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1 Introduction
This paper surveys the application of ‘geometric algebra’ to the physics of electrons.
The mathematical ideas underlying geometric algebra were discovered jointly
by Clifford [1] and Grassmann [2] in the late 19th century. Their discoveries
were made during a period in which mathematicians were uncovering many new
algebraic structures (quaternions, matrices, groups, etc.) and the full potential
of Clifford and Grassmann’s work was lost as mathematicians concentrated on
its algebraic properties. This problem was exacerbated by Clifford’s early death
and Grassmann’s lack of recognition during his lifetime. This paper is part of
a concerted effort to repair the damage caused by this historical accident. We
firmly believe that geometric algebra is the simplest and most coherent language
available for mathematical physics, and deserves to be understood and used by the
physics and engineering communities. Geometric algebra provides a single, unified
approach to a vast range of mathematical physics, and formulating and solving
a problem in geometric algebra invariably leeds to new physical insights. In the
series of papers [3]–[6] geometric algebra techniques were applied to number of
areas of physics, including relativistic electrodynamics and Dirac theory. In this
paper we extend aspects of that work to encompass a wider range of topics relevant
to electron physics. We hope that the work presented here makes a convincing case
for the use of geometric algebra in electron physics.

The idea that Clifford algebra provides the framework for a unified language for
physics has been advocated most strongly by Hestenes, who is largely responsible
for shaping the modern form of the subject. His contribution should be evident
from the number and range of citations to his work that punctuate this paper.
One of Hestenes’ crucial insights is the role of geometric algebra in the design
of mathematical physics [7]. Modern physicists are expected to command an
understanding of a vast range of algebraic systems and techniques — a problem
that gets progressively worst if one is interested in the theoretical side of the
subject. A list of the some of the algebraic systems and techniques employed in
modern theoretical physics (and especially particle physics) is given in Table 1.
Hestenes’ point is that every one of the mathematical tools contained in Table 1
can be expressed within geometric algebra, but the converse is not true. One
would be hard-pressed to prove that two of the angles in an isosceles triangle are
equal using spinor techniques, for example, but the proof is simple in geometric
algebra because it encompasses vector geometry. The work of physicists would be
considerably simplified if, instead of being separately introduced to the techniques
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coordinate geometry spinor calculus
complex analysis Grassmann algebra
vector analysis Berezin calculus
tensor analysis differential forms
Lie algebras twistors
Clifford algebra algebraic topology

Table 1: Some algebraic systems employed in modern physics

listed in Table 1, they were first given a firm basis in geometric algebra. Then,
when a new technique is needed, physicists can simply slot this into their existing
knowledge of geometric algebra, rather than each new technique sitting on its own,
unincorporated into a wider framework. This way, physicists are relieved of the
burden of independently discovering the deeper organisational principle underlying
our mathematics. Geometric algebra fulfills this task for them.

In the course of this paper we will discuss a number of the algebraic systems
listed in Table 1, and demonstrate precisely how they fit into the geometric algebra
framework. However, the principle aim here is to discuss the application of geometric
algebra to electron physics. These applications are limited essentially to physics
in Minkowski spacetime, so we restrict our attention to the geometric algebra of
spacetime — the spacetime algebra [8]. Our aim is twofold: to show that spacetime
algebra simplifies the study of the Dirac theory, and to show that the Dirac theory,
once formulated in the spacetime algebra, is a powerful and flexible tool for the
analysis of all aspects of electron physics — not just relativistic theory. Accordingly,
this paper contains a mixture of formalism and applications. We begin with an
introduction to the spacetime algebra (henceforth the STA), concentrating on how
the algebra of the STA is used to encode geometric ideas such as lines, planes and
rotations. The introduction is designed to be self-contained for the purposes of this
paper, and its length has been kept to a minimum. A list of references and further
reading is given at the end of the introduction.

In Sections 3 and 4 Pauli and Dirac column spinors, and the operators that act
on them, are formulated and manipulated in the STA. Once the STA formulation
is achieved, matrices are eliminated from Dirac theory, and the Dirac equation can
be studied and solved entirely within the real STA. A significant result of this work
is that the unit imaginary of quantum mechanics is eliminated and replaced by
a directed plane segment — a bivector. That it is possible to do this has many
implications for the interpretation of quantum mechanics [9].
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In Sections 5, 6 and 7 we turn to issues related to the propagation, scattering
and tunnelling of Dirac waves. Once the STA form is available, studying the
properties of electrons via the Dirac theory is no more complicated than using
the non-relativistic Pauli theory. Indeed, the first-order form of the Dirac theory
makes some of the calculations easier than their non-relativistic counterparts. After
establishing various results for the behaviour of Dirac waves at potential steps, we
study the tunnelling of a wavepacket through a potential step. Indirect timing
measurements for quantum-mechanical tunnelling are now available from photon
experiments, so it is important to have a solid theoretical understanding of the
process. We argue that standard quantum theory has so far failed to provide
such an understanding, as it misses two crucial features underlying the tunnelling
process.

In Section 8 we give a relativistic treatment of a measurement made with
a Stern-Gerlach apparatus on a fermion with zero charge and an anomalous
magnetic moment. As with tunnelling, it is shown that a disjoint set of outcomes is
consistent with the causal evolution of a wavepacket implied by the Dirac equation.
Wavepacket collapse is therefore not required to explain the results of experiment, as
the uncertainty in the final result derives from the uncertainty present in the initial
wavepacket. It is also argued that the standard quantum theory interpretation of
the measurement performed by a Stern-Gerlach apparatus is unsatisfactory. In
the STA, the anticommutation of the Pauli operators merely expresses the fact
that they represent orthonormal vectors, so cannot have any dynamical content.
Accordingly, it should be possible to have simultaneous knowledge of all three
components of the spin vector, and we argue that a Stern-Gerlach apparatus is
precisely what is needed to achieve this knowledge!

Multiparticle quantum theory is considered in Section 9. We introduce a new de-
vice for analysing multiparticle states — the multiparticle STA. This is constructed
from a copy of the STA for each particle of interest. The resulting algebraic struc-
ture is enormously rich in its properties, and offers the possibility of a geometric
understanding of relativistic multiparticle quantum physics. Some applications of
the multiparticle STA are given here, including a relativistic treatment of the Pauli
exclusion principle. The paper ends with a brief survey of some other applications
of the STA to electron physics, followed by a summary of the main conclusions
drawn from this paper.

Summation convention and natural units (h̄ = c = ε0 = 1) are employed
throughout, except where explicitly stated.
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2 Spacetime Algebra
‘Spacetime algebra’ is the name given to the geometric (Clifford) algebra generated
by Minkowski spacetime. In geometric algebra, vectors are equipped with a
product that is associative and distributive over addition. This product has the
distinguishing feature that the square of any vector in the algebra is a scalar. A
simple re-arrangement of the expansion

(a+ b)2 = (a+ b)(a+ b) = a2 + (ab+ ba) + b2 (2.1)

yields
ab+ ba = (a+ b)2 − a2 − b2, (2.2)

from which it follows that the symmetrised product of any two vectors is also a
scalar. We call this the inner product a·b, where

a·b ≡ 1
2(ab+ ba). (2.3)

The remaining, antisymmetric part of the geometric product is called the outer
product a∧b, where

a∧b ≡ 1
2(ab− ba). (2.4)

The result of the outer product of two vectors is a bivector — a grade-2 object
representing a segment of the plane swept out by the vectors a and b.

On combining equations (2.3) and (2.4) we see that the full geometric product
of two vectors decomposes as

ab = a·b+ a∧b. (2.5)

The essential feature of this product is that it mixes two different types of object:
scalars and bivectors. One might now ask how the right-hand side of (2.5) is to be
interpreted. The answer is that the addition implied by (2.5) is that used when,
for example, a real number is added to an imaginary number to form a complex
number. We are all happy with the rules for manipulating complex numbers, and
the rules for manipulating mixed-grade combinations are much the same [3]. But
why should one be interested in the sum of a scalar and a bivector? The reason
is again the same as for complex numbers: algebraic manipulations are simplified
considerably by working with general mixed-grade elements (multivectors) instead
of working independently with pure-grade elements (scalars, vectors etc.).
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An example of how the geometric product of two vectors (2.5) is employed
directly is in the description of rotations using geometric algebra. Suppose initially
that the vector a is reflected in the hyperplane perpendicular to the unit vector n
(n2 = 1). The result of this reflection is the vector

a− 2a·nn = a− (an+ na)n = −nan. (2.6)

The form on the right-hand side is unique to geometric algebra, and is already
an improvement on the usual formula on the left-hand side. If one now applies a
second reflection in the hyperplane perpendicular to a second unit vector m the
result is the vector

−m(−nan)m = mna(mn)̃ . (2.7)

The tilde on the right-hand side denotes the operation of reversion, which simply
reverses the order of the vectors in any geometric product,

(ab . . . c)̃ ≡ c . . . ba. (2.8)

The combination of two reflections is a rotation in the plane specified by the two
reflection axes. We therefore see that a rotation is performed by

a 7→ RaR̃ (2.9)

where
R = mn. (2.10)

The object R is called a rotor. It has the fundamental property that

RR̃ = mnnm = 1. (2.11)

Equation (2.9) provides a remarkably compact and efficient formulation for encoding
rotations. The formula for R (2.10) shows that a rotor is formed from the geometric
product of two unit vectors, so does indeed consist of the sum of a scalar and
a bivector. A rotor can furthermore be written as the exponential of a bivector,
R = ± exp(B/2), where the bivector encodes the plane in which the rotation is
performed. This naturally generalises the complex representation of rotations
frequently used in two dimensions. Rotors illustrate how mixed-grade objects are
frequently employed as operators which act on other quantities in the algebra. The
fact that both geometric objects and the operators that act on them are handled
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in a single unified framework is a central feature of geometric algebra.
The above discussion applies to vector spaces of any dimension. We now turn to

the case of specific interest, that of Minkowski spacetime. To make the discussion
more concrete, we introduce a set of four basis vectors {γµ}, µ = 0 . . . 3, satisfying

γµ ·γν = ηµν = diag(+ − − −). (2.12)

The vectors {γµ} satisfy the same algebraic relations as Dirac’s γ-matrices, but
they now form a set of four independent basis vectors for spacetime, not four
components of a single vector in an internal ‘spin space’. When manipulating
(geometric) products of these vectors, one simply uses the rule that parallel vectors
commute and orthogonal vectors anticommute. This result is clear immediately
from equation (2.5). From the four vectors {γµ} we can construct a set of six basis
elements for the space of bivectors:

{γ1γ0, γ2γ0, γ3γ0, γ3γ2, γ1γ3, γ2γ1}. (2.13)

After the bivectors comes the space of grade-3 objects or trivectors. This space is
four-dimensional and is spanned by the basis

{γ3γ2γ1, γ0γ3γ2, γ0γ1γ3, γ0γ2γ1}. (2.14)

Finally, there is a single grade-4 element. This is called the pseudoscalar and is
given the symbol i, so that

i ≡ γ0γ1γ2γ3. (2.15)

The symbol i is used because the square of i is −1, but the pseudoscalar must not
be confused with the unit scalar imaginary employed in quantum mechanics. The
pseudoscalar i is a geometrically-significant entity and is responsible for the duality
operation in the algebra. Furthermore, i anticommutes with odd-grade elements
(vectors and trivectors), and commutes only with even-grade elements.

The full STA is spanned by the basis

1, {γµ}, {σk, iσk}, {iγµ}, i, (2.16)

where
σk ≡ γkγ0, k = 1, 2, 3. (2.17)

An arbitrary element of this algebra is called a multivector and, if desired, can
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be expanded in terms of the basis (2.16). Multivectors in which all elements have
the same grade are usually written as Ar to show that A contains only grade-
r components. Multivectors inherit an associative product from the geometric
product of vectors, and the geometric product of a grade-r multivector Ar with a
grade-s multivector Bs decomposes into

ArBs = 〈AB〉r+s + 〈AB〉r+s−2 . . .+ 〈AB〉|r−s|. (2.18)

The symbol 〈M〉r denotes the projection onto the grade-r component of M . The
projection onto the grade-0 (scalar) component of M is written as 〈M〉. The scalar
part of a product of multivectors satisfies the cyclic reordering property

〈A . . . BC〉 = 〈CA . . . B〉. (2.19)

The ‘·’ and ‘∧’ symbols are retained for the lowest-grade and highest-grade terms
of the series (2.18), so that

Ar ·Bs ≡ 〈AB〉|r−s| (2.20)
Ar∧Bs ≡ 〈AB〉s+r, (2.21)

which are called the inner and outer (or exterior) products respectively. We also
make use of the scalar product, defined by

A∗B ≡ 〈AB〉, (2.22)

and the commutator product, defined by

A×B ≡ 1
2(AB −BA). (2.23)

The associativity of the geometric product ensures that the commutator product
satisfies the Jacobi identity

A×(B×C) +B×(C×A) + C×(A×B) = 0. (2.24)

When manipulating chains of products we employ the operator ordering convention
that, in the absence of brackets, inner, outer and scalar products take precedence
over geometric products.

As an illustration of the working of these definitions, consider the inner product



10

of a vector a with a bivector b ∧ c:

a·(b∧c) = 〈ab∧c〉1
= 1

2〈abc− acb〉1
= a·bc− a·cb− 1

2〈bac− cab〉1. (2.25)

The quantity bac − cab reverses to give minus itself, so cannot contain a vector
part. We therefore obtain the result

a·(b∧c) = a·bc− a·cb, (2.26)

which is useful in many applications.

2.1 The Spacetime Split
The three bivectors {σk}, where σk ≡ γkγ0 (2.17) satisfy

1
2(σjσk + σkσj) = −1

2(γjγk + γkγj) = δjk (2.27)

and therefore generate the geometric algebra of three-dimensional Euclidean space [3,
10]. This is identified as the algebra for the rest-space relative to the timelike vector
γ0. The full algebra for this space is spanned by the set

1, {σk}, {iσk}, i, (2.28)

which is identifiable as the even subalgebra of the full STA (2.16). The identification
of the algebra of relative space with the even subalgebra of the STA simplifies
the transition from relativistic quantities to observables in a given frame. It is
apparent from (2.27) that the algebra of the {σk} is isomorphic to the algebra of
the Pauli matrices. As with the {γµ}, the {σk} are to be interpreted geometrically
as spatial vectors (spacetime bivectors) and not as operators in an abstract spin
space. It should be noted that the pseudoscalar employed in (2.28) is the same as
that employed in spacetime, since

σ1σ2σ3 = γ1γ0γ2γ0γ3γ0 = γ0γ1γ2γ3 = i. (2.29)

The split of the six spacetime bivectors into relative vectors {σk} and relative
bivectors {iσk} is a frame-dependent operation — different observers determine
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different relative spaces. This fact is clearly illustrated using the Faraday bivector
F . The ‘spacetime split’ [8, 11] of F into the γ0-system is made by separating F
into parts which anticommute and commute with γ0. Thus

F = E + iB (2.30)

where

E = 1
2(F − γ0Fγ0) (2.31)

iB = 1
2(F + γ0Fγ0). (2.32)

Both E and B are spatial vectors in the γ0-frame, and iB is a spatial bivector.
Equation (2.30) decomposes F into separate electric and magnetic fields, and the
explicit appearance of γ0 in the formulae for E and B shows how this split is
observer-dependent. Where required, relative (or spatial) vectors in the γ0-system
are written in bold type to record the fact that in the STA they are actually
bivectors. This distinguishes them from spacetime vectors, which are left in normal
type. No problems arise for the {σk}, which are unambiguously spacetime bivectors,
and so are left in normal type.

When dealing with spatial problems it is useful to define an operation which
distinguishes between spatial vectors (such as E) and spatial bivectors (such as
iB). (Since both the {σk} and {iσk} are spacetime bivectors, they behave the
same under Lorentz-covariant operations.) The required operation is that of spatial
reversion which, as it coincides with Hermitian conjugation for matrices, we denote
with a dagger. We therefore define

M † ≡ γ0M̃γ0, (2.33)

so that, for example,
F † = E − iB. (2.34)

The explicit appearance of γ0 in the definition (2.33) shows that spatial reversion
is not a Lorentz-covariant operation.

When working with purely spatial quantities, we often require that the dot and
wedge operations drop down to their three-dimensional definitions. For example,
given two spatial vectors a and b, we would like a∧b to denote the spatial bivector
swept out by a and b. Accordingly we adopt the convention that, in expressions
where both vectors are in bold type, the dot and wedge operations take their three-
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dimensional meaning. Whilst this convention may look clumsy, it is simple to use
in practice and rarely causes any confusion.

Spacetime vectors can also be decomposed by a spacetime split, this time
resulting in a scalar and a relative vector. The spacetime split of the vector a is
achieved via

aγ0 = a·γ0 + a∧γ0 ≡ a0 + a, (2.35)

so that a0 is a scalar (the γ0-time component of a) and a is the relative spatial
vector. For example, the 4-momentum p splits into

pγ0 = E + p (2.36)

where E is the energy in the γ0 frame, and p is the 3-momentum. The definition
of the relative vector (2.35) ensures that

a·b = 〈aγ0γ0b〉
= 〈(a0 + a)(b0 − b)〉
= a0b0 − a·b, (2.37)

as required for the inner product in Minkowski spacetime.

2.2 Spacetime Calculus
The fundamental differential operator on spacetime is the derivative with respect
to the position vector x. This is known as the vector derivative and is given the
symbol ∇. The vector derivative is defined in terms of its directional derivatives,
with the derivative in the a direction of a general multivector M defined by

a·∇M(x) ≡ lim
ε→0

M(x+ εa)−M(x)
ε

. (2.38)

If we now introduce a set of four arbitrary basis vectors {ej}, with reciprocal vectors
{ek} defined by the equation ej ·ek = δkj , then the vector derivative assembles from
the separate directional derivatives as

∇ ≡ ejej ·∇. (2.39)

This definition shows how ∇ acts algebraically as a vector, as well as inheriting a
calculus from its directional derivatives.
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As an explicit example, consider the {γµ} frame introduced above. In terms of
this frame we can write the position vector x as xµγµ, with x0 = t, x1 = x etc. and
{x, y, z} a usual set of Cartesian components for the rest-frame of the γ0 vector.
From the definition (2.38) it is clear that

γµ ·∇ = ∂

∂xµ
(2.40)

which we abbreviate to ∂µ. From the definition (2.39) we can now write

∇ = γµ∂µ = γ0∂t + γ1∂x + γ2∂y + γ3∂z (2.41)

which, in the standard matrix language of Dirac theory, is the operator that acts
on Dirac spinors. It is not surprising, therefore, that the ∇ operator should play a
fundamental role in the STA formulation of the Dirac theory. What is less obvious is
that the same operator should also play a fundamental role in the STA formulation
of the Maxwell equations [8]. In tensor notation, the Maxwell equations take the
form

∂µF
µν = Jν , ∂[αFµν] = 0, (2.42)

where [. . .] denotes total antisymmetrisation of the indices inside the bracket. On
defining the bivector

F ≡ 1
2F

µνγµ∧γν (2.43)

and the vector J ≡ Jµγµ the equations (2.42) become

∇·F = J (2.44)

and
∇∧F = 0. (2.45)

But we can now utilise the geometric product to combine these separate equations
into the single equation

∇F = J (2.46)

which contains all of the Maxwell equations. We see from (2.46) that the vector
derivative plays a central role in Maxwell theory, as well as Dirac theory. The
observation that the vector derivative is the sole differential operator required to
formulate both Maxwell and Dirac theories is a fundamental insight afforded by the
STA. Some consequences of this observation for propagator theory are discussed
in [6].
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The vector derivative acts on the object to its immediate right unless brackets
are present, when it acts on everything in the brackets. Since the vector derivative
does not commute with multivectors, it is useful to have a notation for when the
derivative acts on a multivector to which it is not adjacent. We use overdots for
this, so that in the expression ∇̇AḂ the ∇ operator acts only on B. In terms of a
frame of vectors we can write

∇̇AḂ = ejAej ·∇B. (2.47)

The overdot notation provides a useful means for expressing Leibniz’ rule via

∇(AB) = ∇̇ȦB + ∇̇AḂ. (2.48)

The spacetime split of the vector derivative requires some care. We wish to retain
the symbol ∇ for the spatial vector derivative, so that

∇ = σk∂k, k = 1 . . . 3. (2.49)

This definition of ∇ is inconsistent with the definition (2.35), so for the vector
derivative we have to remember that

∇γ0 = ∂t −∇. (2.50)

We conclude this introduction with some useful results concerning the vector
derivative. We let the dimension of the space of interest be n, so that the results
are applicable to both space and spacetime. The most basic results are that

∇x = n (2.51)

and that
∇∧∇ψ = 0 (2.52)

where ψ is an arbitrary multivector field. The latter result follows from the fact
that partial derivatives commute. For a grade-r multivector Ar the following results
are also useful:

∇̇ẋ·Ar = rAr (2.53)
∇̇ẋ∧Ar = (n− r)Ar (2.54)
∇̇Arẋ = (−1)r(n− 2r)Ar. (2.55)
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More complicated results can be built up with the aid of Leibniz’ rule, for example

∇x2 = ∇̇ẋ·x+ ∇̇x·ẋ = 2x. (2.56)

This concludes our introduction to the spacetime algebra. Further details
can be found in ‘Space-Time Algebra’ by Hestenes [8] and ‘Clifford Algebra to
Geometric Calculus’ by Hestenes and Sobczyk [12]. The latter is a technical
exposition of geometric algebra in general and does not deal directly with spacetime
physics. A number of papers contain useful introductory material including those
by Hestenes [13, 11, 7] and the series of papers [3, 4, 5, 6] written by three of
the present authors. Baylis et al. [14] and Vold [15, 16] have also written good
introductory pieces, and the books ‘New Foundations for Classical Mechanics’
by Hestenes [10] and ‘Multivectors and Clifford Algebras in Electrodynamics’ by
Jancewicz [17] provide useful background material. Further work can be found in
the three conference proceedings [18, 19, 20], though only a handful of papers are
directly relevant to the work reviewed in this paper. Of greater interest are the
proceedings of the conference entitled ‘The Electron’ [21], which contains a number
of papers dealing with the application of the STA to electron physics.

3 Spinors and the Dirac Equation
In this section we review how both the quantum states and matrix operators of the
Pauli and Dirac theories can be formulated within the real STA. This approach
to electron theory was initiated by Hestenes [22, 23] and has grown steadily in
popularity ever since. We start with a review of the single-electron Pauli theory and
then proceed to the Dirac theory. Multiparticle states are considered in Section 9.

