and (iii) overlays FN ðPÞ � 1 over the

intervening decade. This is illustrated in Fig. 3. The P1/3

behavior for large Peclet number is in accord with the
asymptotic analysis (Leal, 1992); however, reflecting
perhaps the differences in matching strategies, the propor-
tionality constants are different.
11Nevertheless, simple computation of the small-P formula for FN

given by Acrivos and Taylor (1962) shows that it is convex-upward over its

range of validity, whereas the large-P given formula given by Acrivos and

Goddard (1965) is convex-downward over its range of validity. A similar

pair of formulas has been provided by Leal (1992). The smooth transition

expected from one asymptotic formula of a pair to the other is not

observed. Moreover, for neither pair of formulas, do the low-P and high-P

formulas of the pair intersect.
6. Discussion

A. Implications for theoretical heat and mass transport.
Recent overviews of convection–diffusion in the creeping
flow regime (Reynolds number negligible) have emphasized
(Leal, 1992; Polyanin and Vyaz’min, 1995; Michaelides,
2003), for Pt1, formulas of the Acrivos and Taylor form
(Acrivos and Taylor, 1962) which express the normalized
convection-enhanced flux as k1Pþ k2‘P

2 ln Pþ k2P
2 þ

k3‘P
3 ln Pþ OðP3Þ; where the several constants k depend

upon the precise definition of P, and tend (very approxi-
mately) to lie (in absolute value) between 0.1 and 1. This
does not accord with what Eq. (34) predicts because odd
powers of P and logarithms of P are absent in that
equation. One might, therefore, be motivated to reject the
low-Peclet theoretical analysis of Section 3 were it not for
the fact that the numerical analysis of Section 4 supports
the theoretical analysis of Section 3 while in no way
depending upon that analysis (beyond the using the same
widely accepted convection–diffusion equation). More-
over, the numerical analysis of Section 4 yields the same
qualitative behavior for three different velocity profiles and
many different values of Q (results not presented): at
sufficiently low Peclet numbers, the convection-associated
enhanced flux varies as P2, as the theoretical analysis of
Section 3 predicts, as the poorly documented computations
of Berg and Purcell (1977) predict, and as the qualitative
theoretical arguments of Batchelor (1979) and Brunn
(1981) predict.
Recent overviews of convection–diffusion in the large

Peclet number regime (Reynolds number negligible) have
emphasized (Leal, 1992; Polyanin and Vyaz’min, 1995;
Michaelides, 2003), for Pb1, formulas of the Acrivos and
Goddard form (1965) which express the normalized
convection-enhanced flux as P1=3½k1=3 þ OðP�1=3Þ�; where
k1/3 is a positive constant of order one. At P\10, this is in
qualitative accord with Eq. (43), although the coefficients
of P1/3 differ quantitatively.
An obvious question raised by these results is: ‘‘Eq. (34)

does not agree with the predictions of the Acrivos group.
So who went astray?’’ The author believes that this is not
the proper question to be asking, especially since the
problem treated here is not quite the same as that treated
by Acrivos and Taylor (1962) and since the assumptions
made within the two analyses most definitely are differ-
ent.11 A more productive question would be: ‘‘Agreement
with relevant experimental data being the gold standard by
which the predictions of mathematical theories should be
judged, which analysis is in better agreement with the
published data?’’ Unfortunately, the author can cite no
experimental data adequate for the comparison. First, most
data on mass (or heat) transfer in fluids are for Reynolds
numbers so high that the (often implicit) assumption of
laminar flow without vortex shedding is inappropriate;
however, what data there are typically suggest (Kramers,
1946; Richardson, 1953; Collis and Williams, 1958) that the
normalized flux increment is sublinear in the (large) Peclet
number and therefore qualitatively in accord with P1/3

behavior. Second, published experimental data sometimes
do not clearly separate the effects of Reynolds number and
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Peclet number. Third, there seems to be in the field a long-
standing tradition of taking data and then attempting to fit
them to an empirical equation rather than formulating a
theoretical hypothesis and designing an experiment to test
it (Garner and Grafton, 1954; Thomas, 1993). Fourth, it
seems easier (or at least more popular) to test theory using
heat transfer rather than mass transfer; but the thermal
properties of the fluids available for testing make it difficult
to attain Pt10 using liquids, while a shift to gases
exacerbates the confounding effects of both free convection
and radiation. Fifth, the need for more experimental data
at low Peclet number has been explicitly noted by
Batchelor (1979, p. 393) and by Kutateladze et al. (1982,
p. 454).