Before proceeding, it is necessary to explain what we mean by a spinor. The
literature is replete with discussions about different types of spinors and their inter-
relationships and transformation laws. This literature is highly mathematical, and
is of very little relevance to electron physics. For our purposes, we define a spinor
to be an element of a linear space which is closed under left-sided multiplication by
a rotor. Thus spinors are acted on by rotor representations of the rotation group.
With this in mind, we can proceed directly to study the spinors of relevance to
physics. Further work relating to the material in this section is contained in [4].
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3.1 Pauli Spinors
We saw in Section 2.1 that the algebra of the Pauli matrices is precisely that of a
set of three orthonormal vectors in space under the geometric product. So the Pauli
matrices are simply a matrix representation of the geometric algebra of space. This
observation opens up the possibility of eliminating matrices from the Pauli theory
in favour of geometrically-significant quantities. But what of the operator action of
the Pauli matrices on spinors? This too needs to be represented with the geometric
algebra of space. To achieve this aim, we recall the standard representation for the
Pauli matrices

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −j
j 0

)
, σ̂3 =

(
1 0
0 −1

)
. (3.1)

The overhats distinguish these matrix operators from the {σk} vectors whose
algebra they represent. The symbol i is reserved for the pseudoscalar, so the symbol
j is used for the scalar unit imaginary employed in quantum theory. The {σ̂k}
operators act on 2-component complex spinors

|ψ〉 =
(
ψ1

ψ2

)
, (3.2)

where ψ1 and ψ2 are complex numbers. Quantum states are written with bras
and kets to distinguish them from STA multivectors. The set of |ψ〉’s form a
two-dimensional complex vector space. To represent these states as multivectors
in the STA we therefore need to find a four-dimensional (real) space on which
the action of the {σ̂k} operators can be replaced by operations involving the {σk}
vectors. There are many ways to achieve this goal, but the simplest is to represent a
spinor |ψ〉 by an element of the even subalgebra of (2.28). This space is spanned by
the set {1, iσk} and the column spinor |ψ〉 is placed in one-to-one correspondence
with the (Pauli)-even multivector ψ = γ0ψγ0 through the identification [4, 24]

|ψ〉 =
(

a0 + ja3

−a2 + ja1

)
↔ ψ = a0 + akiσk. (3.3)

In particular, the spin-up and spin-down basis states become(
1
0

)
↔ 1 (3.4)
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and (
0
1

)
↔ −iσ2. (3.5)

The action of the quantum operators {σ̂k} and j is now replaced by the operations

σ̂k|ψ〉 ↔ σkψσ3 (k = 1, 2, 3) (3.6)
and j|ψ〉 ↔ ψiσ3. (3.7)

Verifying these relations is a matter of routine computation; for example

σ̂1|ψ〉 =
(
−a2 + ja1

a0 + ja3

)
↔ −a2 + a1iσ3 − a0iσ2 + a3iσ1 = σ1ψσ3. (3.8)

We have now achieved our aim. Every expression involving Pauli operators and
spinors has an equivalent form in the STA and all manipulations can be carried out
using the properties of the {σk} vectors alone, with no need to introduce an explicit
matrix representation. This is far more than just a theoretical nicety. Not only is
there considerable advantage in being able to perform the computations required
in the Pauli theory without multiplying matrices together, but abstract matrix
algebraic manipulations are replaced by relations of clear geometric significance.

Pauli Observables

We now turn to a discussion of the observables associated with Pauli spinors.
These show how the STA formulation requires a shift in our understanding of what
constitutes scalar and vector observables at the quantum level. We first need to
construct the STA form of the spinor inner product 〈ψ|φ〉. It is sufficient just to
consider the real part of the inner product, which is given by

<〈ψ|φ〉 ↔ 〈ψ†φ〉, (3.9)

so that, for example,

〈ψ|ψ〉 ↔ 〈ψ†ψ〉 = 〈(a0 − iajσj)(a0 + iakσk)〉
= (a0)2 + akak. (3.10)

(Note that no spatial integral is implied in our use of the bra-ket notation.) Since

〈ψ|φ〉 = <〈ψ|φ〉 − j<〈ψ|jφ〉, (3.11)
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the full inner product becomes

〈ψ|φ〉 ↔ (ψ, φ)S ≡ 〈ψ†φ〉 − 〈ψ†φiσ3〉iσ3. (3.12)

The right hand side projects out the {1, iσ3} components from the geometric
product ψ†φ. The result of this projection on a multivector A is written 〈A〉S. For
Pauli-even multivectors this projection has the simple form

〈A〉S = 1
2(A− iσ3Aiσ3). (3.13)

As an application of (3.12), consider the expectation value of the spin in the
k-direction,

〈ψ|σ̂k|ψ〉 ↔ 〈ψ†σkψσ3〉 − 〈ψ†σkψi〉iσ3. (3.14)

Since ψ†iσkψ reverses to give minus itself, it has zero scalar part. The right-hand
side of (3.14) therefore reduces to

〈σkψσ3ψ
†〉 = σk ·〈ψσ3ψ

†〉v, (3.15)

where 〈. . .〉v denotes the relative vector component of the term in brackets. (This
notation is required because 〈. . .〉1 would denote the spacetime vector part of the
term in brackets.) The expression (3.15) has a rather different interpretation in the
STA to standard quantum mechanics — it is the σk-component of the vector part
of ψσ3ψ

†. As ψσ3ψ
† is both Pauli-odd and Hermitian-symmetric it can contain

only a relative vector part, so we define the spin-vector s by

s ≡ ψσ3ψ
†. (3.16)

(In fact, both spin and angular momentum are better viewed as spatial bivector
quantities, so it is usually more convenient to work with is instead of s.) The STA
approach thus enables us to work with a single vector s, whereas the operator/matrix
theory treats only its individual components. We can apply a similar analysis to
the momentum operator. The momentum density in the k-direction is given by

〈ψ| − j∂k|ψ〉 ↔ −〈ψ†σk ·∇ψiσ3〉 − 〈ψ†σk ·∇ψ〉iσ3, (3.17)

in which the final term is a total divergence and so is ignored. Recombining with
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the {σk} vectors, we find that the momentum vector field is given by

p = −∇̇〈ψ̇iσ3ψ
†〉. (3.18)

It might appear that we have just played a harmless game by redefining various
observables, but in fact something remarkable has happened. The spin-vector
s and the momentum p are both legitimate (i.e. gauge-invariant) quantities
constructed from the spinor ψ. But standard quantum theory dictates that we
cannot simultaneously measure all three components of s, whereas we can for p.
The ‘proof’ of this result is based on the non-commutativity of the {σ̂k} operators.
But, in the STA formulation, this lack of commutativity merely expresses the
fact that the {σk} vectors are orthogonal — a fact of geometry, not of dynamics!
Furthermore, given a spinor ψ there is certainly no difficulty in finding the vector
s. So how then are we to interpret a spin measurement, as performed by a
Stern-Gerlach apparatus for example? This problem will be treated in detail in
Section 8, but the conclusions are straightforward. A Stern-Gerlach apparatus is
not a measuring device — it should really be viewed as a spin polariser. When a
spinor wavepacket with arbitrary initial vector s enters a Stern-Gerlach apparatus,
the wavepacket splits in two and the vector s rotates to align itself either parallel or
anti-parallel to the B field. The two different alignments then separate into the two
packets. Hence, in the final beams, the vector s has been polarised to point in a
single direction. So, having passed through the apparatus, all three components of
the spin-vector s are known - not just the component in the direction of the B field.
This is a major conceptual shift, yet it is completely consistent with the standard
predictions of quantum theory. Similar views have been expressed in the past by
advocates of Bohm’s ‘causal’ interpretation of quantum theory [25, 26, 27]. However,
the shift in interpretation described here is due solely to the new understanding of
the role of the Pauli matrices which the STA affords. It does not require any of
the additional ideas associated with Bohm’s interpretation, such as quantum forces
and quantum torques.

Spinors and Rotations

Further insights into the role of spinors in the Pauli theory are obtained by defining
a scalar

ρ ≡ ψψ†, (3.19)
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so that the spinor ψ can be decomposed into

ψ = ρ1/2R. (3.20)

Here R is defined as
R = ρ−1/2ψ (3.21)

and satisfies
RR† = 1. (3.22)

In Section 2 we saw that rotors, which act double-sidedly to generate rotations,
satisfy equation (3.22). It is not hard to show that, in three dimensions, all even
quantities satisfying (3.22) are rotors. It follows from (3.20) that the spin-vector s
can now be written as

s = ρRσ3R
†, (3.23)

which demonstrates that the double-sided construction of the expectation value
(3.15) contains an instruction to rotate the fixed σ3 axis into the spin direction
and dilate it. The decomposition of the spinor ψ into a density term ρ and a
rotor R suggests that a deeper substructure underlies the Pauli theory. This is
a subject which has been frequently discussed by Hestenes [23, 28, 29, 9]. As an
example of the insights afforded by this decomposition, one can now ‘explain’ why
spinors transform single-sidedly under rotations. If the vector s is to be rotated to
a new vector R0sR

†
0 then, according to the rotor group combination law, R must

transform to R0R. This induces the spinor transformation law

ψ 7→ R0ψ (3.24)

which is the STA equivalent of the quantum transformation law

|ψ〉 7→ exp{j2θnkσ̂k}|ψ〉 (3.25)

where {nk} are the components of a unit vector.
We can also now see why the presence of the σ3 vector on the right-hand side of

the spinor ψ does not break rotational invariance. All rotations are performed by
left-multiplication by a rotor, so the spinor ψ effectively shields the σ3 on the right
from the transformation. There is a strong analogy with rigid-body mechanics in
this observation, which has been discussed by Hestenes [9, 30]. Similar ideas have
also been pursued by Dewdney, Holland and Kyprianidis [31, 32]. We shall see in
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Pauli
Matrices

σ̂1 =
(

0 1
1 0

)
σ̂2 =

(
0 −j
j 0

)
σ̂3 =

(
1 0
0 −1

)

Spinor
Equivalence |ψ〉 =

(
a0 + ja3

−a2 + ja1

)
↔ ψ = a0 + akiσk

Operator
Equivalences

σ̂k|ψ〉 ↔ σkψσ3

j|ψ〉 ↔ ψiσ3

〈ψ|ψ′〉 ↔ 〈ψ†ψ′〉S

Observables
ρ = ψψ†

s = ψσ3ψ
†

Table 2: Summary of the main results for the STA representation of Pauli spinors

the next section that this analogy extends to the Dirac theory. The main results of
this section are summarised in Table 2.

3.2 Dirac Spinors
The procedures developed for Pauli spinors extend simply to Dirac spinors. Again,
we seek to represent complex column spinors, and the matrix operators acting on
them, by multivectors and functions in the STA. Dirac spinors are four-component
complex entities, so must be represented by objects containing 8 real degrees of
freedom. The representation that turns out to be most convenient for applications
is via the 8-dimensional even subalgebra of the STA [23, 33]. If one recalls from
Section 2.1 that the even subalgebra of the STA is isomorphic to the Pauli algebra,
we see that what is required is a map between column spinors and elements of
the Pauli algebra. To construct such a map we begin with the γ-matrices in the
standard Dirac-Pauli representation [34],

γ̂0 =
(
I 0
0 −I

)
, γ̂k =

(
0 −σ̂k
σ̂k 0

)
and γ̂5 =

(
0 I

I 0

)
, (3.26)
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where γ̂5 = γ̂5 ≡ −jγ̂0γ̂1γ̂2γ̂3 and I is the 2× 2 identity matrix. A Dirac column
spinor |ψ〉 is placed in one-to-one correspondence with an 8-component even element
of the STA via [24, 35]

|ψ〉 =


a0 + ja3

−a2 + ja1

b0 + jb3

−b2 + jb1

 ↔ ψ = a0 + akiσk + (b0 + bkiσk)σ3. (3.27)

With the spinor |ψ〉 now replaced by an even multivector, the action of the operators
{γ̂µ, γ̂5, j} becomes

γ̂µ|ψ〉 ↔ γµψγ0 (µ = 0, . . . , 3)
j|ψ〉 ↔ ψ iσ3

γ̂5|ψ〉 ↔ ψσ3.

(3.28)

To verify these relations, we note that the map (3.27) can be written more concisely
as

|ψ〉 =
(
|φ〉
|η〉

)
↔ ψ = φ+ ησ3, (3.29)

where |φ〉 and |η〉 are two-component spinors, and φ and η are their Pauli-even
equivalents, as defined by the map (3.3). We can now see, for example, that

γ̂k|ψ〉 =
(
−σ̂k|η〉
σ̂k|φ〉

)
↔ −σkησ3 + σkφ = γk(φ+ ησ3)γ0, (3.30)

as required. The map (3.29) shows that the split between the ‘large’ and ‘small’
components of the column spinor |ψ〉 is equivalent to splitting ψ into Pauli-even
and Pauli-odd terms in the STA.

Alternative Representations

All algebraic manipulations can be performed in the STA without ever introduc-
ing a matrix representation, so equations (3.27) and (3.28) achieve a map to a
representation-free language. However, the explicit map (3.27) between the compo-
nents of a Dirac spinor and the multivector ψ is only relevant to the Dirac-Pauli
matrix representation. A different matrix representation requires a different map
so that that the effect of the matrix operators is still given by (3.28). The relevant
map is easy to construct given the unitary matrix Ŝ which transforms between the
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matrix representations via
γ̂′µ = Ŝγ̂µŜ

−1. (3.31)

The corresponding spinor transformation is |ψ〉 7→ Ŝ|ψ〉, and the map is constructed
by transforming the column spinor |ψ〉′ in the new representation back to a Dirac-
Pauli spinor Ŝ†|ψ〉′. The spinor Ŝ†|ψ〉′ is then mapped into the STA in the usual
way (3.27). As an example, consider the Weyl representation defined by the
matrices [36]

γ̂′0 =
(

0 −I
−I 0

)
and γ̂′k =

(
0 −σ̂k
σ̂k 0

)
. (3.32)

The Weyl representation is obtained from the Dirac-Pauli representation by the
unitary matrix

Û = 1√
2

(
I I

−I I

)
. (3.33)

A spinor in the Weyl representation is written as

|ψ〉′ =
(
|χ〉
|η̄〉

)
, (3.34)

where |χ〉 and |η̄〉 are 2-component spinors. Acting on |ψ〉′ with Û † gives

Û †|ψ〉′ = 1√
2

(
|χ〉 − |η̄〉
|χ〉+ |η̄〉

)
. (3.35)

Using equation (3.27), this spinor is mapped onto the even element

Û †|ψ〉′ = 1√
2

(
|χ〉 − |η̄〉
|χ〉+ |η̄〉

)
↔ ψ = χ 1√

2(1 + σ3)− η̄ 1√
2(1− σ3), (3.36)

where χ and η̄ are the Pauli-even equivalents of the 2-component complex spinors
|χ〉 and |η̄〉, as defined by equation (3.3). The even multivector

ψ = χ 1√
2(1 + σ3)− η̄ 1√

2(1− σ3) (3.37)

is therefore our STA version of the column spinor

|ψ〉′ =
(
|χ〉
|η̄〉

)
, (3.38)
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where |ψ〉′ is acted on by matrices in the Weyl representation. As a check, we
observe that

γ̂′0|ψ〉′ =
(
−|η̄〉
−|χ〉

)
↔ −η̄ 1√

2(1 + σ3) + χ 1√
2(1− σ3) = γ0ψγ0 (3.39)

and

γ̂k|ψ〉 =
(
−σ̂k|η̄〉
σ̂k|χ〉

)
↔ −σkη̄σ3

1√
2(1 + σ3)− σkχσ3

1√
2(1− σ3) = γkψγ0. (3.40)

(Here we have used equation (3.7) and the fact that γ0 commutes with all Pauli-even
elements.) The map (3.36) does indeed have the required properties.

While our procedure ensures that the action of the {γ̂µ, γ̂5} matrix operators is
always given by (3.28), the same is not true of the operation of complex conjugation.
Complex conjugation is a representation-dependent operation, so the STA versions
can be different for different representations. For example, complex conjugation in
the Dirac-Pauli and Weyl representations is given by

|ψ〉∗ ↔ −γ2ψγ2, (3.41)

whereas in the Majorana representation complex conjugation leads to the STA
operation [4]

|ψ〉∗Maj ↔ ψσ2. (3.42)

Rather than think of (3.41) and (3.42) as different representations of the same
operation, however, it is simpler to view them as distinct STA operations that can
be performed on the multivector ψ.

3.3 The Dirac Equation and Observables
As a simple application of (3.27) and (3.28), consider the Dirac equation

γ̂µ(j∂µ − eAµ)|ψ〉 = m|ψ〉. (3.43)

The STA version of this equation is, after postmultiplication by γ0,

∇ψiσ3 − eAψ = mψγ0, (3.44)
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where ∇ = γµ∂µ is the spacetime vector derivative (2.41). The STA form of the
Dirac equation (3.44) was first discovered by Hestenes [8], and has been discussed by
many authors since; see, for example, references [35, 37, 38, 39, 40]. The translation
scheme described here is direct and unambiguous and the resulting equation is
both coordinate-free and representation-free. In manipulating equation (3.44)
one needs only the algebraic rules for multiplying spacetime multivectors, and the
equation can be solved completely without ever introducing a matrix representation.
Stripped of the dependence on a matrix representation, equation (3.44) expresses
the intrinsic geometric content of the Dirac equation.

In order to discuss the observables of the Dirac theory, we must first consider
the spinor inner product. It is necessary at this point to distinguish between the
Hermitian and Dirac adjoint. These are written as

〈ψ̄| − Dirac adjoint
〈ψ| − Hermitian adjoint, (3.45)

which are represented in the STA as follows,

〈ψ̄| ↔ ψ̃

〈ψ| ↔ ψ† = γ0ψ̃γ0.
(3.46)

One can see clearly from these definitions that the Dirac adjoint is Lorentz-invariant,
whereas the Hermitian adjoint requires singling out a preferred timelike vector.

The inner product is handled as in equation (3.12), so that

〈ψ̄|φ〉 ↔ 〈ψ̃φ〉 − 〈ψ̃φiσ3〉iσ3 = 〈ψ̃φ〉S, (3.47)

which is also easily verified by direct calculation. By utilising (3.47) the STA forms
of the Dirac spinor bilinear covariants [36] are readily found. For example,

〈ψ̄|γ̂µ|ψ〉 ↔ 〈ψ̃γµψγ0〉 − 〈ψ̃γµψiγ3〉iσ3 = γµ ·〈ψγ0ψ̃〉1 (3.48)

identifies the ‘observable’ as the γµ-component of the vector 〈ψγ0ψ̃〉1. Since the
quantity ψγ0ψ̃ is odd and reverse-symmetric it can only contain a vector part, so
we can define the frame-free vector J by

J ≡ ψγ0ψ̃. (3.49)

The spinor ψ has a Lorentz-invariant decomposition which generalises the
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Bilinear Standard STA Frame-Free
Covariant Form Equivalent Form
Scalar 〈ψ̄|ψ〉 〈ψψ̃〉 ρ cosβ
Vector 〈ψ̄|γ̂µ|ψ〉 γµ ·(ψγ0ψ̃) ψγ0ψ̃ = J

Bivector 〈ψ̄|jγ̂µν |ψ〉 (γµ∧γν)·(ψiσ3ψ̃) ψiσ3ψ̃ = S

Pseudovector 〈ψ̄|γ̂µγ̂5|ψ〉 γµ ·(ψγ3ψ̃) ψγ3ψ̃ = s

Pseudoscalar 〈ψ̄|jγ̂5|ψ〉 〈ψψ̃i〉 −ρ sinβ

Table 3: Bilinear covariants in the Dirac theory.

decomposition of Pauli spinors into a rotation and a density factor (3.20). Since ψψ̃
is even and reverses to give itself, it contains only scalar and pseudoscalar terms.
We can therefore define

ρeiβ ≡ ψψ̃, (3.50)

where both ρ and β are scalars. Assuming that ρ 6= 0, ψ can now be written as

ψ = ρ1/2eiβ/2R (3.51)

where
R = (ρeiβ)−1/2ψ. (3.52)

The even multivector R satisfies RR̃ = 1 and therefore defines a spacetime rotor.
The current J (3.49) can now be written as

J = ρv (3.53)

where
v ≡ Rγ0R̃. (3.54)

The remaining bilinear covariants can be analysed likewise, and the results are
summarised in Table 3. The final column of this Table employs the quantities

s ≡ ψγ3ψ̃, and S ≡ ψiσ3ψ̃. (3.55)

Double-sided application of R on a vector a produces a Lorentz transforma-
tion [3]. The full Dirac spinor ψ therefore contains an instruction to rotate the
fixed {γµ} frame into the frame of observables. The analogy with rigid-body dy-
namics first encountered in Section 3.1 with Pauli spinors therefore extends to the
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relativistic theory. In particular, the unit vector v (3.54) is both future-pointing
and timelike and has been interpreted as defining an electron velocity [23, 9] (see
also the critical discussion in [6]). The ‘β-factor’ appearing in the decomposition
of ψ (3.50) has also been the subject of much discussion [6, 9, 38, 39] since, for
free-particle states, β determines the ratio of particle to anti-particle solutions. It
remains unclear whether this idea extends usefully to interacting systems.

In Section 3.1 we argued that, for Pauli spinors, any dynamical consequences
derived from the algebraic properties of the Pauli matrices were questionable, since
the algebra of the Pauli matrices merely expresses the geometrical relations between
a set of orthonormal vectors in space. Precisely the same is true of any consequences
inferred from the properties of the Dirac matrices. This observation has the happy
consequence of removing one particularly prevalent piece of nonsense — that the
observed velocity of an electron must be the speed of light [41, 42]. The ‘proof’
of this result is based on the idea that the velocity operator in the k-direction
is the γ̂kγ̂0 matrix. Since the square of this matrix is 1, its eigenvalues must be
±1. But in the STA the fact that the square of the {γµ} matrices is ±1 merely
expresses the fact that they form an orthonormal basis. This cannot possibly have
any observational consequences. To the extent that one can talk about a velocity
in the Dirac theory, the relevant observable must be defined in terms of the current
J . The {γµ} vectors play no other role than to pick out the components of this
current in a particular frame. The shift from viewing the {γµ} as operators to
viewing them as an arbitrary, fixed frame is seen clearly in the definition of the
current J (3.49). In this expression it is now the ψ that ‘operates’ to align the
γ0 vector with the observable current. Since ψ transforms single-sidedly under
rotations, the fixed initial γ0-vector is never affected by the rotor and its presence
does not violate Lorentz invariance [4].

We end this subsection by briefly listing how the C, P and T symmetries are
handled in the STA. Following the conventions of Bjorken & Drell [34] we find that

P̂ |ψ〉 ↔ γ0ψ(x̄)γ0

Ĉ|ψ〉 ↔ ψσ1

T̂ |ψ〉 ↔ iγ0ψ(−x̄)γ1,

(3.56)

where x̄ ≡ γ0xγ0 is (minus) a reflection of x in the timelike γ0 axis. The combined
CPT symmetry corresponds to

ψ 7→ −iψ(−x) (3.57)
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so that CPT symmetry does not require singling out a preferred timelike vector. A
more complete discussion of the symmetries and conserved quantities of the Dirac
theory from the STA viewpoint is given in [5]. There the ‘multivector derivative’ was
advocated as a valuable tool for extracting conserved quantities from Lagrangians.

Plane-Wave States

In most applications of the Dirac theory, the external fields applied to the electron
define a rest-frame, which is taken to be the γ0-frame. The rotor R then decomposes
relative to the γ0 vector into a boost L and a rotation Φ,

R = LΦ, (3.58)

where

L† = L (3.59)
Φ† = Φ̃ (3.60)

and LL̃ = ΦΦ̃ = 1. A positive-energy plane-wave state is defined by

ψ = ψ0e
−iσ3p·x (3.61)

where ψ0 is a constant spinor. From the Dirac equation (3.44) with A = 0, it
follows that ψ0 satisfies

pψ0 = mψ0γ0. (3.62)

Postmultiplying by ψ̃0 we see that

pψψ̃ = mJ (3.63)

from which it follows that exp(iβ) = ±1. Since p has positive energy we must take
the positive solution (β = 0). It follows that ψ0 is just a rotor with a normalisation
constant. The boost L determines the momentum by

p = mLγ0L̃ = mL2γ0, (3.64)

which is solved by
L =

√
pγ0/m = E +m+ p√

2m(E +m)
, (3.65)
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where
pγ0 = E + p. (3.66)

The Pauli rotor Φ determines the ‘comoving’ spin bivector Φiσ3Φ̃. This is boosted
by L to give the spin S as seen in the laboratory frame. A Φσ3Φ̃ gives the relative
spin in the rest-frame of the particle, we refer to this as the ‘rest-spin’. In Section 6.3
we show that the rest-spin is equivalent to the ‘polarisation’ vector defined in the
traditional matrix formulation.

Negative energy solutions are constructed in a similar manner, but with an
additional factor of i or σ3 on the right (the choice of which to use is simply a
choice of phase). The usual positive- and negative-energy basis states employed in
scattering theory are (following the conventions of Itzykson & Zuber [36, Section
2-2])

positive energy ψ(+)(x) = ur(p)e−iσ3p·x (3.67)
negative energy ψ(−)(x) = vr(p)eiσ3p·x (3.68)

with

ur(p) = L(p)χr (3.69)
vr(p) = L(p)χrσ3. (3.70)

Here L(p) is given by equation (3.65) and χr = {1,−iσ2} are spin basis states. The
decomposition into a boost and a rotor turns out to be very useful in scattering
theory, as is demonstrated in Section 5.

The main results for Dirac operators and spinors are summarised in Table 4.

4 Operators, Monogenics and the Hydrogen
Atom

So far, we have seen how the STA enables us to formulate the Dirac equation
entirely in the real geometric algebra of spacetime. In so doing, one might worry
that contact has been lost with traditional, operator-based techniques, but in fact
this is not the case. Operator techniques are easily handled within the STA, and
the use of a coordinate-free language greatly simplifies manipulations. The STA
furthermore provides a sharper distinction between the roles of scalar and vector
operators.
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Dirac
Matrices

γ̂0 =
(
I 0
0 −I

)
γ̂k =

(
0 −σ̂k
σ̂k 0

)
γ̂5 =

(
0 I

I 0

)

Spinor
Equivalence |ψ〉 =


a0 + ja3

−a2 + ja1

b0 + jb3

−b2 + jb1

 ↔ ψ =
a0 + akiσk+
(b0 + bkiσk)σ3

Operator
Equivalences

γ̂µ|ψ〉 ↔ γµψγ0

j|ψ〉 ↔ ψiσ3

γ̂5|ψ〉 ↔ ψσ3

〈ψ̄|ψ′〉 ↔ 〈ψ̃ψ′〉S

Dirac Equation ∇ψiσ3 − eAψ = mψγ0

Observables
ρeiβ = ψψ̃ J = ψγ0ψ̃

S = ψiσ3ψ̃ s = ψγ3ψ̃

Plane-Wave
States

ψ(+)(x) = L(p)Φe−iσ3p·x

ψ(−)(x) = L(p)Φσ3e
iσ3p·x

L(p) = (pγ0 +m)/
√

2m(E +m)

Table 4: Summary of the main results for the STA representation of Dirac spinors.
The matrices and spinor equivalence are for the Dirac-Pauli representation. The
spinor equivalences for other representations are constructed via the method outlined
in the text.
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This section begins by constructing a Hamiltonian form of the Dirac equation.
The standard split into even and odd operators then enables a smooth transition to
the non-relativistic Pauli theory. We next study central fields and construct angular-
momentum operators that commute with the Hamiltonian. These lead naturally to
the construction of the sphericalmonogenics, a basis set of orthogonal eigenfunctions
of the angular-momentum operators. We finally apply these techniques to two
problems — the Hydrogen atom, and the Dirac ‘oscillator’.

4.1 Hamiltonian Form and the Non-Relativistic Reduction
The problem of how to best formulate operator techniques within the STA is really
little more than a question of finding a good notation. We could of course borrow
the traditional Dirac ‘bra-ket’ notation, but we have already seen that the bilinear
covariants are better handled without it. It is easier instead to just juxtapose the
operator and the wavefunction on which it acts. But we saw in Section 3 that the
STA operators often act double-sidedly on the spinor ψ. This is not a problem, as
the only permitted right-sided operations are multiplication by γ0 or iσ3, and these
operations commute. Our notation can therefore safely suppress these right-sided
multiplications and lump all operations on the left. The overhat notation is useful
to achieve this and we define

γ̂µψ ≡ γµψγ0. (4.1)

It should be borne in mind that all operations are now defined in the STA, so the
γ̂µ are not intended to be matrix operators, as they were in Section 3.2.

It is also useful to have a symbol for the operation of right-sided multiplication
by iσ3. The symbol j carries the correct connotations of an operator that commutes
with all others and squares to −1, and we define

jψ ≡ ψiσ3. (4.2)

The Dirac equation (3.44) can now be written in the ‘operator’ form

j∇̂ψ − eÂψ = mψ. (4.3)

where
∇̂ψ ≡ ∇ψγ0, and Âψ ≡ Aψγ0. (4.4)

Writing the Dirac equation in the form (4.3) does not add anything new, but does
confirm that we have an efficient notation for handling operators in the STA.
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In many applications we require a Hamiltonian form of the Dirac equation. To
express the Dirac equation (3.44) in Hamiltonian form we simply multiply from
the left by γ0. The resulting equation, with the dimensional constants temporarily
put back in, is

jh̄∂tψ = cp̂ψ + eV ψ − ceAψ +mc2ψ̄ (4.5)

where

p̂ψ ≡ −jh̄∇ψ (4.6)
ψ̄ ≡ γ0ψγ0 (4.7)

and γ0A = V − cA. (4.8)

Choosing a Hamiltonian is a non-covariant operation, since it picks out a preferred
timelike direction. The Hamiltonian relative to the γ0 direction is the operator on
the right-hand side of equation (4.5). We write this operator with the symbol H.

The Pauli Equation

As a first application, we consider the non-relativistic reduction of the Dirac
equation. In most modern texts, the non-relativistic approximation is carried
out via the Foldy-Wouthuysen transformation [34, 36]. Whilst the theoretical
motivation for this transformation is clear, it has the defect that the wavefunction
is transformed by a unitary operator which is very hard to calculate in all but the
simplest cases. A simpler approach, dating back to Feynman [41], is to separate out
the fast-oscillating component of the waves and then split into separate equations
for the Pauli-even and Pauli-odd components of ψ. Thus we write (with h̄ = 1 and
the factors of c kept in)

ψ = (φ+ η)e−iσ3mc
2t (4.9)

where φ̄ = φ and η̄ = −η. The Dirac equation (4.5) now splits into the two
equations

Eφ− cOη = 0 (4.10)
(E + 2mc2)η − cOφ = 0, (4.11)
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where

Eφ ≡ (j∂t − eV )φ (4.12)
Oφ ≡ (p̂− eA)φ. (4.13)

The formal solution to the second equation (4.11) is

η = 1
2mc

(
1 + E

2mc2

)−1
Oφ, (4.14)

where the inverse on the right-hand side is understood to denote a power series.
The power series is well-defined in the non-relativistic limit as the E operator is of
the order of the non-relativistic energy. The remaining equation for φ is

Eφ− O2m

(
1− E

2mc2 + · · ·
)
Oφ = 0, (4.15)

which can be expanded out to the desired order of magnitude. There is little point
in going beyond the first relativistic correction, so we approximate (4.15) by

Eφ+ OEO4m2c2φ = O
2

2mφ. (4.16)

We seek an equation of the form Eφ = Hφ, where H is the non-relativistic
Hamiltonian. We therefore need to replace the OEO term in equation (4.16) by a
term that does not involve E . To do so we would like to utilise the approximate
result that

Eφ ≈ O
2

2mφ, (4.17)

but we cannot use this result directly in the OEO term since the E does not operate
directly on φ. Instead we employ the operator rearrangement

2OEO = [O, [E ,O]] + EO2 +O2E (4.18)

to write equation (4.16) in the form

Eφ = O
2

2mφ− EO
2 +O2E

8m2c2 φ− 1
8m2c2 [O, [E ,O]]φ. (4.19)
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We can now make use of (4.17) to write

EO2φ ≈ O2Eφ ≈ O
4

2m + O(c−2) (4.20)

and so approximate (4.16) by

Eφ = O
2

2mφ− 1
8m2c2 [O, [E ,O]]φ− O4

8m3c2φ, (4.21)

which is valid to order c−2. The commutators are easily evaluated, for example

[E ,O] = −je(∂tA+ ∇V ) = jeE. (4.22)

There are no time derivatives left in this commutator, so we do achieve a sensible
non-relativistic Hamiltonian. The full commutator required in equation (4.21) is

[O, [E ,O]] = [−j∇− eA, jeE]
= (e∇E)− 2eE∧∇− 2je2A∧E (4.23)

in which the STA formulation ensures that we are manipulating spatial vectors,
rather than performing abstract matrix manipulations.

The various operators (4.12), (4.13) and (4.23) can now be fed into equa-
tion (4.21) to yield the STA form of the Pauli equation

∂tφiσ3 = 1
2m(p̂− eA)2φ+ eV φ− p̂4

8m3c2φ

− 1
8m2c2 [e(∇E − 2E∧∇)φ− 2e2A∧Eφiσ3], (4.24)

which is valid to O(c−2). (We have assumed that |A| ∼ c−1 to replace the O4 term
by p̂4.) Using the translation scheme of Table 2 it is straightforward to check that
equation (4.24) is the same as that found in standard texts [34]. In the standard
approach, the geometric product in the ∇E term (4.24) is split into a ‘spin-orbit’
term ∇∧E and the ‘Darwin’ term ∇·E. The STA approach reveals that these
terms arise from a single source.

A similar approximation scheme can be adopted for the observables of the Dirac
theory. For example the current, ψγ0ψ̃, has a three-vector part

J = (ψγ0ψ̃)∧γ0 = φη† + ηφ†, (4.25)
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which is approximated to first-order by

J ≈ − 1
m

(〈∇φiσ3φ
†〉v −Aφφ†). (4.26)

Not all applications of the Pauli theory correctly identify (4.26) as the conserved cur-
rent in the Pauli theory — an inconsistency first noted by Hestenes and Gurtler [13]
(see also the discussion in [6]).

4.2 Angular Eigenstates and Monogenic Functions
Returning to the Hamiltonian of equation (4.5), let us now consider the problem
of a central potential V = V (r), A = 0, where r = |x|. We seek a set of angular-
momentum operators which commute with this Hamiltonian. Starting with the
scalar operator B ·(x∧∇), where B is a spatial bivector, we find that

[B ·(x∧∇),H] = [B ·(x∧∇),−j∇]
= j∇̇B ·(ẋ∧∇)
= −jB ·∇. (4.27)

But, since B ·∇ = [B,∇]/2 and B commutes with the rest of H, we can rearrange
the commutator into

[B ·(x∧∇)− 1
2B,H] = 0, (4.28)

which gives us the required operator. Since B ·(x∧∇)−B/2 is an anti-Hermitian
operator, we define a set of Hermitian operators as

JB ≡ j(B ·(x∧∇)− 1
2B). (4.29)

The extra term of 1
2B is the term that is conventionally viewed as defining ‘spin-1/2’.

However, the geometric algebra derivation shows that the result rests solely on
the commutation properties of the B ·(x∧∇) and ∇ operators. Furthermore, the
factor of one-half required in the JB operators would be present in a space of any
dimension. It follows that the factor of one-half in (4.29) cannot have anything to
do with representations of the 3-D rotation group.

From the STA point of view, JB is an operator-valued function of the bivector B.
In conventional quantum theory, however, we would view the angular-momentum
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operator as a vector with components

Ĵi = L̂i + 1
2Σ̂i (4.30)

where Σ̂i = (j/2)εijkγ̂j γ̂k. The standard notation takes what should be viewed as
the sum of a scalar operator and a bivector, and forces it to look like the sum of two
vector operators! As well as being conceptually clearer, the STA approach is easier
to compute with. For example, it is a simple matter to establish the commutation
relation

[JB1 , JB2 ] = −jJB1×B2 , (4.31)

which forms the starting point for the representation theory of the angular-
momentum operators.

The Spherical Monogenics

The key ingredients in the solution of the Dirac equation for problems with radial
symmetry are the spherical monogenics. These are Pauli spinors (even elements of
the Pauli algebra (2.28)) which satisfy the eigenvalue equation

−x∧∇ψ = lψ. (4.32)

Such functions are called spherical monogenics because they are obtained from the
‘monogenic equation’

∇Ψ = 0 (4.33)

by separating Ψ into rlψ(θ, φ). Equation (4.33) generalises the concept of an
analytic function to higher dimensions [12, 7].

To analyse the properties of equation (4.32) we first note that

[JB,x∧∇] = 0, (4.34)

which is proved in the same manner as equation (4.28). It follows that ψ can
simultaneously be an eigenstate of the x∧∇ operator and one of the JB operators.
To simplify the notation we now define

Jkψ ≡ Jiσk
ψ = (iσk ·(x∧∇)− 1

2iσk)ψiσ3. (4.35)
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We choose ψ to be an eigenstate of J3, and provisionally write

−x∧∇ψ = lψ, J3ψ = µψ. (4.36)

Before proceeding, we must introduce some notation for a spherical-polar
coordinate system. We define the {r, θ, φ} coordinates via

r ≡
√
x2, cosθ ≡ σ3 ·x/r, tanφ ≡ σ2 ·x/σ1 ·x. (4.37)

The associated coordinate frame is

er = sinθ(cosφσ1 + sinφσ2) + cosθ σ3

eθ = r cosθ(cosφσ1 + sinφσ2)− r sinθ σ3 (4.38)
eφ ≡ r sinθ(− sinφσ1 + cosφσ2).

From these we define the orthonormal vectors {σr, σθ, σφ} by

σr ≡ er

σθ ≡ eθ/r (4.39)
σφ ≡ eφ/(r sinθ).

The {σr, σθ, σφ} form a right-handed set, since

σrσθσφ = i. (4.40)

The vector σr satisfies
x∧∇σr = 2σr. (4.41)

It follows that
−x∧∇(σrψσ3) = −(l + 2)σrψσ3 (4.42)

so, without loss of generality, we can choose l to be positive and recover the
negative-l states through multiplying by σr. In addition, since

x∧∇(x∧∇ψ) = l2ψ (4.43)

we find that
1

sinθ
∂

∂θ

(
sinθ∂ψ

∂θ

)
+ 1

sin2θ

∂2ψ

∂φ2 = −l(l + 1)ψ. (4.44)
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Hence, with respect to a constant basis for the STA, the components of ψ are
spherical harmonics and l must be an integer for any physical solution.

The next step is to introduce ladder operators to move between different
J3 eigenstates. The required analysis is standard, and has been relegated to
Appendix A. The conclusions are that, for each value of l, the allowed values of
the eigenvalues of J3 range from (l + 1/2) to −(l + 1/2). The total degeneracy is
therefore 2(l + 1). The states can therefore be labeled by two integers l and m
such that

−x∧∇ψml = lψml l ≥ 0 (4.45)
J3ψ

m
l = (m+ 1

2)ψml −1− l ≤ m ≤ l. (4.46)

Labelling the states in this manner is unconventional, but provides for many
simplifications in describing the properties of the ψml .

To find an explicit expression for the ψml we start from the highest-m eigenstate,
which is given by

ψll = sinlθ elφiσ3 , (4.47)

and act on this with the lowering operator J−. This procedure is described in detail
in Appendix A. The result is the following, remarkably compact formula:

ψml = [(l +m+ 1)Pm
l (cosθ)− Pm+1

l (cosθ)iσφ]emφiσ3 , (4.48)

where the associated Legendre polynomials follow the conventions of Gradshteyn &
Ryzhik [43]. The expression (4.48) offers a considerable improvement over formulae
found elsewhere in terms of both compactness and ease of use. The formula (4.48)
is valid for non-negative l and both signs of m. The positive and negative m-states
are related by

ψml (−iσ2) = (−1)m (l +m+ 1)!
(l −m)! ψ

−(m+1)
l . (4.49)

The negative-l states are constructed using (4.42) and the J3 eigenvalues are
unchanged by this construction. The possible eigenvalues and degeneracies are
summarised in Table 5. One curious feature of this table is that we appear to be
missing a line for the eigenvalue l = −1. In fact solutions for this case do exist,
but they contain singularities which render them unnormalisable. For example, the
functions

iσφ
sinθ , and e−iσ3φ

sinθ (4.50)
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l Eigenvalues of J3 Degeneracy
... ... ...
2 5/2 · · · − 5/2 6
1 3/2 · · · − 3/2 4
0 1/2 · · · − 1/2 2

(−1) ? ?
−2 1/2 · · · − 1/2 2
... ... ...

Table 5: Eigenvalues and degeneracies for the ψml monogenics.

have l = −1 and J3 eigenvalues +1/2 and −1/2 respectively. Both solutions are
singular along the z-axis, however, so are of limited physical interest.

4.3 Applications
Having established the properties of the spherical monogenics, we can proceed
quickly to the solution of various problems. We have chosen to consider two — the
standard case of the Hydrogen atom, and the ‘Dirac Oscillator’ [44].

The Coulomb Problem

The Hamiltonian for this problem is

Hψ = p̂ψ − Zα

r
ψ +mψ̄, (4.51)

where α = e2/4π is the fine-structure constant and Z is the atomic charge. Since
the JB operators commute with H, ψ can be placed in an eigenstate of J3. The
operator JiJi must also commute with H, but x∧∇ does not, so both the ψml and
σrψ

m
l σ3 monogenics are needed in the solution.
Though x∧∇ does not commute with H, the operator

K = γ̂0(1− x∧∇) (4.52)
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does, as follows from

[γ̂0(1− x∧∇),∇] = 2γ̂0∇− γ̂0∇̇ẋ∧∇
= 0. (4.53)

We can therefore work with eigenstates of the K operator, which means that the
spatial part of ψ goes either as

ψ(x, l + 1) = ψml u(r) + σrψ
m
l v(r)iσ3 (4.54)

or as
ψ(x,−(l + 1)) = σrψ

m
l σ3u(r) + ψml iv(r). (4.55)

In both cases the second label in ψ(x, l + 1) specifies the eigenvalue of K. The
functions u(r) and v(r) are initially ‘complex’ superpositions of a scalar and an iσ3

term. It turns out, however, that the scalar and iσ3 equations decouple, and it is
sufficient to treat u(r) and v(r) as scalars.

We now insert the trial functions (4.54) and (4.55) into the Hamiltonian (4.51).
Using the results that

−∇ψml = l/r σrψ
m
l , −∇σrψ

m
l = −(l + 2)/r ψml , (4.56)

and looking for stationary-state solutions of energy E, the radial equations reduce
to (

u′

v′

)
=
(

(κ− 1)/r −(E + Zα/r +m)
E + Zα/r −m (−κ− 1)/r

)(
u

v

)
, (4.57)

where κ is the eigenvalue of K. (κ is a non-zero positive or negative integer.) The
solution of these radial equations can be found in many textbooks (see, for example,
[34, 36, 45]). The solutions can be given in terms of confluent hypergeometric
functions, and the energy spectrum is obtained from the equation

E2 = m2
[
1− (Zα)2

n2 + 2nν + (l + 1)2

]
, (4.58)

where n is a positive integer and

ν = [(l + 1)2 + (Zα)2]1/2. (4.59)

Whilst this analysis does not offer any new results, it should demonstrate how
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easy it is to manipulate expressions involving the spherical monogenics.

The Dirac ‘Oscillator’

The equation describing a Dirac ‘oscillator’ was introduced as recently as 1989 [44].
The equation is one for a chargeless particle with an anomalous magnetic mo-
ment [34] which, in the STA, takes the form

∇ψiσ3 − iµFψγ3 = mψγ0. (4.60)

This equation will be met again in Section 8, where it is used to analyse the effects
of a Stern-Gerlach apparatus. The situation describing the Dirac oscillator is one
where the F field exerts a linear, confining force described by

F = mω

µ
x. (4.61)

The Hamiltonian in this case is

Hψ = p̂ψ − jmωxψ̄ +mψ̄. (4.62)

It is a simple matter to verify that this Hamiltonian commutes with both the JB
and K operators defined above, so we can again take the wavefunction to be of the
form of equations (4.54) and (4.55). The resulting equations in this case are(

u′

v′

)
=
(

(κ− 1)/r −mωr −(E +m)
E −m (−κ− 1)/r +mωr

)(
u

v

)
. (4.63)

The equations are simplified by transforming to the dimensionless variable ρ,

ρ ≡ (mω)1/2r, (4.64)

and removing the asymptotic behaviour via

u = ρle−ρ
2/2u1 (4.65)

v = ρle−ρ
2/2u2. (4.66)

The analysis is now slightly different for the positive- and negative-κ equations,
which we consider in turn.
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Positive-κ. The equations reduce to

d

dρ

(
u1

u2

)
=
(

0 −(E +m)/
√
mω

(E −m)/
√
mω −2(l + 1)/ρ+ 2ρ

)(
u1

u2

)
, (4.67)

which are solved with the power series

u1 =
∑
n=0

Anρ
2n (4.68)

u2 =
∑
n=0

Bnρ
2n+1. (4.69)

The recursion relations are

2nAn = −E +m√
mω

Bn−1 (4.70)

(2n+ 2l + 3)Bn = E −m√
mω

An + 2Bn−1, (4.71)

and the requirement that the series terminate produces the eigenvalue spectrum

E2 −m2 = 4nmω n = 1, 2 . . . (4.72)

Remarkably, the energy levels do not depend on l, so are infinitely degenerate!
Negative-κ. In this case the equations reduce to

d

dρ

(
u1

u2

)
=
(
−2(l + 1)/ρ −(E +m)/

√
mω

(E −m)/
√
mω 2ρ

)(
u1

u2

)
, (4.73)

and are solved with the power series

u1 =
∑
n=0

Anρ
2n+1 (4.74)

u2 =
∑
n=0

Bnρ
2n. (4.75)

The recursion relations become

(2n+ 2l + 3)An = −E +m√
mω

Bn (4.76)

2nBn = E −m√
mω

An−1 + 2Bn−1, (4.77)
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and this time the eigenvalues are given by the formula

E2 −m2 = 2(2n+ 2l + 1)mω n = 1, 2 . . . . (4.78)

The energy spectrum only contains E through equations for E2. It follows that
both positive and negative energies are allowed. The lowest positive-energy state
(the ground state) has E2 = m2 + 4mω, leading to a non-relativistic energy of
∼ 2h̄ω. The groundstate is infinitely degenerate, whereas the first excited state
has a degeneracy of two. The energy spectrum is clearly quite bizarre and does
not correspond to any sensible physical system. In particular, this system does not
reduce to a simple harmonic oscillator in the non-relativistic limit. The simple, if
bizarre, nature of the energy spectrum is obscured in other approaches [44, 46],
which choose a less clear labeling system for the eigenstates.

5 Propagators and Scattering Theory
In this section we give a brief review of how problems requiring propagators are
formulated and solved in the STA. The STA permits a first-order form of both
Maxwell and Dirac theories involving the same differential operator — the vector
derivative ∇. The key problem is to find Green’s functions for the vector derivative
that allow us to propagate initial data off some surface. We therefore start by
studying the characteristic surfaces of the vector derivative. We then turn to the
use of spinor potentials, which were dealt with in greater detail in [6]. The section
concludes with a look at single-particle scattering theory. Using the mappings
established in Sections 3 and 4 it is a simple matter to reformulate in the STA
the standard matrix approach to scattering problems as described in [34, 36]. The
STA approach allows for a number of improvements, however, particularly in the
treatment of spin. This is a subject which was first addressed by Hestenes [47],
and our presentation closely follows his work.

5.1 Propagation and Characteristic Surfaces
One of the simplest demonstrations of the insights provided by the STA formulation
of both Maxwell and Dirac theories is in the treatment of characteristic surfaces.
In the second-order theory, characteristic surfaces are usually found by algebraic
methods. Here we show how the same results can be found using a simple geometric
argument applied to first-order equations. Suppose, initially, that we have a generic
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equation of the type
∇ψ = f(ψ, x), (5.1)

where ψ(x) is any multivector field (not necessarily a spinor field) and f(ψ, x) is
some arbitrary, known function. If we are given initial data over some 3-D surface
are there any obstructions to us propagating this information off the surface? If
so, the surface is a characteristic surface. We start at a point on the surface and
pick three independent vectors {a, b, c} tangent to the surface at the chosen point.
Knowledge of ψ on the surface enables us to calculate

a·∇ψ, b·∇ψ and c·∇ψ. (5.2)

We next form the trivector a∧b∧c and dualise to define

n ≡ ia∧b∧c. (5.3)

We can now multiply equation (5.1) by n and use

n∇ψ = n·∇ψ + n∧∇ψ
= n·∇ψ + i(a∧b∧c)·∇ψ (5.4)
= n·∇ψ + i(a∧b c·∇ψ − a∧c b·∇ψ + b∧c a·∇ψ), (5.5)

to obtain

n·∇ψ = nf(ψ, x)− i(a∧b c·∇ψ − a∧c b·∇ψ + b∧c a·∇ψ). (5.6)

All of the terms on the right-hand side of equation (5.6) are known, so we can find
n·∇ψ and use this to propagate ψ in the n direction (i.e. off the surface). The
only situation in which we fail to propagate, therefore, is when n remains in the
surface. This occurs when

n∧(a∧b∧c) = 0
=⇒ n∧(ni) = 0

=⇒ n·n = 0. (5.7)

Hence we only fail to propagate when n2 = 0, and it follows immediately that the
characteristic surfaces of equation (5.1) are null surfaces. This result applies to any
first-order equation based on the vector derivative ∇, including the Maxwell and
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Dirac equations. The fundamental significance of null directions in these theories
is transparent in their STA form. Furthermore, the technique extends immediately
to a gravitational background, as described in [48].