In sum, only a single experimental study by Purcell
(1978) even approaches being satisfactory across the
important transition region between diffusion-dominated
and convection-dominated flow; and this covers just the P-
region (�0.4,�25), makes use of a biaxial straining flow
rather than a uniaxial streaming flow, has been criticized by
Batchelor (1979, p. 392) for not having its outer boundaries
farther from the sphere, and nonetheless shows approx-
imate P2 behavior at the low end of its range.

Hence, though perhaps possible, a definitive experimen-
tal test of theoretical mass transfer predictions for the
biologically interesting region 0:1tPt10 seems a challen-
ging endeavor.

6.1. Implications for plant biology

The take home lesson for the plant cell biologist from the
very abstruse development of this paper should be that,
somewhere near P ¼ 1, the flux enhancement due to
convection will equal the basal flux rate due to passive
diffusion. As the Peclet number becomes smaller, this
enhancement will fall off quickly as P

2. As the Peclet
number becomes larger, it will rise slowly as P1/3. To put
this into perspective, consider an organelle 1 mm in radius
and a 10MD macromolecule whose diffusion constant in
water is 10–12m2 s�1 (Tanford, 1961); then P ¼ 1 at an
organelle velocity of 1 mms�1. That is, organellar motion

could significantly increase the probability of an organelle

receiving in timely fashion important macromolecular

messages.
The take home lesson for a phytoplankton ecologist is

quantitatively different. Consider a phytoplankter 100 mm
in radius sinking at 100 mms�1 (cf. Karp-Boss et al. 1996)
through water in which some suspended nutrient has a
diffusion constant 10–9m2 s�1 (Reuzeau et al., 1997). Then
P ¼ 10; and, by Fig. 3, the uptake across a moving
phytoplankter’s surface could (in theory) be some 20-fold
what it would be for a motionless phytoplankter. Surpris-
ingly, experimental data which bear upon this prediction
are hard to come by. It seems a nearly universal belief that
increasing P increases the potential for nutrient uptake, but
data suitable for testing the quantitative predictions of
mass flow theory are rare. Indeed, a decade ago Karp-Boss
et al. (1996, p. 85) felt constrained to assert that ‘‘We know
of remarkably few attempts to test these theories even in
the engineering context. Empirical data obtained from
electrochemical measurements are in good agreement [with
theory for large Peclet numbers]. We are not aware of
similar experiments for intermediate and low [Peclet]
numbers. Experiments with live organisms are even harder
to conduct.’’ And a citation search on the experimental
studies of Purcell (1978) and of Kutateladze et al. (1982)
has provided no reason to modify this judgement today.
6.2. Observations on the nature of mass transport due to

trafficking.

Trafficking obviously moves packets of stuff around;
and it has been emphasized elsewhere that towing those
packets through a viscous cytosol will necessarily cause
cytoplasmic streaming (Pickard, 2003). What the preceding
section of this Discussion revealed is that only when the
effective diffusion constant is exceptionally small will the
motion of the trafficked organelle itself produce a
significant increase in flux to (or from) the surface of an
organelle. But what effective diffusion constant is to be
expected in a heterogeneous cytoplasm for a molecule of
arbitrary size?
The mass of one gram-mole of a compound of molecular

weight M is

MaNA ¼ s3NAd, (44)

where a½¼ 1:660 � � � � 10�27 kg� is the unified atomic mass
unit, NA½¼ 6:022 � � � �1023 mol21

� is the Avogadro con-
stant, s3½m3� is the volume of a single molecule (idealized as
a cube), and d½kgm�3� is the density of the compound in
question; for a paradigm biological material of M�1000
and d�1000 kgm�3, this works out to s¼