5.2 Spinor Potentials and Propagators
A simple method to generate propagators for the Dirac theory is to introduce a
spinor potential satisfying a scalar second-order equation. Suppose that ψ satisfies
the Dirac equation

∇ψiσ3 −mψγ0 = 0. (5.8)

ψ can be generated from the (odd multivector) potential φ via

ψ = ∇φiσ3 +mφγ0 (5.9)

provided that
(∇2 +m2)φ = 0. (5.10)

The standard second-order theory can then be applied to φ, and then used to
recover ψ. In [6] this technique was applied to constant-energy waves

ψ = ψ(x)e−iσ3Et. (5.11)

The Dirac equation then becomes

∇ψiσ3 + Eψ −mψ̄ = 0 (5.12)

which is solved by
ψ = −∇φiσ3 + Eφ+mφ̄ (5.13)

where
φ(x) = − 1

4π

∮
|dS ′|n′ψ(x′)e

iσ3pr

r
. (5.14)

In this integral the initial data ψ(x′) is given over some closed spatial surface with
normal n′ = n(x′), and p and r are defined by

p ≡
√
E2 +m2 and r ≡ |x− x′|. (5.15)

Similar techniques can be applied to the propagation of electromagnetic waves
(see [6] for details).
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5.3 Scattering Theory
We finish this short section with a brief look at how the matrix approach to
scattering theory is handled in the STA, closely following the work of Hestenes [47].
We continue to employ the symbol j for iσ3 in places where it simplifies the notation.
In particular, we employ the j symbol in the exponential terms introduced by
Fourier transforming to momentum space. Where the j’s play a more significant
geometric role they are left in the iσ3 form.

We start by replacing the Dirac equation (3.44) with the integral equation

ψ(x) = ψi(x) + e
∫
d4x′ SF (x− x′)A(x′)ψ(x′) (5.16)

where ψi is the asymptotic in-state which solves the free-particle equation, and
SF (x− x′) is the STA form of the Feynman propagator. Substituting (5.16) into
the Dirac equation, we find that SF (x− x′) must satisfy

∇xSF (x− x′)M(x′)iσ3 −mSF (x− x′)M(x′)γ0 = δ(x− x′)M(x′) (5.17)

for an arbitrary multivector M(x′). The solution to this equation is

SF (x− x′)M(x′) =
∫ d4p

(2π)4
pM(x′) +mM(x′)γ0

p2 −m2 e−jp·(x− x
′) (5.18)

where, for causal propagation, the dE integral must arrange that positive-frequency
waves propagate into the future (t > t′) and negative-frequency waves propagate
into the past (t′ > t). The result of performing the dE integral is

SF (x− x′)M = −θ(t− t′)
∫ d3p

(2π)3
1

2E (pM +mMγ0)iσ3e
−jp·(x− x′)

+θ(t′ − t)
∫ d3p

(2π)3
1

2E (pM −mMγ0)iσ3e
jp·(x− x′) (5.19)

where E = +
√
p2 +m2 and M = M(x′).

With ψdiff(x) defined by

ψdiff(x) ≡ ψ(x)− ψi(x) (5.20)
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we find that, as t tends to +∞, ψdiff(x) is given by

ψdiff(x) = −e
∫
d4x′

∫ d3p

(2π)3
1

2E [pA(x′)ψ(x′) +mA(x′)ψ(x′)γ0]iσ3e
−jp·(x− x′).

(5.21)
We therefore define a set of final states ψf (x) by

ψf (x) ≡ −e
∫ d4x′

2Ef
[pfA(x′)ψ(x′) +mA(x′)ψ(x′)γ0]iσ3e

−jpf ·(x− x′), (5.22)

which are plane-wave solutions to the free-field equations with momentum pf .
ψdiff(x) can now be expressed as a superposition of these plane-wave states,

ψdiff(x) =
∫ d3pf

(2π)3 ψf (x). (5.23)

The Born Approximation and Coulomb Scattering

In order to find ψf(x) we must evaluate the integral (5.22). In the Born approxi-
mation, we simplify the problem by approximating ψ(x′) by ψi(x′). In this case,
since

ψi(x′) = ψie
−jpi ·x′ , and mψiγ0 = piψi, (5.24)

we can write

ψf (x) = −e
∫ d4x′

2Ef
[pfA(x′) + A(x′)pi]ψiiσ3e

jq ·x′e−jpf ·x, (5.25)

where
q ≡ pf − pi. (5.26)

The integral in (5.25) can now be evaluated for any given A-field.
As a simple application consider Coulomb scattering, for which A(x′) is given

by
A(x′) = Ze

4π|x′|γ0. (5.27)

Inserting this in (5.25) and carrying out the integrals, we obtain

ψf (x) = −Sfiψiiσ3
(2π)2

Ef
δ(Ef − Ei) (5.28)
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where

Sfi ≡
Zα

4π [pfγ0 + γ0pi]
∫
d3x

e−jq ·r

r

= Zα

q2 (2E + q). (5.29)

Here E = Ef = Ei and α = e2/(4π) is the fine-structure constant. The quantity Sfi
contains all the information about the scattering process. Its magnitude determines
the cross-section via [47]

dσ

dΩf

= SfiS̃fi (5.30)

and the remainder of Sfi determines the change of momentum and spin vectors.
This is clear from (5.28), which shows that Sfi must contain the rotor Rf R̃i, where
Ri and Rf are the rotors for the initial and final plane-wave states.

Substituting (5.29) into (5.30) we immediately recover the Mott scattering
cross-section

dσ

dΩf

= Z2α2

q4 (4E2 − q2) = Z2α2

4p2β2 sin4(θ/2)
(
1− β2 sin2(θ/2)

)
, (5.31)

where
q2 = (pf − pi)2 = 2p2(1− cosθ) and β = |p|/E. (5.32)

The notable feature of this derivation is that no spin sums are required. Instead, all
the spin dependence is contained in the directional information in Sfi. As well as
being computationally more efficient, the STA method for organising cross-section
calculations offers deeper insights into the structure of the theory. For example, for
Mott-scattering the directional information is contained entirely in the quantity [47]

S ′fi = 1
m

[pfγ0 + γ0pi] = L2
f + L̃2

i (5.33)

where Lf and Li are the boosts contained in Rf and Ri respectively. The algebraic
structure

Sfi = pfM +Mpi, (5.34)

where M is some odd multivector, is common to many scattering problems.
Since Sfi contains the quantity Rf R̃i, we obtain a spatial rotor by removing
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the two boost terms. We therefore define the (unnormalised) rotor

U ′fi ≡ L̃f (L2
f + L̃2

i )Li = LfLi + L̃f L̃i, (5.35)

so that Ufi = U ′fi/|Ufi| determines the rotation from initial to final rest-spins. A
simple calculation gives

U ′fi = 2[(E +m)2 + pfpi], (5.36)

hence the rest-spin vector precesses in the pf∧pi plane through an angle δ, where

tan(δ/2) = sinθ
(E +m)/(E −m) + cosθ . (5.37)

Whilst the derivations of the Mott scattering formula and the polarisation pre-
cession angle are only presented in outline here (further details are contained in [47])
it should be clear that they offer many advantages over the usual derivations [34, 36].
All the features of the scattering are contained in the single multivector Sfi, alge-
braic form of which is very simple. Much work remains, however, if these techniques
are to be extended to the whole of QED.

6 Plane Waves at Potential Steps
We now turn to a discussion of the matching of Dirac plane waves at a potential step.
The case of perpendicular incidence is a standard problem and is treated in most
texts [34, 36, 42]. In order to demonstrate the power of the STA approach we treat
the more general case of oblique incidence, adapting an approach used in electrical
engineering to analyse the propagation of electromagnetic waves. A number of
applications are given as illustrations, including the tunnelling of monochromatic
waves and spin precession on total reflection at a barrier. We conclude the section
with a discussion of the Klein paradox.

The problem of interest is that of plane waves incident on a succession of
potential steps. The steps are taken as lying along the x direction, with infinite
extent in the y and z directions. Since the spatial components of the incoming and
outgoing wavevectors lie in a single plane, the matching problem can be reduced
to one in two dimensions. The analysis is simplified further if the wavevectors are
taken to lie in the iσ3 plane. (Other configurations can always be obtained by
applying a rotation.) The arrangement is illustrated in Figure 6. The waves all
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Figure 1: Plane waves at a potential step. The spatial component of the wavevector
lies in the x–y plane and the step lies in the y–z plane.

oscillate at a single frequency E, and the Dirac equation in the ith region is

(E − eVi)ψ = −∇ψiσ3 +mγ0ψγ0. (6.1)

By continuity of ψ at each boundary, the y component of the wavevector, py, must
be the same in all regions. For the ith region we define

E ′i ≡ E − eVi (6.2)

and, depending on the magnitude of Vi, the waves in the this region will be either
travelling or evanescent. For travelling waves we define (dropping the subscripts)

p2
x ≡ E ′

2 − p2
y −m2 |E − eV | >

√
p2
y +m2. (6.3)

In terms of the angle of incidence φ we also have

px = p cosφ, py = p sinφ, E ′
2 = p2 +m2. (6.4)
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For evanescent waves we write

κ2 ≡ −E ′2 + p2
y +m2 |E − eV | <

√
p2
y +m2. (6.5)

In all the cases that we study, the incoming waves are assumed to be positive-
energy travelling waves in a region where eV < E −

√
p2
y +m2. Recalling the

plane-wave solutions found in Section 3.3, the travelling waves are given by

ψt = [cosh(u/2) + sinh(u/2)(cosφσ1 + sinφσ2)]Φe−iσ3(Et− pxx− pyy)T
ψr = [cosh(u/2) + sinh(u/2)(− cosφσ1 + sinφσ2)]Φe−iσ3(Et+ pxx− pyy)R,

(6.6)
where

tanh(u/2) = p/(E ′ +m) (6.7)

so that
sinhu = p/m, coshu = E ′/m. (6.8)

The transmission and reflection coefficients T and R are scalar +iσ3 combinations,
always appearing on the right-hand side of the spinor. The fact that py is the same
in all regions gives the electron equivalent of Snell’s law,

sinhu sinφ = constant. (6.9)

The Pauli spinor Φ describes the rest-spin of the particle, with Φ = 1 giving spin-up
and Φ = −iσ2 spin down. Other situations are, of course, built from superpositions
of these basis states. For these two spin basis states the spin vector is ±σ3, which
lies in the plane of the barrier and is perpendicular to the plane of motion. Choosing
the states so that the spin is aligned in this manner simplifies the analysis, as the
two spin states completely decouple. Many treatments (including one published by
some of the present authors [6]) miss this simplification.

There are three matching situations to consider, depending on whether the
transmitted waves are travelling, evanescent or in the Klein region (eV > E +√
p2
y +m2). We consider each of these in turn.

6.1 Matching Conditions for Travelling Waves
The situation of interest here is when there are waves of type (6.6) in both regions.
The matching condition in all of these problems is simply that ψ is continuous
at the boundary. The work involved is therefore, in principle, less than for the
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equivalent non-relativistic problem. The matching is slightly different for the two
spins, so we consider each in turn.

Spin-Up (Φ = 1)

We simplify the problem initially by taking the boundary at x = 0. Steps at other
values of x are then dealt with by inserting suitable phase factors. The matching
condition at x = 0 reduces to

[cosh(ui/2) + sinh(ui/2)σ1e
φiiσ3 ]T ↑i

+ [cosh(ui/2)− sinh(ui/2)σ1e
−φiiσ3 ]R↑i

= [cosh(ui+1/2) + sinh(ui+1/2)σ1e
φi+1iσ3 ]T ↑i+1

+ [cosh(ui+1/2)− sinh(ui+1/2)σ1e
−φi+1iσ3 ]R↑i+1. (6.10)

Since the equations for the reflection and transmission coefficients involve only
scalar and iσ3 terms, it is again convenient to replace the iσ3 bivector with the
symbol j. If we now define the 2× 2 matrix

Ai ≡
(

cosh(ui/2) cosh(ui/2)
sinh(ui/2)ejφi − sinh(ui/2)e−jφi

)
(6.11)

we find that equation (6.10) can be written concisely as

Ai

(
T ↑i
R↑i

)
= Ai+1

(
T ↑i+1
R↑i+1

)
. (6.12)

The Ai matrix has a straightforward inverse, so equation (6.12) can be easily
manipulated to describe various physical situations. For example, consider plane
waves incident on a single step. The equation describing this configuration is simply

A1

(
T ↑1
R↑1

)
= A2

(
T ↑2
0

)
(6.13)

so that(
T ↑1
R↑1

)
= T ↑2

sinhu1 cosφ1
· sinh(u1/2) cosh(u2/2)e−jφ1 + cosh(u1/2) sinh(u2/2)ejφ2

sinh(u1/2) cosh(u2/2)ejφ1 − cosh(u1/2) sinh(u2/2)ejφ2

 (6.14)
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from which the reflection and transmission coefficients can be read off. The case of
perpendicular incidence is particularly simple as equation (6.12) can be replaced by(

Ti+1

Ri+1

)
= 1

sinhui+1

(
sinh1

2(ui+1 + ui) sinh1
2(ui+1 − ui)

sinh1
2(ui+1 − ui) sinh1

2(ui+1 + ui)

)(
Ti
Ri

)
, (6.15)

which is valid for all spin orientations. So, for perpendicular incidence, the reflection
coefficient r = R1/T1 and transmission coefficient t = T2/T1 at a single step are

r =
sinh1

2(u1 − u2)
sinh1

2(u1 + u2) , t = sinhu1

sinh1
2(u1 + u2) , (6.16)

which agree with the results given in standard texts (and also [35]).

Spin-Down (Φ = −iσ2)

The matching equations for the case of opposite spin are

[cosh(ui/2) + sinh(ui/2)σ1e
φiiσ3 ](−iσ2)T ↓i

+ [cosh(ui/2)− sinh(ui/2)σ1e
−φiiσ3 ](−iσ2)R↓i

= [cosh(ui+1/2) + sinh(ui+1/2)σ1e
φi+1iσ3 ](−iσ2)T ↓i+1

+ [cosh(ui+1/2)− sinh(ui+1/2)σ1e
−φi+1iσ3 ](−iσ2)R↓i+1.

(6.17)
Pulling the iσ2 out on the right-hand side just has the effect of complex-conjugating
the reflection and transmission coefficients, so the matrix equation (6.10) is un-
changed except that it now relates the complex conjugates of the reflection and
transmission coefficients. The analog of equation (6.12) is therefore

A∗i

(
T ↓i
R↓i

)
= A∗i+1

(
T ↓i+1
R↓i+1

)
. (6.18)

As mentioned earlier, the choice of alignment of spin basis states ensures that there
is no coupling between them.

One can string together series of barriers by including suitable ‘propagation’
matrices. For example, consider the set-up described in Figure 6.1. The matching
equations for spin-up are, at the first barrier,

A

(
T ↑

R↑

)
= A1

(
T ↑1
R↑1

)
(6.19)
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4.2 Matching onto Evanescent Waves

Before studying matching onto evanescent waves, we must �rst solve the Dirac equa-

tion in the evanescent region. Again, the two spin orientations behave di�erently

and are treated separately. Taking spin-up �rst and looking at the transmitted

(decaying) wave in the evanescent region, the solution takes the form
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Substituting this into the Dirac equation yields
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which is consistent with the de�nition of � (42). From equation (61) we �nd that

tanh(u=2) =

E

0

�m

p

y

� �

=

p

y

+ �

E

0
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; (62)

which completes the solution. For the incoming (growing) wave we 
ip the sign of

�. We therefore de�ne u

�

via

tanh(u

�

=2) =

p

y

� �

E

0

+m

(63)

and write the outgoing and incoming spin-up waves in the evanescent region as
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Figure 2: Plane waves scattering from a barrier. The barrier has height eV and
width d. Quantities inside the barrier are labeled with a subscript 1, and the free
quantities have no subscripts. The phases are given by δ1 = md sinhu1 cosφ1 and
δ = pxd.

and at the second barrier,

A1

 ejδ1 0
0 e−jδ1

( T ↑1
R↑1

)
= A

 ejδ 0
0 e−jδ

( T ↑
′

0

)
. (6.20)

Equation (6.20) demonstrates neatly how matrices of the type

P =
 ejδ 0

0 e−jδ

 , (6.21)

where δ = pxd and d is the distance between steps, can be used to propagate from
one step to the next. In this case the problem is reduced to the equation(

T ↑

R↑

)
=
[
cosδ1 I − j sinδ1A

−1A1

(
1 0
0 −1

)
A−1

1 A

](
ejδT ↑

′

0

)
, (6.22)

which quickly yields the reflection and transmission coefficients.

6.2 Matching onto Evanescent Waves
Before studying matching onto evanescent waves, we must first solve the Dirac equa-
tion in the evanescent region. Again, the two spin orientations behave differently
and are treated separately. Taking spin-up first and looking at the transmitted
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(decaying) wave in the evanescent region, the solution takes the form

ψt = [cosh(u/2) + sinh(u/2)σ2]e−κxe−iσ3(Et− pyy)T. (6.23)

Substituting this into the Dirac equation yields

(E ′γ0 + pyγ2)euσ2/2 = euσ2/2(mγ0 − κγ2) (6.24)

which is consistent with the definition of κ (6.5). From equation (6.24) we find that

tanh(u/2) = E ′ −m
py − κ

= py + κ

E ′ +m
, (6.25)

which completes the solution. For the incoming (growing) wave we flip the sign of
κ. We therefore define u± via

tanh(u±/2) = py ± κ
E ′ +m

(6.26)

and write the outgoing and incoming spin-up waves in the evanescent region as

ψt = [cosh(u+/2) + sinh(u+/2)σ2]e−κxe−iσ3(Et− pyy)T ↑

ψr = [cosh(u−/2) + sinh(u−/2)σ2]eκxe−iσ3(Et− pyy)R↑.
(6.27)

If we now consider matching at x = 0, the continuity equation becomes

[cosh(ui/2) + sinh(ui/2)σ1e
φiiσ3 ]T ↑i

+ [cosh(ui/2)− sinh(ui/2)σ1e
−φiiσ3 ]R↑i

= [cosh(u+
i+1/2) + sinh(u+

i+1/2)σ2]T ↑i+1
+ [cosh(u−i+1/2) + sinh(u−i+1/2)σ2)]R↑i+1. (6.28)

On defining the matrix

B+
i ≡

(
cosh(u+

i /2) cosh(u−i /2)
j sinh(u+

i /2) +j sinh(u−i /2)

)
, (6.29)

we can write equation (6.28) compactly as

Ai

(
T ↑i
R↑i

)
= B+

i+1

(
T ↑i+1
R↑i+1

)
. (6.30)
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Again, either of the matrices can be inverted to analyse various physical situations.
For example, the case of total reflection by a step is handled by

A1

(
T ↑1
R↑1

)
= B+

2

(
T ↑2
0

)
, (6.31)

from which one finds the reflection coefficient

r↑ = − tanh(u+/2) + tanh(u/2)jejφ

tanh(u+/2)− tanh(u/2)je−jφ
(6.32)

which has |r↑| = 1, as expected. The subscripts on u1, u±2 and φ1 are all obvious,
and have been dropped.

The case of spin-down requires some sign changes. The spinors in the evanescent
region are now given by

ψt = [cosh(u−/2) + sinh(u−/2)σ2](−iσ2)e−κxe−iσ3(Et− pyy)T ↓

ψr = [cosh(u+/2) + sinh(u+/2)σ2](−iσ2)eκxe−iσ3(Et− pyy)R↓
(6.33)

and, on defining

B−i ≡
(

cosh(u−i /2) cosh(u+
i /2)

j sinh(u−i /2) −j sinh(u+
i /2)

)
, (6.34)

the analog of equation (6.30) is

A∗i

(
T ↓i
R↓i

)
= B−

∗

i+1

(
T ↓i+1
R↓i+1

)
. (6.35)

These formulae are now applied to two situations of physical interest.

6.3 Spin Precession at a Barrier
When a monochromatic wave is incident on a single step of sufficient height that
the wave cannot propagate there is total reflection. In the preceding section we
found that the reflection coefficient for spin-up is given by equation (6.32), and the
analogous calculation for spin-down yields

r↓ = −tanh(u−/2)− tanh(u/2)je−jφ

tanh(u−/2) + tanh(u/2)jejφ
. (6.36)
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Both r↑ and r↓ are pure phases, but there is an overall phase difference between
the two. If the rest-spin vector s = Φσ3Φ̃ is not perpendicular to the plane of
incidence, then this phase difference produces a precession of the spin vector. To
see how, suppose that the incident wave contains an arbitrary superposition of
spin-up and spin-down states,

Φ = cos(θ/2)eiσ3φ1 − sin(θ/2)iσ2e
iσ3φ2 = eiσ3φ/2e−iσ2θ/2e−iσ3ε/2, (6.37)

where
φ = φ1 − φ2, ε = φ1 + φ2, (6.38)

and the final pure-phase term is irrelevant. After reflection, suppose that the
separate up and down states receive phase shifts of δ↑ and δ↓ respectively. The
Pauli spinor in the reflected wave is therefore

Φr = cos(θ/2)eiσ3(φ1 + δ↑) − sin(θ/2)iσ2e
iσ3(φ2 + δ↓)

= eiσ3δ/2eiσ3φ/2e−iσ2θ/2e−iσ3ε
′/2, (6.39)

where
δ = δ↑ − δ↓ (6.40)

and again there is an irrelevant overall phase. The rest-spin vector for the reflected
wave is therefore

sr = Φrσ3Φ̃r = eiσ3δ/2se−iσ3δ/2, (6.41)

so the spin-vector precesses in the plane of incidence through an angle δ↑ − δ↓. If
δ↑ and δ↓ are defined for the asymptotic (free) states then this result for the spin
precession is general.

To find the precession angle for the case of a single step we return to the
formulae (6.32) and (6.36) and write

ejδ = r↑r↓
∗

= (tanh(u+/2) + tanh(u/2)jejφ)(tanh(u−/2) + tanh(u/2)jejφ)
(tanh(u+/2)− tanh(u/2)je−jφ)(tanh(u−/2)− tanh(u/2)je−jφ)

(6.42)

If we now recall that

tanh(u/2) = p/(E +m), tanh(u
±

2 ) = py ± κ
E − eV +m

, (6.43)
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we find that
ejδ = e2jφ

m cosφ− jE sinφ
m cosφ+ jE sinφ. (6.44)

The remarkable feature of this result is that all dependence on the height of the
barrier has vanished, so that the precession angle is determined solely by the
incident energy and direction. To proceed we write

m cosφ− jE sinφ = ρejα (6.45)

so that
tanα = − coshu tanφ. (6.46)

Equation (6.44) now yields

tan(δ/2− φ) = − coshu tanφ, (6.47)

from which we obtain the final result that

tan(δ/2) = −(coshu− 1) tanφ
1 + coshu tan2φ

. (6.48)

A similar result for the precession angle of the rest-spin vector was obtained
by Fradkin & Kashuba [49] using standard techniques. Readers are invited to
compare their derivation with the present approach. The formula (6.48) agrees
with equation (5.37) from Section 5.3, since the angle θ employed there is related
to the angle of incidence φ by

θ = π − 2φ. (6.49)

Since the decomposition of the plane-wave spinor into a boost term and a Pauli
spinor term is unique to the STA, it is not at all clear how the conventional approach
can formulate the idea of the rest-spin. In fact, the rest-spin vector is contained in
the standard approach in the form of the ‘polarisation operator’ [49, 50] which, in
the STA, is given by

Ô(n) ≡ − j

p̂2 [ip̂p̂·n+ γ̂0i(n∧p̂)·p̂] (6.50)

where n is a unit spatial vector. This operator is Hermitian, squares to 1 and
commutes with the free-field Hamiltonian. If we consider a free-particle plane-wave
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state, then the expectation value of the Ô(σi) operator is

〈ψ†Ô(σi)ψ〉
〈ψ†ψ〉

= m

Ep2 〈Φ̃L(σi ·ppLΦσ3 + σi∧ppL̃Φσ3)〉

= m

Ep2 [L(σi ·ppL+ σi∧ppL̃)]·s (6.51)

where L is the boost
L(p) = E +m+ p√

2m(E +m)
(6.52)

and p̂ is replaced by its eigenvalue p. To manipulate equation (6.51) we use the
facts that L commutes with p and satisfies

L2 = (E + p)/m (6.53)

to construct

m

Ep2 [L(σi ·ppL+ σi∧ppL̃)] = m

Ep2 [σi ·p
(E + p)
m

p− σi ·pp

+E −m2m (E +m+ p)σi(E +m− p)].(6.54)

Since only the relative vector part of this quantity is needed in equation (6.51) we
are left with

E −m
2Ep2 (2σi ·pp+ (E +m)2σi − pσip) = 1

2E(E +m)(p2σi + (E +m)2σi)

= σi. (6.55)

The expectation value of the ‘polarisation’ operators is therefore simply

〈ψ†Ô(σi)ψ〉
〈ψ†ψ〉

= σi ·s, (6.56)

which just picks out the components of the rest-spin vector, as claimed.
For the case of the potential step, Ô(n) still commutes with the full Hamiltonian

when n is perpendicular to the plane of incidence. In their paper Fradkin &
Kashuba decompose the incident and reflected waves into eigenstates of Ô(n),
which is equivalent to aligning the spin in the manner adopted in this section. As
we have stressed, removing the boost and working directly with Φ simplifies many
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Figure 3: Schematic representation of plane-wave tunnelling.

Equation (95) shows that the relevant propagator matrix for evanescent waves is

P =

 

e

�d

0

0 e

��d

!

: (96)

The problem now reduces to the matrix equation

 

e

�jdp

x

T

"

e

jdp

x

R

"

!

=

"

cosh(�d) + sinh(�d)A

�1

B

+

 

1 0

0 �1

!

B

+

�1

A

#  

T

"

0

0

!

; (97)

from which the re
ection and transmission coe�cients are easily obtained.

Applications deal mainly with perpendicular incidence, so we now specialise to

this situation. For perpendicular incidence we can set u

+

= �u

�

= u

0

, where

tanhu

0

=

�

E

0

+m

: (98)

It follows that the equations for spin-up and spin-down are the same, and we can

remove the up-arrows from the preceding equations. Equation (94) now yields

 

T

1

R

1

!

=

T

0

sinhu

0

 

sinh(u

0

=2) cosh(u=2)� j cosh(u

0

=2) sinh(u=2)

sinh(u

0

=2) cosh(u=2) + j cosh(u

0

=2) sinh(u=2)

!

(99)

and from T

1

and R

1

the current in the evanescent region can be constructed. The

ratio J

1

=J

0

may be interpreted as de�ning a `velocity' inside the barrier.

Multiplying out the matrices in equation (97) is straightforward, and yields
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T
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R

!

= T

0

 

cosh(�d)� j sinh(�d)(EE

0

�m

2

)=(�p)

�j sinh(�d)eV m=(�p)

!

; (100)

which solves the problem. The transmission coe�cient is

t =

�pe

�jdp

�p cosh(�d)� j(p

2

� eV E) sinh(�d)

(101)

which recovers the familiar non-relativistic formula in the limit E � m.

Figure 3: Schematic representation of plane-wave tunnelling.

.

of these manipulations, and removes any need for the polarisation operator.

6.4 Tunnelling of Plane Waves
Suppose now that a continuous beam of plane waves is incident on a potential
barrier of finite width. We know that, quantum-mechanically, some fraction of the
wave tunnels through to the other side. In Section 7 we address the question ‘how
long does the tunnelling process take?’. To answer this we will need to combine
plane-wave solutions to construct a wavepacket, so here we give the results for
plane waves. The physical set-up is illustrated in Figure 6.4.

The matching equation at the x = 0 boundary is, for spin-up,

B+
(
T ↑1
R↑1

)
= A

(
T ↑
′

0

)
, (6.57)

where the A and B+ matrices are as defined in (6.11) and (6.29) respectively. All
subscripts can be dropped again as A always refers to free space and B+ to the
barrier region. The matching conditions at x = −d require the inclusion of suitable
propagators and the resulting equation is

A

 e−jdpx 0
0 ejdpx

( T ↑

R↑

)
= B+

 eκd 0
0 e−κd

( T ↑1
R↑1

)
. (6.58)
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Equation (6.58) shows that the relevant propagator matrix for evanescent waves is

P =
 eκd 0

0 e−κd

 . (6.59)

The problem now reduces to the matrix equation e−jdpxT ↑

ejdpxR↑

 =
[
cosh(κd) + sinh(κd)A−1B+

(
1 0
0 −1

)
B+−1

A

](
T ↑
′

0

)
,

(6.60)
from which the reflection and transmission coefficients are easily obtained.

The applications to tunnelling discussed in Section 7 deal mainly with per-
pendicular incidence, so we now specialise to this situation. For perpendicular
incidence we can set u+ = −u− = u′, where

tanhu′ = κ

E ′ +m
. (6.61)

It follows that the equations for spin-up and spin-down are the same, and we can
remove the up-arrows from the preceding equations. Equation (6.57) now yields(

T1

R1

)
= T ′

sinhu′

(
sinh(u′/2) cosh(u/2)− j cosh(u′/2) sinh(u/2)
sinh(u′/2) cosh(u/2) + j cosh(u′/2) sinh(u/2)

)
(6.62)

and from T1 and R1 the current in the evanescent region can be constructed. The
ratio J1/J0 may be interpreted as defining a ‘velocity’ inside the barrier. The
consequences of this idea were discussed in [6] where it was concluded that the
tunnelling times predicted by this velocity are not related to tunnelling times
measured for individual particles. The reasons for this are discussed in Section 7.

Multiplying out the matrices in equation (6.60) is straightforward, and yields e−jdpT
ejdpR

 = T ′
(

cosh(κd)− j sinh(κd)(EE ′ −m2)/(κp)
−j sinh(κd)eV m/(κp)

)
, (6.63)

which solves the problem. The transmission coefficient is

t = κpe−jdp

κp cosh(κd)− j(p2 − eV E) sinh(κd) (6.64)

which recovers the familiar non-relativistic formula in the limit E ≈ m.
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6.5 The Klein Paradox

In the Klein region, eV − E >
√
p2
y +m2, travelling wave solutions exist again. To

find these we observe that plane-wave solutions must now satisfy

(p− eV γ0)ψ = mψγ0 (6.65)

and, as p− eV γ0 has a negative time component, ψψ̃ must now be −1. We could
achieve this flip by inserting a ‘β-factor’ of the type described in Section (3.3), but
this would mix the rest-spin states. It is more convenient to work with solutions
given by

ψt = [cosh(u/2) + sinh(u/2)(cosφσ1 − sinφσ2)]σ1Φe−iσ3(Et+ pxx− pyy)T (6.66)

and

ψr = [cosh(u/2) + sinh(u/2)(− cosφσ1 − sinφσ2)]σ1Φe−iσ3(Et− pxx− pyy)R,
(6.67)

where the choice of σ1 or σ2 on the right-hand side of the boost is merely a phase
choice. To verify that ψt is a solution we write the Dirac equation as

[(E − eV )γ0 − pxγ1 + pyγ2]e(cosφσ1 − sinφσ2)u/2σ1

= me(cosφσ1 − sinφσ2)u/2σ1γ0 (6.68)

which holds provided that

tanh(u/2) = p

m+ eV − E
. (6.69)

It follows that
m coshu = eV − E, m sinhu = p. (6.70)

The current obtained from ψt is found to be

ψtγ0ψ̃
t = (eV − E)γ0 + pxγ1 − pyγ2 (6.71)

which is future pointing (as it must be) and points in the positive-x direction. It is
in order to obtain the correct direction for the current that the sign of px is changed
in (6.66) and (6.67). As has been pointed out by various authors [35, 51, 52], some
texts on quantum theory miss this argument and match onto a solution inside the
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barrier with an incoming group velocity [34, 36]. The result is a reflection coefficient
greater than 1. This is interpreted as evidence for pair production, though in fact
the effect is due to the choice of boundary conditions. To find the correct reflection
and transmission coefficients for an outgoing current, we return to the matching
equation which, for spin-up, gives

[cosh(ui/2) + sinh(ui/2)σ1e
φiiσ3 ]T ↑i

+ [cosh(ui/2)− sinh(ui/2)σ1e
−φiiσ3 ]R↑i

= [cosh(ui+1/2) + sinh(ui+1/2)σ1e
−φi+1iσ3 ]σ1T

↑
i+1

+ [cosh(ui+1/2)− sinh(ui+1/2)σ1e
φi+1iσ3 ]σ1R

↑
i+1. (6.72)

This time we define the matrix

Ci ≡
(

sinh(ui/2)ejφi − sinh(ui/2)e−jφi
cosh(ui/2) cosh(ui/2)

)
(6.73)

so that equation (6.72) becomes

Ai

(
T ↑i
R↑i

)
= Ci+1

(
T ↑i+1
R↑i+1

)
. (6.74)

It should be noted that
Ci =

(
0 1
1 0

)
Ai. (6.75)

The corresponding equation for spin-down is simply

A∗i

(
T ↓i
R↓i

)
= C∗i+1

(
T ↓i+1
R↓i+1

)
. (6.76)

The Klein ‘paradox’ occurs at a single step, for which the matching equation is

A1

(
T ↑1
R↑1

)
= C2

(
T ↑2
0

)
. (6.77)

Inverting the A1 matrix yields(
T ↑1
R↑1

)
= T ↑2

sinhu cosφ

(
cosh(u+ u′)/2

sinh(u/2) sinh(u′/2)e2jφ − cosh(u/2) cosh(u′/2)

)
(6.78)
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from which the reflection and transmission coefficients can be read off. (The primed
quantities relate to the barrier region, as usual.) In particular, for perpendicular
incidence, we recover

r = −cosh(u− u′)/2
cosh(u+ u′)/2 , t = sinhu

cosh(u+ u′)/2 (6.79)

as found in [35]. The reflection coefficient is always ≤ 1, as it must be from current
conservation with these boundary conditions. But, although a reflection coefficient
≤ 1 appears to ease the paradox, some difficulties remain. In particular, the
momentum vector inside the barrier points in an opposite direction to the current.

A more complete understanding of the Klein barrier requires quantum field
theory since, as the barrier height is > 2m, we expect pair creation to occur. An
indication that this must be the case comes from an analysis of boson modes based
on the Klein-Gordon equation. There one finds that superradiance (r > 1) does
occur, which has to be interpreted in terms of particle production. For the fermion
case the resulting picture is that electron-positron pairs are created and split apart,
with the electrons travelling back out to the left and the positrons moving into the
barrier region. If a single electron is incident on such a step then it is reflected
and, according to the Pauli principle, the corresponding pair-production mode is
suppressed.

A complete analysis of the Klein barrier has been given by Manogue [51] to
which readers are referred for further details. Manogue concludes that the fermion
pair-production rate is given by

Γ =
∫ d2k

(2π)2

∫ dω
2π

sinhu′
sinhu

∑
i

|T i|2 (6.80)

where the integrals run over the available modes in the Klein region, and the sum
runs over the two spin states. This formula gives a production rate per unit time,
per unit area, and applies to any shape of barrier. The integrals in (6.80) are not
easy to evaluate, but a useful expression can be obtained by assuming that the
barrier height is only slightly greater than 2m,

eV = 2m(1 + ε). (6.81)
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Then, for the case of a single step, we obtain a pair-production rate of

Γ = πm3ε3

32 , (6.82)

to leading order in ε. The dimensional term is m3 which, for electrons, corresponds
to a rate of 1048 particles per second, per square meter. Such an enormous rate
would clearly be difficult to sustain in any physically-realistic situation!

The results obtained in this section are summarised in Table 6.

7 Tunnelling Times
In this Section we study tunnelling phenomena. We do so by setting up a wavepacket
and examining its evolution as it impinges on a potential barrier. The packet splits
into reflected and transmitted parts, and the streamlines of the conserved current
show which parts of the initial packet end up being transmitted. The analysis can
be used to obtain a distribution of arrival times at some fixed point on the far
side of the barrier, which can be compared directly with experiment. The bulk
of this section is concerned with packets in one spatial dimension, and compares
our approach to other studies of the tunnelling-time problem. The section ends
with a discussion of the complications introduced in attempting 2- or 3-dimensional
simulations.

The study of tunnelling neatly combines the solutions found in Section 6 with
the views on operators and the interpretation of quantum mechanics expressed in
Section 3. Tunnelling also provides a good illustration of how simple it is study
electron physics via the Dirac theory once the STA is available.

7.1 Wavepacket Tunnelling
In Section 6.4 we studied tunnelling of a continuous plane wave through a potential
barrier. It was found that the growing and decaying waves in the barrier region
are given by equations (6.27) for spin-up and (6.33) for spin-down. Restricting
to the case of perpendicular incidence, the amplitudes of the reflected and trans-
mitted waves are given by equation (6.62). It follows that, for arbitrary spin, the
wavefunction in the barrier region is

ψ1 = [cosh(u′/2)Φ + sinh(u′/2)σ2σ3Φσ3]e−κxe−iσ3Etα +
[cosh(u′/2)Φ− sinh(u′/2)σ2σ3Φσ3]eκxe−iσ3Etα∗ (7.1)
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Travelling Waves

ψt = [cosh(u/2) + sinh(u/2)σ1e
φiσ3 ]Φe−iσ3(Et− pxx− pyy)

ψr = [cosh(u/2)− sinh(u/2)σ1e
−φiσ3 ]Φe−iσ3(Et+ pxx− pyy)

tanh(u/2) = p/(E − eV +m)

Evanescent
Waves

ψt = [cosh(u±/2) + sinh(u±/2)σ2]e−κxe−iσ3(Et− pyy)T
ψr = [cosh(u∓/2) + sinh(u∓/2)σ2]eκxe−iσ3(Et− pyy)R

(upper/lower signs = spin up/down)
tanh(u±/2) = (py ± κ)/(E − eV +m)

Klein Waves

ψt = [cosh(u/2) + sinh(u/2)σ1e
−φiσ3 ]σ1Φe−iσ3(Et+ pxx− pyy)

ψr = [cosh(u/2)− sinh(u/2)σ1e
φiσ3 ]σ1Φe−iσ3(Et− pxx− pyy)

tanh(u/2) = p/(m+ eV − E)

Matching
Matrices

A =
(

cosh(u/2) cosh(u/2)
sinh(u/2)ejφ − sinh(u/2)e−jφ

)

B+ =
(

cosh(u+/2) cosh(u−/2)
j sinh(u+/2) +j sinh(u−/2)

)

C =
(

sinh(u/2)ejφ − sinh(u/2)e−jφ

cosh(u/2) cosh(u/2)

)
A∗, B−∗ , C∗ for spin down.

Propagators
(
ejdpx 0

0 e−jdpx

)
,

(
eκd 0
0 e−κd

)

Table 6: Summary of results for plane waves incident on a potential step. The
waves travel in the x− y plane and the steps lie in the y − z plane. The matching
matrices relate T and R on either side of a step.
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where
α ≡ T ′

sinhu′ [sinh(u′/2) cosh(u/2)− iσ3 cosh(u′/2) sinh(u/2)] (7.2)

and
tanh(u′/2) = κ

E ′ +m
= κ

E − eV +m
, κ2 = m2 − E ′2. (7.3)

The current in the barrier region is

ψ1γ0ψ̃1 = |T ′|2

mκ2 [m2eV cosh(2κx) + E ′(p2 − Eev)

+pκ2σ1 −mκeV sinh(2κx)(iσ1)·s]γ0 (7.4)

from which we can define a ‘velocity’

dx

dt
≡ J ·γ1

J ·γ0
= pκ2

m2eV cosh(2κx) + E ′(p2 − Eev) . (7.5)

In fact, the velocity (7.5) does not lead to a sensible definition of a tunnelling time
for an individual particle [6]. As we shall see shortly, an additional phenomenon
underlies wavepacket tunnelling, leading to much shorter times than those predicted
from (7.5). To study wavepacket tunnelling it is useful, initially, to simplify to a
one-dimensional problem. To achieve this we must eliminate the transverse current
in (7.4) by setting s = ±σ1. This is equivalent to aligning the spin vector to
point in the direction of motion. (In this case there is no distinction between the
laboratory and comoving spin.) With Φ chosen so that s = σ1 it is a now a simple
matter to superpose solutions at t = 0 to construct a wavepacket centred to the
left of the barrier and moving towards the barrier. The wavepacket at later times
is then reassembled from the plane-wave states, whose time evolution is known.
The density J0 = γ0 ·J can then be plotted as a function of time and the result of
such a simulation is illustrated in Figure 7.1.

The Dirac current J = ψγ0ψ̃ is conserved even in the presence of an electro-
magnetic field. It follows that J defines a set of streamlines which never end or
cross. Furthermore, the time-component of the current is positive-definite so the
tangents to the streamlines are always future-pointing timelike vectors. According
to the standard interpretation of quantum mechanics, J0(x, t) gives the probability
density of locating a particle at position x at time t. But, considering a flux tube
defined by adjacent streamlines, we find that

ρ(t0, x0)dx0 = ρ(t1, x1)dx1 (7.6)
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Figure 4: Evolution of the density J0 as a function of time. The initial packet is a
Gaussian of width ∆k = 0.04Å−1 and energy 5eV. The barrier starts at the origin
and has width 5Å and height 10eV. The top line shows the density profile at times
−0.5× 10−14s and −0.1× 10−14s, and the bottom line shows times 0.1× 10−14s and
0.5× 10−14s. In all plots the vertical scale to the right of the barrier is multiplied
by 104 to enhance the features of the small, transmitted packet.
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where (t0, x0) and (t1, x1) are connected by a streamline. It follows that the density
J0 flows along the streamlines without ‘leaking’ between them. So, in order to study
the tunnelling process, we should follow the streamlines from the initial wavepacket
through spacetime. A sample set of these streamlines is shown in Figure 7.1. A
significant feature of this plot is that a continuously-distributed set of initial input
conditions has given rise to a disjoint set of outcomes (whether or not a streamline
passes through the barrier). Hence the deterministic evolution of the wavepacket
alone is able to explain the discrete results expected in a quantum measurement,
and all notions of wavefunction collapse are avoided. This is of fundamental
significance to the interpretation of quantum mechanics. Some consequences of
this view for other areas of quantum measurement have been explored by Dewdney
et al. [27] and Vigier et al. [26], though their work was founded in the Bohmian
interpretation of non-relativistic quantum mechanics. The results presented here
are, of course, independent of any interpretation — we do not need the apparatus
of Bohm/de Broglie theory in order to accept the validity of predictions obtained
from the current streamlines.

The second key feature of the streamline plot in Figure 7.1 is that it is only
the streamlines starting near the front of the initial wavepacket that pass through
the barrier. Relative to the centre of the packet, they therefore have a ‘head start’
in their arrival time at some chosen point on the far side of the barrier. Over the
front part of the barrier, however, the streamlines slow down considerably, as can
be seen by the change in their slope. These two effects, of picking out the front end
of the packet and then slowing it down, compete against each other and it is not
immediately obvious which dominates. To establish this, we return to Figure 7.1
and look at the positions of the wavepacket peaks. At t = 0.5× 10−14s, the peak of
the transmitted packet lies at x = 70Å, whereas the peak of the initial packet would
have been at x = 66Å had the barrier not been present. In this case, therefore, the
peak of the transmitted packet is slightly advanced, a phenomenon often interpreted
as showing that tunnelling particles speed up, sometimes to velocities greater than
c [53]. The plots presented here show that such an interpretation is completely
mistaken. There is no speeding up, as all that happens is that it is only the
streamlines from the front of the wavepacket that cross the barrier (slowing down
in the process) and these reassemble to form a localised packet on the far side. The
reason that tunnelling particles may be transmitted faster than free particles is
due entirely to the spread of the initial wavepacket.

There is considerable interest in the theoretical description of tunnelling pro-
cesses because it is now possible to obtain measurements of the times involved.
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Figure 5: Particle streamlines for the packet evolution shown in Figure 7.1. Only the
streamlines from the very front of the packet cross the barrier, with the individual
streamlines slowing down as they pass through.
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The clearest experiments conducted to date have concerned photon tunnelling [54],
where an ingenious 2-photon interference technique is used to compare photons
that pass through a barrier with photons that follow an unobstructed path. The
discussion of the results of photon-tunnelling experiments usually emphasise packet
reshaping, but miss the arguments about the streamlines. Thus many articles con-
centrate on a comparison of the peaks of the incident and transmitted wavepackets
and discuss whether the experiments show particles travelling at speeds > c [53, 55].
As we have seen, a full relativistic study of the streamlines followed by the electron
probability density show clearly that no superluminal velocities are present. The
same result is true for photons, as we will discuss elsewhere.

Ever since the possibility of tunnelling was revealed by quantum theory, people
have attempted to define how long the process takes. Reviews of the various
different approaches to this problem have been given by Hauge & Støvneng [56]
and, more recently, by Landauer & Martin [57]. Most approaches attempt to define
a single tunnelling time for the process, rather than a distribution of possible
outcomes as is the case here. Quite why one should believe that it is possible to
define a single time in a probabilistic process such as tunnelling is unclear, but
the view is still regularly expressed in the modern literature. A further flaw in
many other approaches is that they attempt to define how long the particle spent
in the barrier region, with answers ranging from the implausible (zero time) to the
utterly bizarre (imaginary time). From the streamline plot presented here, it is
clearly possible to obtain a distribution of the times spent in the barrier for the
tunnelling particles, and the answers will be relatively long as the particles slow
down in the barrier. But such a distribution neglects the fact that the front of the
packet is preferentially selected, and anyway does not appear to be accessible to
direct experimental measurement. As the recent experiments show [54], it is the
arrival time at a point on the far side of the barrier that is measurable, and not
the time spent in the barrier.

7.2 2-Dimensional Simulations
In the preceding section we simplified the problem in two ways: by assuming
perpendicular incidence, and by aligning the spin-vector in the direction of motion.
For other configurations more complicated two-dimensional or three-dimensional
simulations are required. As well as the obvious numerical complications introduced
there are some further difficulties. For the 1-D plots just shown, there was no
difficulty in deciding which part of the wavepacket was transmitted and which was
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Figure 6: A 2-Dimensional simulation. The simulation uses a 2-D wavepacket in the
x–y plane of width ∆k = 0.04Å−1 and energy 5eV. The packet is incident perpendicular
to the barrier, and the spin vector lies in the +z direction. The barrier is at x = 0 and
has width 2.5Å and height 10eV. The top two plots show streamlines in the x–y plane.
The top left plot shows streamlines about the bifurcation line, illustrating that the left
side of the packet, which ‘spins’ into the barrier, is preferentially transmitted. The top
right plot shows streamlines for a set of points near the front of the packet with the
same x value. Again, it is the left side of the packet that is transmitted. The reflected
trajectories show quite complex behaviour, and in both plots the effect of the transverse
current in the barrier is clear. The t-dependence of the streamlines in the top right plot
is shown in the bottom two plots. The left-hand plot shows the streamlines in t–x space.
Since the streamlines were started from the same x position and different y positions, the
streamlines start from the same point and then spread out as the individual lines evolve
differently. Again, it is possible to infer that the streamlines slow down as they pass
through the barrier. The right-hand plot shows the t–y evolution of the same streamlines.
In all plots distance is measured in Å and time in units of 10−14s.
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reflected, since the bifurcation point occurred at some fixed value of x. For 2-D
or 3-D simulations, however, the split of the initial packet into transmitted and
reflected parts occurs along a line or over a 2-D surface. Furthermore, this split
is spin-dependent — if one constructs a moving wavepacket, one finds that the
streamlines circulate around the spin axis [29]. (A similar circulation phenomena
is found in the ground state of the hydrogen atom [6].) The full picture of how the
packet behaves is therefore quite complicated, though qualitatively it is still the
front portion of the packet that is transmitted. The results of a 2-D simulation are
shown in Figure 7.2, and show a number of interesting features. For example, it
is the part of the wavepacket that ‘spins’ into the barrier that is predominantly
responsible for the transmitted wavepacket. The significance of the spin in the
barrier region was clear from equation (7.4), which showed that the spin vector
generates a transverse current in the barrier region. These transverse currents are
clearly displayed in Figure 7.2. The motion near the barrier is highly complex, with
the appearance of current loops suggesting the formation of vortices. Similar effects
have been described by Hirschfelder et al. [58] in the context of the Schrödinger
theory. The streamline plots again show a slowing down in the barrier, which
offsets the fact that it is the front of the packet that crosses the barrier.