:
1:2 nm. As Luby-

Phelps (Luby-Phelps, 2000) has emphasized, the effects
upon diffusion of macromolecular and cytoskeletal crowd-
ing should not be underestimated. Indeed, when easily 20%
of the cytoplasmic volume can be taken up by macro-
molecules (Ellis, 2001), the effective diffusion constant of a
molecule 1 nm wide could be strikingly less in cytoplasm
than in simple saline: a random walk through a ‘‘dense
forest’’ is a slow business.
Suppose next that the cytosol is so densely packed with

macromolecules that the effective diffusion constant of a
molecule of a few kilodaltons or above is Deff�Daq=10,
where Daq is the diffusion constant of the molecule in a
simple aqueous solution. Then the P�1 condition would be
achieved by a much wider variety of solutes; and the
convective enhancement of factor flux to (or from) an
organelle would become much more important.
Moreover, it is now suggested (Heidemann and Wirtz,

2004) that the cytoplasm should perhaps be thought of as
composed of contiguous ‘‘microdomains’’. In such a
scenario the role of trafficking and its associated convective
enhancement of diffusive flux would be larger still.



ARTICLE IN PRESS
W.F. Pickard / Journal of Theoretical Biology 240 (2006) 288–301 299
6.3. Conclusions

To summarize, the important findings of this paper are:
(i)
 Under the biophysical conditions expected within a
cell, Whitehead-type paradoxes will not occur: solu-
tions will be regular everywhere within the domain of
interest. Hence, in the abstract, it will be possible to
evaluate mass transfer to an organelle using perturba-
tion techniques; however, it is an open question
whether convenient closed form expressions can be
obtained for the coefficients of the Maclaurin
series (34).
(ii)
 Whether the matched asymptotic expansions obtained
by the Acrivos and co-workers (Acrivos and Goddard,
1965; Acrivos and Taylor, 1962) accord better with
biophysical reality than the predictions of Sections 4
and 5 is an open question. Obtaining relevant
experimental data is predicted to be challenging.
(iii)
 Both sets of predictions do however agree that,
starting somewhere in the vicinity of P � 1, a moving
organelle will have improved its mass transport (both
as a receiver and a transmitter) by more than 100%.
This could be important to organelles, especially with

respect to massive macromolecular messages diffusing

through a densely packed heterogeneous cytosol.
Appendix

Let the Laplace transform of cðx; zÞ with respect to z be
c̄ðx; sÞ. Eq. (11) becomes (Oberhettinger and Badii, 1973)
c̄jx¼0 ¼ 0, ½dc̄=dx�x¼1 ¼ 0, and

d2c̄

dx2
� Pxsc̄ ¼ �Px. (A.1)

With c̄ ¼ ~cþ 1=s and l ¼ ðPsÞ1=3x, (A.1) becomes

d2 ~c

dl2
� l~c ¼ 0. (A.2)

The solution of this differential equation is known in terms
of Airy functions (Abramowitz and Stegun, 1964):

~cðlÞ ¼ KaaðlÞ þ KbbðlÞ, (A.3)

aðlÞ ¼
X1
m¼0

Amð0Þ
l3m

ð3mÞ!
and

bðlÞ ¼
X1
m¼0

Amð1=3Þ
l3mþ1

ð3mþ 1Þ!
, ðA:4Þ

where Amð0Þ ¼ 1 and AmðeÞ ¼ ð3eþ 1Þð3eþ 4Þ � � � ð3eþ
3m� 2Þ. Thus,

c̄ ¼ KaaðdxÞ þ KbbðdxÞ þ 1=s, (A.5)
where d ¼ ðPsÞ1=3. From (A.5) and the boundary condi-
tions, it follows that

Ka ¼ �
1

s
and Kb ¼

1

s

a0ðdÞ
b0ðdÞ

. (A.6)

Eqs. (12) and (A.5) then imply

a

DC0
FE ¼ L�1

dc̄

dx

����
x¼0

( )
¼ L�1

d
s

a0ðdÞ
b0ðdÞ

� �
. (A.7)