8 Spin Measurements
We now turn to a second application of the local observables approach to quantum
theory, namely to determine what happens to a wavepacket when a spin measure-
ment is made. The first attempts to answer this question were made by Dewdney
et al. [31, 27], who used the Pauli equation for a particle with zero charge and
an anomalous magnetic moment to provide a model for a spin-1/2 particle in a
Stern-Gerlach apparatus. Written in the STA, the relevant equation is

∂tΦiσ3 = − 1
2m∇2Φ− µBΦσ3 (8.1)

and the current employed by Dewdney et al. is

J = − 1
m

∇̇〈Φ̇iσ3Φ†〉. (8.2)
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Dewdney et al. parameterise the Pauli spinor Φ in terms of a density and three
‘Euler angles’. In the STA, this parameterisation takes the transparent form

Φ = ρ1/2eiσ3φ/2eiσ1θ/2eiσ3ψ/2, (8.3)

where the rotor term is precisely that needed to parameterise a rotation in terms
of the Euler angles. With this parameterisation, it is a simple matter to show that
the current becomes

J = ρ

2m(∇ψ + cosθ∇φ). (8.4)

But, as was noted in Section 4.1, the current defined by equation (8.2) is not
consistent with that obtained from the Dirac theory through a non-relativistic
reduction. In fact, the two currents differ by a term in the curl of the spin
vector [6, 28].

To obtain a fuller understanding of the spin measurement process, an analysis
based on the Dirac theory is required. Such an analysis is presented here. As
well as dealing with a well-defined current, basing the analysis in the Dirac theory
is important if one intends to proceed to study correlated spin measurements
performed over spacelike intervals (i.e. to model an EPR-type experiment). To
study such systems it is surely essential that one employs relativistic equations so
that causality and the structure of spacetime are correctly built in.

8.1 A Relativistic Model of a Spin Measurement
As is shown in Section 4.3, the modified Dirac equation for a neutral particle with
an anomalous magnetic moment µ is

∇ψiσ3 − iµFψγ3 = mψγ0. (8.5)

This is the equation we use to study the effects of a spin measurement, and it
is not hard to show that equation (8.5) reduces to (8.1) in the non-relativistic
limit. Following Dewdney et al. [31] we model the effect of a spin measurement by
applying an impulsive magnetic field gradient,

F = Bzδ(t)iσ3. (8.6)
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The other components of B are ignored, as we are only modelling the behaviour of
the packet in the z-direction. Around t = 0 equation (8.5) is approximated by

∂tψiσ3 = ∆p zδ(t)γ3ψγ3, (8.7)

where
∆p ≡ µB. (8.8)

To solve (8.7) we decompose the initial spinor ψ0 into

ψ↑ ≡ 1
2(ψ0 − γ3ψ0γ3), ψ↓ ≡ 1

2(ψ0 + γ3ψ0γ3). (8.9)

Equation (8.7) now becomes, for ψ↑

∂tψ
↑ = ∆p zδ(t)ψ↑iσ3 (8.10)

with the opposite sign for ψ↓. The solution is now straightforward, as the impulse
just serves to insert a phase factor into each of ψ↑ and ψ↓:

ψ↑ → ψ↑eiσ3∆p z, ψ↓ → ψ↓e−iσ3∆p z. (8.11)

If we now suppose that the initial ψ consists of a positive-energy plane-wave

ψ0 = L(p)Φeiσ3(p·x− Et) (8.12)

then, immediately after the shock, ψ is given by

ψ = ψ↑eiσ3(p·x+ ∆p z) + ψ↓eiσ3(p·x−∆p z). (8.13)

The spatial dependence of ψ is now appropriate to two different values of the
3-momentum, p↑ and p↓, where

p↑ ≡ p+ ∆p σ3, p↓ ≡ p−∆p σ3. (8.14)

The boost term L(p) corresponds to a different momentum, however, so both
positive and negative frequency waves are required for the future evolution. After
the shock, the wavefunction therefore propagates as

ψ = ψ↑+e
−iσ3p

↑ ·x + ψ↑−e
iσ3p̄

↑ ·x + ψ↓+e
−iσ3p

↓ ·x + ψ↓−e
iσ3p̄

↓ ·x (8.15)
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where

p↑γ0 = E↑ + p↑, (8.16)
p̄↑γ0 = E↑ − p↑, (8.17)

and
E↑ = (m2 + p↑2)1/2. (8.18)

Both p↓ and E↓ are defined similarly.
Each term in (8.15) must separately satisfy the free-particle Dirac equation, so

it follows that

p↑ψ↑+ = mψ↑+γ0, (8.19)
−p̄↑ψ↑− = mψ↑−γ0, (8.20)

which are satisfied together with

ψ↑ = ψ↑+ + ψ↑−. (8.21)

The same set of equations hold for ψ↓. Dropping the arrows, we find that

ψ+ = 1
2E (pγ0ψ +mψ̄) (8.22)

ψ− = 1
2E (p̄γ0ψ −mψ̄) (8.23)

which hold for both ψ↑ and ψ↓.
The effect of the magnetic shock on a monochromatic wave is to split the wave

into four components, each with a distinct momentum. The positive frequency
waves are transmitted by the device and split into two waves, whereas the negative
frequency states are reflected. The appearance of the antiparticle states must
ultimately be attributed to pair production, and only becomes significant for large
B-fields. We examine this effect after looking at more physical situations.

8.2 Wavepacket Simulations
For computational simplicity we take the incident particle to be localised along the
field direction only, with no momentum components transverse to the field. This
reduces the dimensionality of the problem to one spatial coordinate and the time
coordinate. This was the set-up considered by Dewdney et al. [31] and is sufficient
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Figure 7: Splitting of a wavepacket caused by an impulsive B-field. The initial
packet has a width of 1 × 10−24kg ms−1 in momentum space, and receives an
impulse of ∆p = 1× 10−23kg ms−1. The figure on the left shows the probability
density J0 at t = 0, 1.3, 2.6, 3.9× 10−14s, with t increasing up the figure. The figure
on the right shows streamlines in the (t, z) plane.

to demonstrate the salient features of the measurement process. The most obvious
difference between this model and a real experiment where the electron is moving is
that, in our model, all four packets have group velocities along the field direction.

The initial packet is built up from plane-wave solutions of the form

ψ = euσ3/2Φeiσ3(pz − Et) (8.24)

which are superposed numerically to form a Gaussian packet. After the impulse,
the future evolution is found from equation (8.15) and the behaviour of the spin
vector and the streamlines can be found for various initial values of Φ. The results
of these simulations are plotted on the next few pages.

In Figures 8.2 and 8.2 we plot the evolution of a packet whose initial spin vector
points in the σ1 direction (Φ = exp{−iσ2π/4}). After the shock, the density splits
neatly into two equal-sized packets, and the streamlines bifurcate at the origin. As
with the tunnelling simulations, we see that disjoint quantum outcomes are entirely
consistent with the causal wavepacket evolution defined by the Dirac equation.
The plot of the spin vector s∧γ0 shows that immediately after the shock the spins
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Figure 8: Evolution of the relative spin-vector s∧γ0, in projection in the (x, z)
plane. Immediately after the shock the spin-vectors point in all directions, but
after about 2× 10−14s they sort themselves into the two packets, pointing in the
+z and −z directions.
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Figure 9: Splitting of a wavepacket with unequal mixtures of spin-up and spin-down
components. The initial packet has Φ = 1.618− iσ2, so more of the streamlines
are deflected upwards, and the bifurcation point lies below the z = 0 plane. The
evolution of the spin vector is shown in the bottom plot.
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Figure 10: Creation of antiparticle states by a strong magnetic shock. The impulse
used is ∆p = 1× 10−18kgm s−1 and the initial packet is entirely spin-up (Φ = 1).
The packet travelling to the left consists of negative energy (antiparticle) states.

are disordered, but that after a little time they sort themselves into one of the two
packets, with the spin vector pointing in the direction of motion of the deflected
packet. These plots are in good qualitative agreement with those obtained by
Dewdney et al. [31], who also found that the choice of which packet a streamline
enters is determined by its starting position in the incident wavepacket.

Figure 8.2 shows the results of a similar simulation, but with the initial spinor
now containing unequal amounts of spin-up and spin-down components. This
time we observe an asymmetry in the wavepacket split, with more of the density
travelling in the spin-up packet. It is a simple matter to compute the ratio of the
sizes of the two packets, and to verify that the ratio agrees with the prediction of
standard quantum theory.

As a final, novel, illustration of our approach, we consider a strong shock applied
to a packet which is already aligned in the spin-up direction. For a weak shock the
entire packet is deflected but, if the shock is sufficiently strong that the antiparticle
states have significant amplitude, we find that a second packet is created. The
significant feature of Figure 8.2 is that the antiparticle states are deflected in
the opposite direction, despite the fact that their spin is still oriented in the +z
direction. The antiparticle states thus behave as if they have a magnetic moment
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to mass ratio of opposite sign. A more complete understanding of this phenomenon
requires a field-theoretic treatment. The appearance of antiparticle states would
then be attributed to pair production, with the antiparticle states having the same
magnetic moment, but the opposite spin. (One of the crucial effects of the field
quantisation of fermionic systems is to flip the signs of the charges and spins of
antiparticle states.)

The conclusions reached in this section are in broad agreement with those
of Dewdney et al.. From the viewpoint of the local observables of the Dirac
wavefunction (the current and spin densities), a Stern-Gerlach apparatus does not
fulfil the role of a classical measuring device. Instead, it behaves much more like
a polariser, where the ratio of particles polarised up and down is dependent on
the initial wavefunction. The B-field dramatically alters the wavefunction and
its observables, though in a causal manner that is entirely consistent with the
predictions of standard quantum theory. The implications of these observations
for the interpretation of quantum mechanics are profound, though they are only
slowly being absorbed by the wider physics community. (Some of these issues are
debated in the collection of essays entitled ‘Quantum Implications’ [59] and in the
recent book by Holland [32].)

9 The Multiparticle STA
So far we have dealt with the application of the STA to single-particle quantum
theory. In this section we turn to multiparticle theory. The aim here is to develop
the STA approach so that it is capable of encoding multiparticle wavefunctions,
and describing the correlations between them. Given the advances in clarity and
insight that the STA brings to single-particle quantum mechanics, we expect similar
advances in the multiparticle case. This is indeed what we have found, although
the field is relatively unexplored as yet. Here we highlight some areas where the
multiparticle STA promises a new conceptual approach, rather than attempting
to reproduce the calculational techniques employed in standard approaches to
many-body or many-electron theory. In particular, we concentrate on the unique
geometric insights that the multiparticle STA provides — insights that are lost
in the matrix theory. A preliminary introduction to the ideas developed here was
given in [4], though this is the first occasion that a full relativistic treatment has
been presented.

The n-particle STA is created simply by taking n sets of basis vectors {γiµ},
where the superscript labels the particle space, and imposing the geometric algebra
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relations
γiµγ

j
ν + γiνγ

j
µ = 0, i 6= j

γiµγ
j
ν + γiνγ

j
µ = 2ηµν i = j.

(9.1)

These relations are summarised in the single formula

γiµ ·γjν = δijηµν . (9.2)

The fact that the basis vectors from distinct particle spaces anticommute means
that we have constructed a basis for the geometric algebra of a 4n-dimensional
configuration space. There is nothing uniquely quantum-mechanical in this idea —
a system of three classical particles could be described by a set of three trajectories
in a single space, or one path in a nine-dimensional space. The extra dimensions
serve simply to label the properties of each individual particle, and should not
be thought of as existing in anything other than a mathematical sense. This
construction enables us, for example, to define a rotor which rotates one particle
whilst leaving all the others fixed. The unique feature of the multiparticle STA is
that it implies a separate copy of the time dimension for each particle, as well as the
three spatial dimensions. To our knowledge, this is the first attempt to construct a
solid conceptual framework for a multi-time approach to quantum theory. Clearly,
if successful, such an approach will shed light on issues of locality and causality in
quantum theory.

The {γiµ} serve to generate a geometric algebra of enormously rich structure.
Here we illustrate just a few of the more immediate features of this algebra. It
is our belief that the multiparticle STA will prove rich enough to encode all
aspects of multiparticle quantum field theory, including the algebra of the fermionic
creation/annihilation operators.

Throughout, Roman superscripts are employed to label the particle space in
which the object appears. So, for example, ψ1 and ψ2 refer to two copies of the same
1-particle object ψ, and not to separate, independent objects. Separate objects are
given distinct symbols, or subscripts if they represent a quantity such as the current
or spin-vector, which are vectors in configuration space with different projections
into the separate copies of the STA. The absence of superscripts denotes that all
objects have been collapsed into a single copy of the STA. As always, Roman and
Greek subscripts are also used as frame indices, though this does not interfere with
the occasional use of subscripts to determine separate projections.
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9.1 2-Particle Pauli States and the Quantum Correlator
As an introduction to the properties of the multiparticle STA, we first consider
the 2-particle Pauli algebra and the spin states of pairs of spin-1/2 particles. As
in the single-particle case, the 2-particle Pauli algebra is just a subset of the full
2-particle STA. A set of basis vectors is defined by

σ1
i = γ1

i γ
1
0 (9.3)

σ2
i = γ2

i γ
2
0 (9.4)

which satisfy

σ1
i σ

2
j = γ1

i γ
1
0γ

2
j γ

2
0 = γ1

i γ
2
j γ

2
0γ

1
0 = γ2

j γ
2
0γ

1
i γ

1
0 = σ2

jσ
1
i . (9.5)

So, in constructing multiparticle Pauli states, the basis vectors from different particle
spaces commute rather than anticommute. Using the elements {1, iσ1

k, iσ
2
k, iσ

1
j iσ

2
k}

as a basis, we can construct 2-particle states. Here we have introduced the
abbreviation

iσ1
i ≡ i1σ1

i (9.6)

since, in most expressions, it is obvious which particle label should be attached to
the i. In cases where there is potential for confusion, the particle label is put back
on the i. The basis set {1, iσ1

k, iσ
2
k, iσ

1
j iσ

2
k} spans a 16-dimensional space, which

is twice the dimension of the direct product space of two 2-component complex
spinors. For example, the outer-product space of two spin-1/2 states can be built
from complex superpositions of the set(

1
0

)
⊗
(

1
0

)
,

(
0
1

)
⊗
(

1
0

)
,

(
1
0

)
⊗
(

0
1

)
,

(
0
1

)
⊗
(

0
1

)
,

(9.7)
which forms a 4-dimensional complex space (8 real dimensions). The dimensionality
has doubled because we have not yet taken the complex structure of the spinors
into account. While the role of j is played in the two single-particle spaces by
right multiplication by iσ1

3 and iσ2
3 respectively, standard quantum mechanics does

not distinguish between these operations. A projection operator must therefore
be included to ensure that right multiplication by iσ1

3 or iσ2
3 reduces to the same

operation. If a 2-particle spin state is represented by the multivector ψ, then ψ
must satisfy

ψiσ1
3 = ψiσ2

3 (9.8)
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from which we find that

ψ = −ψiσ1
3 iσ

2
3

=⇒ ψ = ψ 1
2(1− iσ1

3 iσ
2
3). (9.9)

On defining
E = 1

2(1− iσ1
3 iσ

2
3), (9.10)

we find that
E2 = E (9.11)

so right multiplication by E is a projection operation. (The relation E2 = E means
that E is technically referred to as an ‘idempotent’ element.) It follows that the
2-particle state ψ must contain a factor of E on its right-hand side. We can further
define

J = Eiσ1
3 = Eiσ2

3 = 1
2(iσ1

3 + iσ2
3) (9.12)

so that
J2 = −E. (9.13)

Right-sided multiplication by J takes on the role of j for multiparticle states.
The STA representation of a direct-product 2-particle Pauli spinor is now given

by ψ1φ2E, where ψ1 and φ2 are spinors (even multivectors) in their own spaces. A
complete basis for 2-particle spin states is provided by(

1
0

)
⊗
(

1
0

)
↔ E(

0
1

)
⊗
(

1
0

)
↔ −iσ1

2E(
1
0

)
⊗
(

0
1

)
↔ −iσ2

2E(
0
1

)
⊗
(

0
1

)
↔ iσ1

2 iσ
2
2E.

(9.14)

This procedure extends simply to higher multiplicities. All that is required is
to find the ‘quantum correlator’ En satisfying

Eniσ
j
3 = Eniσ

k
3 = Jn for all j, k. (9.15)

En can be constructed by picking out the j = 1 space, say, and correlating all the
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other spaces to this, so that

En =
n∏
j=2

1
2(1− iσ1

3 iσ
j
3). (9.16)

The value of En is independent of which of the n spaces is singled out and correlated
to. The complex structure is defined by

Jn = Eniσ
j
3, (9.17)

where iσj3 can be chosen from any of the n spaces. To illustrate this consider the
case of n = 3, where

E3 = 1
4(1− iσ1

3 iσ
2
3)(1− iσ1

3 iσ
3
3) (9.18)

= 1
4(1− iσ1

3 iσ
2
3 − iσ1

3 iσ
3
3 − iσ2

3 iσ
3
3) (9.19)

and
J3 = 1

4(iσ1
3 + iσ2

3 + iσ3
3 − iσ1

3 iσ
2
3 iσ

3
3). (9.20)

Both E3 and J3 are symmetric under permutations of their indices.
A significant feature of this approach is that all the operations defined for the

single-particle STA extend naturally to the multiparticle algebra. The reversion
operation, for example, still has precisely the same definition — it simply reverses
the order of vectors in any given multivector. The spinor inner product (3.12) also
generalises immediately, to

(ψ, φ)S = 〈En〉−1[〈ψ†φ〉 − 〈ψ†φJn〉iσ3], (9.21)

where the right-hand side is projected onto a single copy of the STA. The factor of
〈En〉−1 is included so that the state ‘1’ always has unit norm, which matches with
the inner product used in the matrix formulation.

The Non-Relativistic Singlet State

As an application of the formalism outlined above, consider the 2-particle singlet
state |ε〉, defined by

|ε〉 = 1√
2

{(
1
0

)
⊗
(

0
1

)
−
(

0
1

)
⊗
(

1
0

)}
. (9.22)
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This is represented in the 2-particle STA by the multivector

ε = 1√
2(iσ1

2 − iσ2
2)1

2(1− iσ1
3 iσ

2
3). (9.23)

The properties of ε are more easily seen by writing

ε = 1
2(1 + iσ1

2 iσ
2
2)1

2(1 + iσ1
3 iσ

2
3)
√

2 iσ1
2, (9.24)

which shows how ε contains the commuting idempotents 1
2(1 + iσ1

2 iσ
2
2) and 1

2(1 +
iσ1

3 iσ
2
3). The normalisation ensures that

(ε, ε)S = 2〈ε†ε〉
= 4〈12(1 + iσ1

2iσ
2
2)1

2(1 + iσ1
3iσ

2
3)〉

= 1. (9.25)

The identification of the idempotents in ε leads immediately to the results that

iσ1
2ε = 1

2(iσ1
2 − iσ2

2)1
2(1 + iσ1

3 iσ
2
3)
√

2iσ1
2 = −iσ2

2ε (9.26)

and
iσ1

3ε = −iσ2
3ε, (9.27)

and hence that

iσ1
1ε = iσ1

3 iσ
1
2ε = −iσ2

2 iσ
1
3ε = iσ2

2 iσ
2
3ε = −iσ2

1ε. (9.28)

If M1 is an arbitrary even element in the Pauli algebra (M = M0 + Mkiσ1
k), it

follows that ε satisfies
M1ε = M2†ε. (9.29)

This now provides a novel demonstration of the rotational invariance of ε. Under
a joint rotation in 2-particle space, a spinor ψ transforms to R1R2ψ, where R1

and R2 are copies of the same rotor but acting in the two different spaces. From
equation (9.29) it follows that, under such a rotation, ε transforms as

ε 7→ R1R2ε = R1R1†ε = ε, (9.30)

so that ε is a genuine 2-particle scalar.



87

Non-Relativistic Multiparticle Observables

Multiparticle observables are formed in the same way as for single-particle states.
Some combination of elements from the fixed {σjk} frames is sandwiched between
a multiparticle wavefunction ψ and its spatial reverse ψ†. An important example
of this construction is provided by the multiparticle spin-vector. In the matrix
formulation, the kth component of the particle-1 spin vector is given by

S1k = 〈ψ|σ̂1
k|ψ〉 (9.31)

which has the STA equivalent

S1k = 2n−1
(
〈ψ†σ1

kψσ
1
3〉 − 〈ψ†iσ1

kψ〉iσ3
)

= −2n−1〈iσ1
kψiσ

1
3ψ
†〉

= −2n−1(iσ1
k)·(ψJψ†). (9.32)

Clearly, the essential quantity is the bivector part of ψJψ†, which neatly generalises
the single-particle formula. If we denote the result of projecting out from a
multivector M the components contained entirely in the ith-particle space by 〈M〉i,
we can then write

Saa = 2n−1〈ψJψ†〉a2. (9.33)

The various subscripts and superscripts deserve some explanation. On both sides
of equation (9.33) the superscript a labels the copy of the STA of interest. The
subscript on the right-hand side as usual labels the fact that we are projecting out
the grade-2 components of some multivector. The subscript a on the left-hand side
is necessary to distinguish the separate projections of ψJψ†. Had we not included
the subscript, then S1 and S2 would refer to two copies of the same bivector,
whereas S1

1 and S2
2 are different bivectors with different components. The reason

for including both the subscript and the superscript on Saa is that we often want
to copy the individual bivectors from one space to another, without changing the
components.

We can hold all of the individual Saa bivectors in a single multiparticle bivector
defined by

S = 2n−1〈ψJψ†〉2. (9.34)

Under a joint rotation in n-particle space, ψ transforms to R1 . . . Rnψ and S
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Pauli Multivector Spin
State Form Current

| ↑↑〉 E2 iσ1
3 + iσ2

3
| ↑↓〉 −iσ2

2E2 iσ1
3 − iσ2

3
| ↓↑〉 −iσ1

2E2 −iσ1
3 + iσ2

3
| ↓↓〉 iσ1

2 iσ
2
2E2 −iσ1

3 − iσ2
3

Table 7: Spin Currents for 2-Particle Pauli States

therefore transforms to

R1 . . . RnSRn† . . . R1† = R1S1
1R

1† + · · ·+RnSnnR
n†. (9.35)

Each of the separate projections of the spin current is therefore rotated by the same
amount, in its own space. That the definition (9.34) is sensible can be checked with
the four basis states (9.14). The form of S for each of these is contained in Table 7.
Multiparticle observables for the 2-particle case are discussed further below.