This inverse is not tabulated in standard transform tables
(Oberhettinger and Badii, 1973), so the obvious path to
inversion is by contour integration (Churchill, 1972).
However, before proceeding, some comments are in order.
(i)
 By (A.4), da0(d) is positive non-decreasing on the
positive real s-axis and possesses a Taylor expansion in
s for sufficiently small s. Moreover, da0(d)/s is Oð1Þ as
s-0 and introduces neither a branch cut nor a pole at
the origin.
(ii)
 By (A.4), b0(d) is positive non-decreasing on the
positive real s-axis and possesses a Taylor expansion
in s for sufficiently small s. Moreover, b0(d) is Oð1Þ as
s-0 and introduces neither a branch cut nor a pole at
the origin.
(iii)
 Physically, one would not expect diffusive processes to
introduce oscillatory behavior. Hence, the contour to
evaluate (A.8) should have no complex poles within it.
(iv)
 Therefore, the contour integration should be influ-
enced only by poles on the negative real s-axis and be
expressible as a sum-over-residues (Churchill, 1972).
Therefore, with some algebraic manipulation, the applica-
tion of standard inversion techniques (Churchill, 1972) and
the substitution Ps ¼ Z, Eq. (A.7) becomes

a

DC0
FE ¼ L�1

d
s

a0ðdÞ
b0ðdÞ

� �
¼ P

1

2p

I
esz AðPsÞ

BðPsÞ
ds

¼
X1
n¼1

exp z
Zn

P

� 	 AðZnÞ

B0ðZnÞ
, ðA:8Þ

where the Zn are the negative real roots of BðZnÞ ¼ 0 and

AðZÞ ¼
X1
m¼1

Amð0Þ
1

ð3m� 1Þ!
Zm�1 and

BðZÞ ¼
X1
m¼0

Am

1

3

� �
1

ð3mÞ!
Zm, ðA:9Þ

where B0ðZÞ ¼ dfBðZÞgdZ. The negative real roots of BðZÞ
were found by tabulating this function at selected points
along the negative Z-axis, looking for changes of sign, and
performing a Newton–Raphson iteration to the exact root
whenever the presence of a zero was inferred. In this
fashion, 22 roots were found over (0,�10 200). Plots of the
data suggest that, for large n, the �Zn increase following a
power law of exponent slightly greater than 2. The
AðZnÞ=B0ðZnÞ are always positive but, with increasing n,
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decrease slowly towards a presumed asymptote slightly
below 0.4.

There is of course no foolproof way of matching the
behavior of Eq. (A.8), which relates to convection–diffu-
sion in a planar geometry, to the spherical geometry of
interest. However, since by Eq. (A.9) FE(P) tends smoothly
to zero as P-0, it is one measure of the convection-
associated enhancement of flux to the bottom plate; and
suitably normalized it should overlap FN ðPÞ � 1 in a
meaningful way. Therefore, using Eq. (A.9), the numerator
of the middle term of Eq. (43) becomesZ 7p=6

p=6
FEðzÞdz ¼

DC0

a
P
X1
n¼1

1

�Zn

AðZnÞ

B0ðZnÞ

� exp
p
6

Zn

P

� 	h i
1� exp p

Zn

P

� 	h i
: ðA:10Þ

Moreover, since Z22 ¼ �10 185, it is apparent that a
truncated sum over these 22 roots will suffice to evaluate
this integral for 0tPt1000.

Finding FDðzÞ requires first a solution of the purely
diffusive system

@2cðx; zÞ

@x2
þ
@2cðx; zÞ

@z2
¼ 0, (A.11)

with c ¼ 1 at z ¼ 0, c ¼ 0 at x ¼ 0, and @c=@x ¼ 0 at x ¼ 1.
Taking the Fourier sine transform of cðx; zÞ to be ĉðx;oÞ, it
then follows that (Sneddon, 1972)

d2ĉ

dx2
� o2ĉ ¼ �o

ffiffiffi
2

p

r
, (A.12)

with boundary conditions ĉ ¼ 0 at x ¼ 0, and dĉ=dx ¼ 0 at
x ¼ 1. From this it follows that

dĉ

dx
¼

ffiffiffi
2

p

r
sinhoð1� xÞ= cosh o, (A.13)

FDðzÞ ¼
DC0

a
csch 1

2
pz andZ 7p=6

p=6
F DðzÞdz ¼

DC0

a
0:596 � � � . ðA:14Þ
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