Other observables can be formed using different fixed multivectors. For example,
a 2-particle invariant is generated by sandwiching a constant multivector Σ between
the singlet state ε,

M = εΣε†. (9.36)

Taking Σ = 1 yields

M = εε† = 21
2(1+ iσ1

2 iσ
2
2)1

2(1+ iσ1
3 iσ

2
3) = 1

2(1+ iσ1
1 iσ

2
1 + iσ1

2 iσ
2
2 + iσ1

3 iσ
2
3), (9.37)

which rearranges to give
iσ1
k iσ

2
k = 2εε† − 1. (9.38)

This equation contains the essence of the matrix result

σ̂ak a′ σ̂
b
k b′ = 2δab′ δba′ − δaa′ δbb′ (9.39)

where a, b, a′, b′ label the matrix components. This matrix equation is now seen to
express a relationship between 2-particle invariants. Further invariants are obtained
by taking Σ = i1i2, yielding

M = εi1i2ε† = 1
2(i1i2 + σ1

1 σ
2
1 + σ1

2 σ
2
2 + σ1

3 σ
2
3). (9.40)
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This shows that both iσ1
k iσ

2
k and σ1

k σ
2
k are invariants under 2-particle rotations. In

standard quantum mechanics these invariants would be thought of as arising from
the “inner product” of the spin vectors σ̂1

i and σ̂2
i . Here, we have seen that the

invariants arise in a completely different way by looking at the full multivector εε†.
The contents of this section should have demonstrated that the multiparticle

STA approach is capable of reproducing most (if not all) of standard multiparticle
quantum mechanics. One important result that follows is that the unit scalar
imaginary j can be completely eliminated from quantum mechanics and replaced
by geometrically meaningful quantities. This should have significant implications
for the interpretation of quantum mechanics.

9.2 Comparison with the ‘Causal’ Approach to
Non-Relativistic Spin States

As an application of the techniques outlined above, we look at the work of Holland
on the ‘Causal interpretation of a system of two spin-1/2 particles’ [60]. This work
attempts to give a non-relativistic definition of local observables in the higher-
dimensional space of a 2-particle wavefunction. As we have seen, such a construction
appears naturally in our approach. Holland’s main application is to a Bell inequality
type experiment, with spin measurements carried out on a system of two correlated
spin-1/2 particles by Stern-Gerlach experiments at spatially separated positions.
Such an analysis, though interesting, will only be convincing if carried out in the
fully relativistic domain, where issues of causality and superluminal propagation
can be coherently addressed. We intend to carry out such an analysis in the future,
using the STA multiparticle methods, and the work below on the observables of a
2-particle system can be seen as part of this aim.

The aspect of Holland’s work that concerns us here (his Section 3 and Ap-
pendix A) deals with the joint spin-space of a system of two non-relativistic spin-1/2
particles. The aim is to show that ‘all 8 real degrees of freedom in the two body
spinor wavefunction may be interpreted (up to a sign) in terms of the properties of
algebraically interconnected Euclidean tensors’ [60]. Holland’s working is complex
and requires a number of index manipulations and algebraic identities. Furthermore,
the meaning of the expressions derived is far from transparent. Using the above
techniques, however, the significant results can be derived more efficiently and in
such a way that their geometric meaning is made much clearer. Rather than give a
line-by-line translation of Holland’s work, we simply state the key results in our
notation and prove them.
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Let ψ = ψE be a 2-particle spinor in the correlated product space of the one-
particle spin-spaces (the even subalgebra of the Pauli algebra). The observables of
this 2-particle system are formed from projections of bilinear products of the form
ψΓψ̃, where Γ is an element of the 2-particle Pauli spinor algebra. For example,
the two 3-dimensional spin-vectors, s1

1, s2
2, are defined by

is1
1 + is2

2 = 2ψJψ̃ (9.41)

where the right-hand side can be written in the equivalent forms

ψJψ̃ = ψiσ1
3ψ̃ = ψiσ2

3ψ̃. (9.42)

The formula (9.41) is a special case of equation (9.34) where, as we are working in
a 2-particle system, the projection onto bivector parts is not required. The vectors
s1

1 and s2
2 correspond to the two spin vectors defined by Holland, with the explicit

correspondence to his S1k and S2k given by

S1k = −(is1
1)·(iσ1

k), S2k = −(is2
2)·(iσ2

k). (9.43)

An important relation proved by Holland is that the vectors s1
1 and s2

2 are of
equal magnitude,

(s1
1)2 = (s2

2)2 = 2Ω− ρ2, (9.44)

where
ρ ≡ 2〈ψψ†〉 (9.45)

and an explicit form for Ω is to be determined. To prove this result, we write the
formulae for the components of s1

1 and s2
2 (9.43) in the equivalent forms

S1k = −2(ψ†iσ1
kψ)·(iσ1

3), S2k = −2(ψ†iσ2
kψ)·(iσ2

3). (9.46)

But, in both cases, the term ψ†iσakψ contains a bivector sandwiched between two
idempotents, so is of the form E . . . E. This sandwiching projects out the iσ1

3 and
iσ2

3 components of the full bivector, and ensures that that the terms have equal
magnitude. The inner products in (9.46) can therefore be dropped and we are left
with

ψ†iσakψ = SakJ (9.47)

where the a = 1, 2 labels the two separate spin-vectors. It follows immediately from
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equation (9.47) that
(saa)2 = −2〈ψ†iσakψψ†iσakψ〉, (9.48)

where the a’s are not summed. But the quantity ψψ† contains only scalar and
4-vector components, so we find that

iσ1
kψψ

†iσ1
k = iσ2

kψψ
†iσ2

k = −3〈ψψ†〉+ 〈ψψ†〉4 = ψψ† − 2ρ. (9.49)

(This result follows immediately from σkiaσk = −ia, which is valid for any vector
a in the single-particle Pauli algebra.) Inserting equation (9.49) back into (9.48)
we can now write

(s1
1)2 = (s2

2)2 = 2ρ2 − 2〈ψψ†ψψ†〉, (9.50)

which shows that s1
1 and s2

2 are indeed of equal magnitude, and enables us to
identify Ω as

Ω = 1
2(3ρ2 − 2〈ψψ†ψψ†〉). (9.51)

In addition to ρ, s1
1 and s2

2, Holland defines a tensor Sjk whose components are
given by

Sjk = −2〈ψ†iσ1
j iσ

2
kψ〉. (9.52)

This object has the simple frame-free form

T ≡ 〈ψψ†〉4. (9.53)

Between them, ρ, s1
1, s2

2 and T pick up 7 of the possible 8 degrees of freedom in ψ.
The remaining freedom lies in the phase, since all of the observables defined above
are phase-invariant. Encoding this information caused Holland some difficulty,
but in the STA the answer is straightforward, and is actually already contained
in the above working. The crucial observation is that as well as containing only
scalar and 4-vector terms, the quantity ψ†ψ is invariant under rotations. So, in
addition to the scalar ρ, the 4-vector components of ψ†ψ must pick up important
rotationally-invariant information. Furthermore, since ψ†ψ is of the form E . . . E,
the four-vector component of ψ†ψ contains only two independent terms, which can
be taken as a complex combination of the iσ1

2 iσ
2
2 term. This is seen most clearly

using an explicit realisation of ψ. Suppose that we write

ψ = (p− iσ1
2q − iσ2

2r + iσ1
2 iσ

2
2s)E (9.54)
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where p, q, r, and s are complex combinations of 1 and J , we then find that

ψ†ψ = [ρ+ 2iσ1
2 iσ

2
2(ps− qr)]E. (9.55)

This shows explicitly that the additional complex invariant is given by ps − qr.
It is this term that picks up the phase of ψ, and we therefore define the complex
quantity

α ≡ 〈ψiσ1
2 iσ

2
2ψ
†〉 − 〈ψiσ1

1 iσ
2
2ψ
†〉iσ3, (9.56)

which is the STA equivalent of the complex scalar ρ̄ defined by Holland. The
complex scalar α is invariant under rotations, and under the phase change

ψ 7→ ψeJφ (9.57)

α transforms as
α 7→ αe2φiσ3 . (9.58)

The set {ρ, α, s1
1, s

2
2, T} encode all the information contained in the 2-particle spinor

ψ, up to an overall sign. They reproduce the quantities defined by Holland, but
their STA derivation makes their properties and geometric origin much clearer.

9.3 Relativistic 2-Particle States
The ideas developed for the multi-particle Pauli algebra extend immediately to
the relativistic domain. The direct product of the two single-particle spinor spaces
(the even subalgebras) now results in a space of 8× 8 = 64 real dimensions. Unlike
the single-particle case, this space is not equivalent to the even subalgebra of
the full 8-dimensional algebra. The full algebra is 256-dimensional, and its even
subalgebra is therefore 128-dimensional. It is not yet clear whether the remaining
64-dimensional space which is not picked up by sums of direct-product states could
be of use in constructing 2-particle wavefunctions, and for the remainder of this
section we work only with the space obtained from sums of direct-product states.
Post-multiplying the direct-product space by the quantum correlator E reduces it to
32 real dimensions, which are equivalent to the 16 complex dimensions employed in
standard 2-particle relativistic quantum theory. All the single-particle observables
discussed in Section 3.3 extend simply. In particular, we define the vectors

J ≡ 〈ψ(γ1
0 + γ2

0)ψ̃〉1 (9.59)
s ≡ 〈ψ(γ1

3 + γ2
3)ψ̃〉1 (9.60)
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which are respectively the 2-particle current and spin-vector. (The calligraphic
symbol J is used to avoid confusion with the correlated bivector J .) We also define
the spin bivector S by

S ≡ 〈ψJψ̃〉2. (9.61)

Of particular interest are the new Lorentz-invariant quantities that arise in this
approach. From the work of the preceding section, we form the quantity ψ̃ψ, which
decomposes into

ψ̃ψ = 〈ψ̃ψ〉0,8 + 〈ψ̃ψ〉4. (9.62)

The grade-0 and grade-8 terms are the 2-particle generalisation of the scalar +
pseudoscalar combination ψψ̃ = ρ exp(iβ) found at the single-particle level. Of
greater interest are the 4-vector terms. These offer a wealth of Lorentz-invariant
2-particle observables, the meaning of which we are only beginning to appreciate.
Such invariants are rarely seen in the traditional matrix approach.

The Relativistic Singlet State and Relativistic Invariants

Our task here is to find a relativistic analogue of the Pauli singlet state discussed
in Section 9.1. Recalling the definition of ε (9.23), the property that ensured that ε
was a singlet state was that

iσ1
kε = −iσ2

kε, k = 1 . . . 3. (9.63)

In addition to (9.63) a relativistic singlet state, which we will denote as η, must
satisfy

σ1
kη = −σ2

kη, k = 1 . . . 3. (9.64)

It follows that η satisfies

i1η = σ1
1σ

1
2σ

1
3η = −σ2

3σ
2
2σ

2
1η = i2η (9.65)

so that

η = −i1i2η (9.66)
=⇒ η = 1

2(1− i1i2)η. (9.67)
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The state η can therefore be constructed by multiplying ε by the idempotent
1
2(1− i1i2). We therefore define

η ≡ ε 1√
2(1− i1i2) = (iσ1

2 − iσ2
2)1

2(1− iσ1
3 iσ

2
3)1

2(1− i1i2), (9.68)

which is normalised such that (η, η)S = 1. The invariant η satisfies

iσ1
kη = iσ1

k ε
1
2(1− i1i2) = −iσ2

kη k = 1 . . . 3 (9.69)

and
σ1
kη = −σ1

ki
1i2η = i2 iσ2

kη = −σ2
kη k = 1 . . . 3. (9.70)

These results are summarised by

M1η = M̃2η, (9.71)

where M is an even multivector in either the particle-1 or particle-2 STA. The
proof that η is a relativistic invariant now reduces to the simple identity

R1R2η = R1R̃1η = η, (9.72)

where R is a single-particle relativistic rotor.
Equation (9.71) can be seen as arising from a more primitive relation between

vectors in the separate spaces. Using the result that γ1
0γ

2
0 commutes with η, we

can derive

γ1
µηγ

1
0 = γ1

µγ
1
0γ

2
0ηγ

2
0γ

1
0γ

1
0

= γ2
0(γµγ0)1ηγ2

0

= γ2
0γ

2
0γ

2
µηγ

2
0

= γ2
µηγ

2
0 , (9.73)

and hence we find that, for an arbitrary vector a,

a1ηγ1
0 = a2ηγ2

0 . (9.74)
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Equation (9.71) now follows immediately from (9.74) by writing

(ab)1η = a1b1ηγ1
0γ

1
0

= a1b2ηγ2
0γ

1
0

= b2a1ηγ1
0γ

2
0

= b2a2ηγ2
0γ

2
0

= (ba)2η. (9.75)

Equation (9.74) can therefore be viewed as the fundamental property of the
relativistic invariant η.

From η a number of Lorentz-invariant 2-particle multivectors can be constructed
by sandwiching arbitrary multivectors between η and η̃. The simplest such object
is

ηη̃ = ε1
2(1− i1i2)ε̃

= 1
2(1 + iσ1

1 iσ
2
1 + iσ1

2 iσ
2
2 + iσ1

3 iσ
2
3)1

2(1− i1i2)
= 1

4(1− i1i2)− 1
4(σ1

k σ
2
k − iσ1

k iσ
2
k). (9.76)

This contains a scalar + pseudoscalar (grade-8) term, which is obviously invariant,
together with the invariant grade-4 multivector (σ1

k σ
2
k− iσ1

k iσ
2
k). The next simplest

object is

ηγ1
0γ

2
0 η̃ = 1

2(1 + iσ1
1 iσ

2
1 + iσ1

2 iσ
2
2 + iσ1

3 iσ
2
3)1

2(1− i1i2)γ1
0γ

2
0

= 1
4(γ1

0γ
2
0 + i1i2γ1

kγ
2
k − i1i2γ1

0γ
2
0 − γ1

kγ
2
k)

= 1
4(γ1

0γ
2
0 − γ1

kγ
2
k)(1− i1i2). (9.77)

On defining the bivector
K ≡ γ1

µγ
µ2 (9.78)

and the 2-particle pseudoscalar

W ≡ i1i2 = i2i1 (9.79)

the invariants from (9.77) are simply K and WK. That W is invariant under
rotations is obvious, and the invariance of K under joint rotations in the two
particle spaces follows from equation (9.77). The bivector K is of the form of a
‘doubling’ bivector discussed in [61], where such bivectors are shown to play an
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Type of
Invariant Interaction Grade

1 Scalar 0
K Vector 2

K∧K Bivector 4
WK Pseudovector 6
W Pseudoscalar 8

Table 8: 2-Particle Relativistic Invariants

important role in the bivector realisation of many Lie algebras.
From the definition of K (9.78), we find that

K∧K = −2γ1
0γ

2
0γ

1
kγ

2
k + (γ1

kγ
2
k)∧(γ1

j γ
2
j )

= 2(σ1
k σ

2
k − iσ1

k iσ
2
k), (9.80)

which recovers the grade-4 invariant from (9.76). The full set of 2-particle invariants
constructed from K are summarised in Table 8. These invariants are well-known
and have been used in constructing phenomenological models of interacting parti-
cles [62, 63]. The STA derivation of the invariants is quite new, however, and the
fundamental role played by the bivector K is hidden in the matrix formalism.

9.4 Multiparticle Wave Equations
In order to extend the local-observables approach to quantum theory to the
multiparticle domain, we need to construct a relativistic wave equation satisfied by
an n-particle wavefunction. This is a subject that is given little attention in the
literature, with most textbooks dealing solely with the field-quantised description of
an n-particle system. An n-particle wave equation is essential, however, if one aims
to give a relativistic description of a bound system (where field quantisation and
perturbation theory on their own are insufficient). A description of this approach
is given in Chapter 10 of Itzykson & Zuber [36], who deal mainly with the Bethe-
Salpeter equation for a relativistic 2-particle system. Written in the STA, this
equation becomes

(j∇1 −m1)(j∇2 −m2)ψ(r, s) = I(r, s)ψ(r, s) (9.81)
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where j represents right-sided multiplication by J , I(r, s) is an integral operator
representing the inter-particle interaction, and

∇1 ≡ γ1
µ

∂

∂rµ
, ∇2 ≡ γ2

µ

∂

∂sµ
, (9.82)

with r and s the 4-D positions of the two particles. Strictly, we should have written
∇1
r and ∇2

s instead of simply ∇1 and ∇2. In this case, however, the subscripts can
safely be ignored.

The problem with equation (9.81) is that it is not first-order in the 8-dimensional
vector derivative ∇ = ∇1 + ∇2. We are therefore unable to generalise many of
the simple first-order propagation techniques discussed in Section 5. Clearly, we
would like to find an alternative to (9.81) which retains the first-order nature of
the single-particle Dirac equation. Here we will simply assert what we believe to
be a good candidate for such an equation, and then work out its consequences.
The equation we shall study, for two free spin-1/2 particles of masses m1 and m2

respectively, is (
∇1

m1
+ ∇

2

m2

)
ψ(x)

(
iγ1

3 + iγ2
3

)
= 2ψ(x). (9.83)

We can assume, a priori, that ψ is not in the correlated subspace of the the
direct-product space. But, since E commutes with iγ1

3 + iγ2
3 , any solution to (9.83)

can be reduced to a solution in the correlated space simply by right-multiplying by
E. Written out explicitly, the vector x in equation (9.83) is

x = r1 + s2 = γ1
µr

µ + γ2
µs

µ (9.84)

where {rµ, sµ} are a set of 8 independent components for ψ. Of course, all particle
motions ultimately occur in a single space, in which the vectors r and s label
two independent position vectors. We stress that in this approach there are two
time-like coordinates, r0 and s0, which is necessary if our 2-particle equation is to
be Lorentz covariant. The derivatives ∇1 and ∇2 are as defined by equation (9.82),
and the 8-dimensional vector derivative ∇ = ∇x is given by

∇ = ∇1 +∇2. (9.85)

Equation (9.83) can be derived from a Lorentz-invariant action integral in 8-
dimensional configuration space in which the 1/m1 and 1/m2 factors enter via a
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linear distortion of the vector derivative ∇. We write this as(
∇1

m1
+ ∇

2

m2

)
= h (∇) , (9.86)

where h is the linear mapping of vectors to vectors defined by

h(a) = 1
m1

(
a·γµ 1

)
γ1
µ + 1

m2

(
a·γµ 2

)
γ2
µ. (9.87)

This distortion is of the type used in the gauge theory approach to gravity developed
in [48, 64, 65, 66], and it is extremely suggestive that mass enters equation (9.83)
via this route.

Any candidate 2-particle wave equation must be satisfied by factored states of
the form

ψ = φ1(r1)χ2(s2)E, (9.88)

where φ1 and χ2 are solutions of the separate single-particle Dirac equations,

∇φ = −m1φiγ3, ∇χ = −m2χiγ3. (9.89)

To verify that our equation (9.83) meets this requirement, we substitute in the
direct-product state (9.88) and use (9.89) to obtain(

∇1

m1
+ ∇

2

m2

)
φ1χ2E

(
iγ1

3 + iγ2
3

)
= −φ1χ2E

(
iγ1

3 + iγ2
3

) (
iγ1

3 + iγ2
3

)
, (9.90)

where we have used the result that ∇2 commutes with φ1. Now, since iγ1
3 and iγ2

3
anticommute, we have (

iγ1
3 + iγ2

3

) (
iγ1

3 + iγ2
3

)
= −2 (9.91)

so that (
∇1

m1
+ ∇

2

m2

)
φ1χ2E

(
iγ1

3 + iγ2
3

)
= 2φ1χ2E, (9.92)

and (9.83) is satisfied. Equation (9.83) is only satisfied by direct-product states
as a result of the fact that vectors from separate particle spaces anticommute.
Hence equation (9.83) does not have an equivalent expression in terms of the
direct-product matrix formulation, which can only form commuting operators from
different spaces.
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9.5 The Pauli Principle
In quantum theory, indistinguishable particles must obey either Fermi-Dirac or
Bose-Einstein statistics. For fermions this requirement results in the Pauli exclusion
principle that no two particles can occupy a state in which their properties are
identical. At the relativistic multiparticle level, the Pauli principle is usually
encoded in the anticommutation of the creation and annihilation operators of
fermionic field theory. Here we show that the principle can be successfully encoded
in a simple geometrical manner at the level of the relativistic wavefunction, without
requiring the apparatus of quantum field theory.

We start by introducing the grade-4 multivector

I ≡ Γ0Γ1Γ2Γ3, (9.93)

where
Γµ ≡

1√
2
(
γ1
µ + γ2

µ

)
. (9.94)

It is a simple matter to verify that I has the properties

I2 = −1, (9.95)

and
Iγ1

µI = γ2
µ, Iγ2

µI = γ1
µ. (9.96)

It follows that I functions as a geometrical version of the particle exchange operator.
In particular, acting on the 8-dimensional position vector x = r1 + s2 we find that

IxI = r2 + s1 (9.97)

where
r2 = γ2

µr
µ, s1 = γ1

µs
µ. (9.98)

So I can certainly be used to interchange the coordinates of particles 1 and 2. But,
if I is to play a fundamental role in our version of the Pauli principle, we must
first confirm that it is independent of our choice of initial frame. To see that it is,
suppose that we start with a rotated frame {RγµR̃} and define

Γ′µ = 1√
2
(
R1γ1

µR̃
1 +R2γ2

µR̃
2
)

= R1R2ΓµR̃2R̃1. (9.99)
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The new Γ′µ give rise to the rotated 4-vector

I ′ = R1R2IR̃2R̃1. (9.100)

But, acting on a bivector in particle space 1, we find that

Ia1∧b1I = −(Ia1I)∧(Ib1I) = −a2∧b2, (9.101)

and the same is true of an arbitrary even element in either space. More generally,
I . . . I applied to an even element in one particle space flips it to the other particle
space and changes sign, while applied to an odd element it just flips the particle
space. It follows that

IR̃2R̃1 = R̃1IR̃1 = R̃1R̃2I, (9.102)

and substituting this into (9.100) we find that I ′ = I, so I is indeed independent
of the chosen orthonormal frame.

We can now use the 4-vector I to encode the Pauli exchange principle geomet-
rically. Let ψ(x) be a wavefunction for two electrons. Our suggested relativistic
generalization of the Pauli principle is that ψ(x) should be invariant under the
operation

ψ(x) 7→ Iψ(IxI)I. (9.103)

For n-particle systems the extension is straightforward: the wavefunction must be
invariant under the interchange enforced by the I’s constructed from each pair of
particles.

We must first check that (9.103) is an allowed symmetry of the 2-particle Dirac
equation. With x′ defined as IxI it is simple to verify that

∇x′ = ∇2
r +∇1

s = I∇I, (9.104)

and hence that
∇ = I∇x′I. (9.105)

So, assuming that ψ(x) satisfies the 2-particle equation (9.83) with equal masses
m, we find that

∇[Iψ(IxI)I]
(
iγ1

3 + iγ2
3

)
= −I∇x′ψ(x′)I

(
iγ1

3 + iγ2
3

)
(9.106)

= mIψ(x′)
(
iγ1

3 + iγ2
3

)
I
(
iγ1

3 + iγ2
3

)
.
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But iγ1
3 + iγ2

3 is odd and symmetric under interchange of its particle labels. It
follows that

I
(
iγ1

3 + iγ2
3

)
I =

(
iγ1

3 + iγ2
3

)
(9.107)

and hence that
∇[Iψ(IxI)I]

(
iγ1

3 + iγ2
3

)
= 2mIψ(IxI)I. (9.108)

So, if ψ(x) is a solution of the 2-particle equal-mass Dirac equation, then so to is
Iψ(IxI)I.

Next we must check that the proposed relativistic Pauli principle deals correctly
with well-known elementary cases. Suppose that two electrons are in the same
spatial state. Then we should expect our principle to enforce the condition that
they are in an antisymmetric spin state. For example, consider iσ1

2 − iσ2
2, the spin

singlet state. We find that

I(iσ1
2 − iσ2

2)I = −iσ2
2 + iσ1

2, (9.109)

recovering the original state, which is therefore compatible with our principle. On
the other hand

I(iσ1
2 + iσ2

2)I = −(iσ1
2 + iσ2

2), (9.110)

so no part of this state can be added in to the wavefunction, which again is correct.
In conclusion, given some 2-particle solution ψ(x), the corresponding state

ψI ≡ ψ(x) + Iψ(IxI)I (9.111)

still satisfies the Dirac equation and is invariant under ψ(x) 7→ Iψ(IxI)I. We
therefore claim that the state ψI is the correct relativistic generalisation of a state
satisfying the Pauli principle. In deference to standard quantum theory, we refer
to equation (9.111) as an antisymmetrisation procedure.

The final issue to address is the Lorentz covariance of the antisymmetrisation
procedure (9.111). Suppose that we start with an arbitrary wavefunction ψ(x)
satisfying the 2-particle equal-mass equation (9.83). If we boost this state via

ψ(x) 7→ ψ′(x) ≡ R1R2ψ(R̃2R̃1xR1R2) (9.112)

then ψ′(x) also satisfies the same equation (9.83). The boosted wavefunction ψ′(x)
can be thought of as corresponding to a different observer in relative motion. The
boosted state ψ′(x) can also be antisymmetrised to yield a solution satisfying our
relativistic Pauli principle. But, for this procedure to be covariant, the same state
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must be obtained if we first antisymmetrise the original ψ(x), and then boost the
result. Thus we require that

Sψ(S̃xS) + ISψ(IS̃xSI)I = S[ψ(S̃xS) + Iψ(S̃IxIS)I] (9.113)

where S ≡ R1R2. Equation (9.113) reduces to the requirement that

ISψ(IS̃xSI) = SIψ(S̃IxIS) (9.114)

which is satisfied provided that
IS = SI (9.115)

or
R1R2I = IR1R2. (9.116)

But we proved precisely this equation in demonstrating the frame-invariance of I, so
our relativistic version of the Pauli principle is Lorentz invariant. This is important
as, rather like the inclusion of the quantum correlator, the Pauli procedure discussed
here looks highly non-local in character.

9.6 8-Dimensional Streamlines and Pauli Exclusion
For a single Dirac particle, a characteristic feature of the STA approach is that
the probability current is a rotated/dilated version of the γ0 vector, J = ψγ0ψ̃.
This current has zero divergence and can therefore be used to define streamlines,
as discussed in Section 7. Here we demonstrate how the same idea extends to
the 2-particle case. We find that the conserved current is now formed from ψ

acting on the γ1
0 + γ2

0 vector, and therefore exists in 8-dimensional configuration
space. This current can be used to derive streamlines for two particles in correlated
motion. This approach should ultimately enable us to gain a better insight into
what happens in experiments of the Bell type, where spin measurements on pairs
of particles are performed over spacelike separations. We saw in Section 8 how the
local observables viewpoint leads to a radical re-interpretation of what happens in
a single spin-measurement, and we can expect an equally radical shift to occur in
the analysis of spin measurements of correlated particles. As a preliminary step
in this direction, here we construct the current for two free particles approaching
each other head-on. The streamlines for this current are evaluated and used to
study both the effects of the Pauli antisymmetrisation and the spin-dependence
of the trajectories. This work generalises that of Dewdney et al. [67, 26] to the
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relativistic domain.
We start with the 2-particle Dirac equation (9.83), and multiply on the right

by E to ensure the total wavefunction is in the correlated subspace. Also, since we
want to work with the indistinguishable case, we assume that both masses are m.
In this case our basic equation is

∇ψE
(
iγ1

3 + iγ2
3

)
= 2mψE (9.117)

and, since
E
(
iγ1

3 + iγ2
3

)
= J(γ1

0 + γ2
0), (9.118)

equation (9.117) can be written in the equivalent form

∇ψE
(
γ1

0 + γ2
0

)
= −2mψJ. (9.119)

Now, assuming that ψ satisfies ψ = ψE, we obtain

∇ψ(γ1
0 + γ2

0)ψ̃ = −2mψJψ̃, (9.120)

and adding this equation to its reverse yields

∇ψ(γ1
0 + γ2

0)ψ̃ + ψ(γ1
0 + γ2

0) ˙̃ψ∇̇ = 0. (9.121)

The scalar part of this equation gives

∇·〈ψ(γ1
0 + γ2

0)ψ̃〉1 = 0, (9.122)

which shows that the current we seek is

J = 〈ψ(γ1
0 + γ2

0)ψ̃〉1, (9.123)

as defined in equation (9.59). The vector J has components in both particle-1 and
particle-2 spaces, which we write as

J = J 1
1 + J 2

2 . (9.124)

The current J is conserved in eight-dimensional space, so its streamlines never
cross there. The streamlines of the individual particles, however, are obtained by
integrating J1 and J2 in ordinary 4-d space, and these can of course cross. An ex-
ample of this is illustrated in Figure 9.6, which shows the streamlines corresponding
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Figure 11: Streamlines generated by the unsymmetrised 2-particle wavefunction
ψ = φ1(r1)χ2(s2)E. Time is shown on the vertical axis. φ and χ are Gaussian
wavepackets moving in opposite directions and the ‘collision’ is arranged to take
place at t = 0. The lack of any antisymmetrisation applied to the wavefunction
means that the streamlines pass straight through each other.

to distinguishable particles in two Gaussian wavepackets approaching each other
head-on. The wavefunction used to produce this figure is just

ψ = φ1(r1)χ2(s2)E, (9.125)

with φ and χ being Gaussian wavepackets, moving in opposite directions. Since
the distinguishable case is assumed, no Pauli antisymmetrisation is used. The
individual currents for each particle are given by

J1(r, s) = φ(r)γ0φ̃(r) 〈χ(s)χ̃(s)〉, J2(r, s) = χ(s)γ0χ̃(s) 〈φ(r)φ̃(r)〉 (9.126)

and, as can be seen, the streamlines (and the wavepackets) simply pass straight
through each other.

An interesting feature emerges in the individual currents in (9.126). One
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of the main problems with single-particle Dirac theory is that the current is
always positive-definite so, if we wish to interpret it as a charge current, it fails
to represent antiparticles correctly. The switch of sign of the current necessary
to represent positrons is put into conventional theory essentially ‘by hand’, via
the anticommutation and normal ordering rules of fermionic field theory. In
equation (9.126), however, the norm 〈χχ̃〉 of the second state multiplies the current
for the first, and vice versa. Since 〈χχ̃〉 can be negative, it is possible to obtain
currents which flow backwards in time. This suggests that the required switch of
signs can be accomplished whilst remaining wholly within a wavefunction-based
approach. An apparent problem is that, if only one particle has a negative norm
state — say for example χ has 〈χχ̃〉 < 0 — then it is the φ current which is reversed,
and not the χ current. However, it is easy to see that this objection is not relevant
to indistinguishable particles, and it is to these we now turn.

We now apply the Pauli symmetrization procedure of the previous subsection
to the wavefunction of equation (9.125), so as to obtain a wavefunction applicable
to indistinguishable particles. This yields

ψ =
(
φ1(r1)χ2(s2)− χ1(r2)φ2(s1)

)
E, (9.127)

from which we form J1 and J2, as before. We must next decide which spin states
to use for the two particles. We first take both particles to have their spin vectors
pointing in the positive z-direction, with all motion in the ±z-direction. The
resulting streamlines are shown in Figure 9.6(a). The streamlines now ‘repel’
one another, rather than being able to pass straight through. The corrugated
appearance of the lines near the origin is the result of the streamlines having to pass
through a region of highly-oscillatory destructive interference, since the probability
of both particles occupying the same position (the origin) with the same spin state
is zero. If instead the particles are put in different spin states then the streamlines
shown in Figure 9.6(b) result. In this case there is no destructive interference near
the origin, and the streamlines are smooth there. However, they still repel! The
explanation for this lies in the symmetry properties of the 2-particle current. Given
that the wavefunction ψ has been antisymmetrised according to our version of the
Pauli principle, then it is straightforward to show that

IJ (IxI)I = J (x). (9.128)

It follows that at the same spacetime position, encoded by IxI = x in the 2-particle
algebra, the two currents J1 and J2 are equal. Hence, if two streamlines ever met,
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Figure 12: Streamlines generated by the antisymmetrised 2-particle wavefunction
ψ = [φ1(r1)χ2(s2) − χ1(r2)φ2(s1)]E. The individual wavepackets pass through
each other, but the streamlines from separate particles do not cross. The upper
figure has both particles with spins aligned in the +z-direction, and the lower
figure shows particles with opposite spins, with φ in the +z direction, and χ in the
−z direction. Both wavepackets have energy 527KeV and a spatial spread of ∼
20pm. The spatial units are 10−12m and the units of time are 10−18s. The effects
of the antisymmetrisation are only important where there is significant wavepacket
overlap.
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they could never separate again. For the simulations presented here, it follows from
the symmetry of the set-up that the spatial currents at the origin are both zero
and so, as the particles approach the origin, they are forced to slow up. The delay
means that they are then swept back in the direction they have just come from
by the wavepacket travelling through from the other side. We therefore see that
‘repulsion’ as measured by streamlines has its origin in indistinguishability, and
that the spin of the states exerts only a marginal effect.

10 Further Applications
In this section we briefly review two further applications of spacetime algebra to
important areas of electron physics. The first of these is classical and semiclassi-
cal mechanics. As well as simplifying many calculations in quantum mechanics,
spacetime algebra is well suited to handling problems in classical mechanics where
electrons are treated as point charges following a single trajectory. In recent years
there has been considerable interest in finding modifications to the simple classical
equations to include the effects of spin, without losing the idea of a definite trajec-
tory [30, 68]. One of the aims behind this work is to find a suitable classical model
which can be quantised via the path-integral route [69]. One of the more promising
candidates is discussed here, and we outline some improvements that could repair
some immediate defects.

The second application discussed here is to Grassmann algebra and the asso-
ciated ‘calculus’ introduced by Berezin [70]. Grassmann quantities are employed
widely in quantum field theory, and the Berezin calculus plays a crucial role in
the path-integral quantisation of fermionic systems. Here we outline how many of
the calculations can be performed within geometric algebra, and draw attention
to some work in the literature. We do not attempt a more detailed analysis of
path-integral quantisation here.

10.1 Classical and Semiclassical Mechanics
The Lorentz force law for a point-particle with velocity v, mass m and charge q is

v̇ = q

m
F ·v (10.1)

where v̇ denotes differentiation with respect to the affine parameter and F is the
external electromagnetic field bivector. Any future-pointing unit timelike vector
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can be written in terms of a rotor acting on a fixed vector γ0,

v(τ) = R(τ)γ0R̃(τ) (10.2)

from which we find
v̇ = (2ṘR̃)·v. (10.3)

The quantity ṘR̃ is a bivector, so we can recover equation (10.1) by setting

2ṘR̃ = q

m
F (10.4)

=⇒ Ṙ = q

2mFR. (10.5)

This is not the only equation for R that is consistent with (10.1), since any bivector
that commutes with v could be added to F . However, (10.5) is without doubt the
simplest equation available.

It turns out that equation (10.5) is often easier to analyse than (10.1), as was
first shown by Hestenes [13]. Furthermore, we can extend this approach to include
a classical notion of spin. Let us suppose that, as well as describing the tangent
vector v, the rotor R determines how a frame of vectors is transported along the
curve. We can then define the spin vector as the unit spatial vector

s ≡ Rγ3R̃, (10.6)

which matches the definition given for the quantum observable. If we now assume
that equation (10.5) is valid, we find that the spin-vector satisfies the equation

ṡ = q

m
F ·s, (10.7)

which gives the correct precession equation for a particle of gyromagnetic ratio
2 [13]. It follows that g = 2 can be viewed as the natural value from the viewpoint
of the relativistic classical mechanics of a rotating frame — a striking fact that
deserves to be more widely known. We can use the same approach to analyse the
motion of a particle with a g-factor other than 2 by replacing (10.5) with

Ṙ = q

2m [FR + (g/2− 1)RB], (10.8)

which reproduces the Bargmann-Michel-Telegdi equation employed in the analysis
of spin-precession measurements [47].
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A remarkable aspect of the Dirac theory is that the current ψγ0ψ̃ and the
momentum (which is defined in terms of the momentum operator) are not necessarily
colinear. This suggests that a more realistic classical model for an electron should
employ an independent quantity for the momentum which is not necessarily related
to the tangent vector to the spacetime trajectory. Such a model was proposed by
Barut & Zanghi [68], who did not employ the STA, and was analysed further in [5]
(see also [71]). Written in the STA, the action proposed by Barut & Zanghi takes
the form

S =
∫
dλ 〈ψ̇iσ3ψ̃ + p(ẋ− ψγ0ψ̃) + qA(x)ψγ0ψ̃〉 (10.9)

where the dynamical variables are x(λ), p(λ) and ψ(λ). Variation with respect to
these variables yields the equations [5]

ẋ = ψγ0ψ̃ (10.10)
Ṗ = qF ·ẋ (10.11)

ψ̇iσ3 = Pψγ0 (10.12)

where
P ≡ p− qA. (10.13)

These constitute a set of first-order equations so, with x, p and ψ given for some
initial value of λ, the future evolution is uniquely determined. Equations (10.10)–
(10.12) contain a number of unsatisfactory features. One does not expect to see P
entering the Lorentz force law (10.12), but rather the dynamical variable p. This
problem is simply addressed by replacing (10.9) with

S1 =
∫
dλ 〈ψ̇iσ3ψ̃ + p(ẋ− ψγ0ψ̃) + qẋA(x)〉 (10.14)

so that the ṗ and ψ̇ equations become

ṗ = qF ·ẋ (10.15)
ψ̇iσ3 = pψγ0. (10.16)

The quantity p·ẋ is a constant of the motion, and can be viewed as defining the
mass.

A more serious problem remains, however. If we form the spin bivector S =
ψiσ3ψ̃ we find that

Ṡ = 2p∧ẋ (10.17)
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so, if p and ẋ are initially colinear, the spin bivector does not precess, even in the
presence of an external B-field [35]. To solve this problem an extra term must be
introduced into the action. The simplest modification is

S2 =
∫
dλ 〈ψ̇iσ3ψ̃ + p(ẋ− ψγ0ψ̃) + qẋA(x)− q

2mFψiσ3ψ̃〉 (10.18)

which now yields the equations

ẋ = ψγ0ψ̃ (10.19)
ṗ = qF ·ẋ− q

2m∇F (x)·S (10.20)

ψ̇iσ3 = pψγ0 −
q

2mFψ. (10.21)

The problem with this system of equations is that m has to be introduced explicitly,
and there is nothing to identify this quantity with p·ẋ. If we assume that p = mẋ

we can recover the pair of equations

Ṡ = q

m
F×S (10.22)

v̇ = q

m
F ·v − q

2m2∇F (x)·S, (10.23)

which were studied in [72].
Whilst a satisfactory semiclassical mechanics for an electron still eludes us, it

should be clear that the STA is a very useful tool in constructing and analysing
candidate models.

10.2 Grassmann Algebra
Grassmann algebras play an essential role in many areas of modern quantum theory.
However, nearly all calculations with Grassmann algebra can be performed more
efficiently with geometric algebra. A set of quantities {ζi} form a Grassmann
algebra if their product is totally antisymmetric

ζiζj = −ζjζi. (10.24)

Examples include fermion creation operators, the fermionic generators of a super-
symmetry algebra, and ghost fields in the path integral quantisation of non-abelian
gauge theories. Any expression involving the Grassmann variables {ζi} has a
geometric algebra equivalent in which the {ζi} are replaced by a frame of inde-
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pendent vectors {ei} and the Grassmann product is replaced by the outer (wedge)
product [73, 74]. For example, we can make the replacement

ζiζj ↔ ei∧ej. (10.25)

This translation on its own clearly does not achieve a great deal, but the geometric
algebra form becomes more powerful when we consider the ‘calculus’ defined by
Berezin [70]. This calculus is defined by the rules

∂ζj
∂ζi

= δij, (10.26)

ζj

←−
∂

∂ζi
= δij, (10.27)

together with the ‘graded Leibniz’ rule’,

∂

∂ζi
(f1f2) = ∂f1

∂ζi
f2 + (−1)[f1]f1

∂f2

∂ζi
, (10.28)

where [f1] is the parity (even/odd) of f1. In geometric algebra, the operation of the
Grassmann derivatives can be replaced by inner products of the reciprocal frame
vectors

∂

∂ζi
(↔ ei ·( (10.29)

so that
∂ζj
∂ζi
↔ ei ·ej = δij. (10.30)

Some consequences of this translation procedure were discussed in [73], where it
was shown that the geometric product made available by the geometric algebra
formulation simplifies many computations. Applications discussed in [73] included
‘Grauss’ integrals, pseudoclassical mechanics, path integrals and Grassmann-Fourier
transforms. It was also shown that super-Lie algebras have a very simple repre-
sentation within geometric algebra. There seems little doubt that the systematic
replacement of Grassmann variables with geometric multivectors would considerably
enhance our understanding of quantum field theory.
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11 Conclusions
There is a growing realisation that geometric algebra provides a unified and powerful
tool for the study of many areas of mathematics, physics and engineering. The
underlying algebraic structure (Clifford algebra) appears in many key areas of
physics and geometry [75], and the geometric techniques are finding increasing
application in areas as diverse as gravitation theory [64] and robotics [76, 77].
The only impediment to the wider adoption of geometric algebra appears to be
physicists’ understandable reluctance to adopt new techniques. We hope that
the applications discussed in this paper make a convincing case for the use of
geometric algebra, and in particular the STA, in electron physics. Unfortunately, in
concentrating on a single area of physics, the unifying potential of geometric algebra
does not necessarily come across. However, a brief look at other applications should
convince one of the wider utility of many of the techniques developed here.

Further work in this field will centre on the multiparticle STA. At various
points we have discussed using the multiparticle STA to analyse the non-locality
revealed by EPR-type experiments. This is just one of many potential applications
of the approach outlined here. Others include following the streamlines for two
particles through a scattering event, or using the 3-particle algebra to model pair
creation. It will also be of considerable interest to develop simplified techniques for
handling more complicated many-body problems. Behind these goals lies the desire
to construct an alternative to the current technique of fermionic field quantisation.
The canonical anticommutation relations imposed there remain mysterious, despite
forty years of discussion of the spin-statistics theorem. Elsewhere, there is still a
clear need to develop the wavepacket approach to tunnelling. This is true not only
of fermions, but also of photons, on which most of the present experiments are
performed.

Looking further afield, the approach to the Dirac equation described in Section 4
extends simply to the case of a gravitational background [48]. The wavepacket
and multiparticle techniques developed here are essentially all that is required to
address issues such as superradiance and pair creation by black holes. Closer to
home, the STA is a powerful tool for classical relativistic physics. We dealt briefly
with the construction of classical models for the electron in Section 10. Elsewhere,
similar techniques have been applied to the study of radiation reaction and the
Lorentz-Dirac equation [35]. The range of applicability of geometric algebra is truly
vast. We believe that all physicists should be exposed to its benefits and insights.
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A The Spherical Monogenic Functions
We begin by assuming that the spherical monogenic is an eigenstate of the x∧∇
and J3 operators, where all operators follow the conventions of Section 4.2. We
label this state as ψ(l, µ), so

−x∧∇ψ(l, µ) = lψ(l, µ), J3ψ(l, µ) = µψ(l, µ). (A.1)

The Ji operators satisfy

JiJi = −[(iσi)·(x∧ ~∇)− 1
2iσi][(iσi)·(x∧∇)− 1

2iσi]
= 3/4− x∧∇ + 〈x∧ ~∇x∧∇〉 (A.2)

where the ~∇ indicates that the derivative acts on everything to its right. Since

〈x∧ ~∇x∧∇〉ψ = x∧∇(x∧∇ψ)− x∧∇ψ (A.3)

we find that

JiJiψ(l, µ) = (3/4 + 2l + l2)ψ(l, µ)
= (l + 1/2)(l + 3/2)ψ(l, µ). (A.4)

With the ladder operators J+ and J− defined by

J+ ≡ J1 + jJ2

J− ≡ J1 − jJ2,
(A.5)

it is a simple matter to prove the following results:

[J+, J−] = 2J3 JiJi = J−J+ + J3 + J3
2

[J±, J3] = ∓J± JiJi = J+J− − J3 + J3
2.

(A.6)

The raising operator J+ increases the eigenvalue of J3 by an integer. But, for fixed
l, µ must ultimately attain some maximum value. Denoting this value as µ+, we
must reach a state for which

J+ψ(l, µ+) = 0. (A.7)
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Acting on this state with JiJi and using one of the results in (A.6) we find that

(l + 1/2)(l + 3/2) = µ+(µ+ + 1) (A.8)

and, as l is positive and µ+ represents an upper bound, it follows that

µ+ = l + 1/2. (A.9)

There must similarly be a lowest eigenvalue of J3 and a corresponding state with

J−ψ(l, µ−) = 0. (A.10)

In this case we find that

(l + 1/2)(l + 3/2) = µ−(µ− − 1) (A.11)

=⇒ µ− = −(l + 1/2). (A.12)

The spectrum of eigenvalues of J3 therefore ranges from (l + 1/2) to −(l + 1/2), a
total of 2(l + 1) states. Since the J3 eigenvalues are always of the form (integer
+1/2), it is simpler to label the spherical monogenics with a pair of integers. We
therefore write the spherical monogenics as ψml , where

−x∧∇ψml = lψml l ≥ 0 (A.13)
J3ψ

m
l = (m+ 1

2)ψml −1− l ≤ m ≤ l. (A.14)

To find an explicit form for the ψml we first construct the highest-m case. This
satisfies

J+ψ
l
l = 0 (A.15)

and it is not hard to see that this equation is solved by

ψll ∝ sinlθ e−lφiσ3 . (A.16)

Introducing a convenient factor, we write

ψll = (2l + 1)P l
l (cosθ) elφiσ3 . (A.17)

Our convention for the associated Legendre polynomials follows Gradshteyn &
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Ryzhik [43], so

Pm
l (x) = (−1)m

2ll! (1− x2)m/2 d
l+m

dxl+m
(x2 − 1)l (A.18)

and we have the following recursion relations:

(1− x2)dP
m
l (x)
dx

+mxPm
l (x) = −(1− x2)1/2Pm+1

l (x) (A.19)

(1− x2)dP
m
l (x)
dx

−mxPm
l (x) = (1− x2)1/2(l +m)(l −m+ 1)Pm−1

l (x). (A.20)

The lowering operator J− has the following effect on ψ:

J−ψ = [−∂θψ + cotθ ∂φψiσ3]e−φiσ3 − iσ2
1
2(ψ + σ3ψσ3). (A.21)

The latter term just projects out the {1, iσ3} terms and multiplies them by −iσ2.
This is the analog of the lowering matrix in the standard formalism. The derivatives
acting on ψll form

[−∂θψll + cotθ ∂φψlliσ3]e−φiσ3

= (2l + 1)[−∂θP l
l (cosθ)− l cotθ P l

l (cosθ)]e(l − 1)φiσ3

= (2l + 1)2lP l−1
l (cosθ)e(l − 1)φiσ3 , (A.22)

and, if we use the result that
σφ = σ2e

φiσ3 , (A.23)

we find that
ψl−1
l ∝ [2lP l−1

l (cosθ)− P l
l (cosθ)iσφ]e(l − 1)φiσ3 . (A.24)

Proceeding in this manner, we are led to the following formula for the spherical
monogenics:

ψml = [(l +m+ 1)Pm
l (cosθ)− Pm+1

l (cosθ)iσφ]emφiσ3 , (A.25)

in which l is a positive integer or zero, m ranges from −(l + 1) to l and the Pm
l

are taken to be zero if |m| > l. The positive- and negative-m states can be related
using the result that

P−ml (x) = (−1)m (l −m)!
(l +m)!P

m
l (x), (A.26)
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from which it can be shown that

ψml (−iσ2) = (−1)m (l +m+ 1)!
(l −m)! ψ

−(m+1)
l . (A.27)

The spherical monogenics presented here are unnormalised. Normalisation factors
are not hard to compute, and we find that

∫ π

0
dθ
∫ 2π

0
dφ sinθ ψml ψml † = 4π (l +m+ 1)!

(l −m)! . (A.28)
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