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Nonlinear concentration patterns and bands in autochemotactic suspensions
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In suspensions of microorganisms, pattern formation can arise from the interplay of chemotaxis and the fluid
flows collectively generated by the organisms themselves. Here we investigate the resulting pattern formation in
square and elongated domains in the context of two distinct models of locomotion in which the chemoattractant
dynamics is fully coupled to the fluid flows and swimmer motion. Analyses for both models reveal an aggregative
instability due to chemotaxis, independent of swimmer shape and type, and a hydrodynamic instability for
“pusher” swimmers. We discuss the similarities and differences between the models. Simulations reveal a critical
length scale of the swimmer aggregates and this feature can be utilized to stabilize swimmer concentration
patterns into quasi-one-dimensional bands by varying the domain size. These concentration bands transition
to traveling pulses under an external chemoattractant gradient, as observed in experiments with chemotactic
bacteria.
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I. INTRODUCTION

Recent advances in experiments and in theoretical mod-
eling have established that suspensions of motile microor-
ganisms can organize into complex patterns and collectively
generate significant fluid flows (e.g., Refs. [1–11]). These
large-scale patterns can occur in the bulk in the absence of
directional cues for swimming and are mediated by steric
and hydrodynamic interactions between the microswimmers
[12,13]. It is also well known that motile microorganisms can
exhibit directed chemotactic motions in response to chemical
cues in their environment. When those cues are attractive and
produced by the motile organisms themselves, then collective
aggregation can occur. We refer to such a situation as “au-
tochemotactic” in that the colony is responding to its own self-
generated signals. However, many of the classical experiments
on autochemotactic aggregation, which can show intricate
patterns such as bands and arrays of spots, were performed
in environments where hydrodynamic coupling between the
motile cells is not expected to be strong (e.g., in the thin fluid
layer atop an agar plate [14,15]). Chemotactic systems are
considerably more complicated when the constituent organ-
isms are moving in an open fluid and can generate flows, since
these flows will also advect the chemoattractant. These collec-
tively generated flows can affect chemotactic aggregation and
patterning of microorganisms and possibly affect the modes
of colonial communication such as through quorum sensing
[16,17]. Here we investigate these issues in the context of
two theoretical models that combine the fluid flows generated
by a motile suspension with the production, advection, and
diffusion of a swimmer-generated chemoattractant and the
response of the swimmers to this chemoattractant field.

Pattern formation through chemotactic aggregation has
been studied extensively since the pioneering theoretical work

on the Keller-Segel (KS) model [18,19] and its many variants.
The KS model couples evolution of a cell concentration field
to an intrinsically generated, diffusing chemoattractant field.
In its simplest form, where the cell velocity scales linearly
with chemoattractant gradient, the KS model can lead to
infinite concentrations in finite time [20]. In most models
such behavior is typically avoided through the inclusion of
ad hoc saturation terms [21]. Kinetic theories have been
developed for the dynamics of bacterial populations in which
the individual organisms execute modulated run-and-tumble
motions in response to a chemoattractant gradient [21–28]. In
these models, tumbling frequency decreases (and run length
increases) if the organism moves up the attractant gradient, as
is observed experimentally [29,30].

Our previous study [31] considered the effects of the
collectively generated fluid flows on the chemotactic aggre-
gation of run-and-tumble swimmers. These fluid flows advect
chemoattractants and perturb the motions of the constituent
swimmers and were found to affect the overall dynamics. We
also found that accounting for the fluid dynamics may remove
the need for ad hoc saturation terms used in some chemo-
taxis models as the fluid flows inhibit unphysical concentra-
tion blow-ups. We revisit and explore further microswimmer
chemotactic dynamics that includes the effect of the self-
generated fluid flows. We make use of two kinetic models.
The first we consider is a run-and-tumble one based on the
biased random walk exhibited by bacteria, the very same we
introduced in Ref. [31]. As an interesting alternative we also
present a second model in which swimmers perform chemo-
taxis by directly detecting spatial chemoattractant gradients
and responding to them by rotating in the direction of the
chemoattractant gradient. This type of model is more ap-
propriate for larger eukaryotic microswimmers such as sper-
matozoa and nontumbling microswimmers. Merging these
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chemotaxis models with the active suspension model is seam-
less as both these models are kinetic theories with particle po-
sition and orientation as their conformation variables [31,32].

For both models, linear stability analysis of isotropic
swimmer suspensions yields two separate branches of in-
stability: one associated with chemotaxis-driven aggregation
and the other a “hydrodynamic” instability that drives swim-
mer alignment through the development of large-scale fluid
flows associated with “pusher” suspensions. The fully coupled
nonlinear systems studied through simulations reveal that
swimmer generated fluid flows can have a significant effect
on aggregation dynamics. Remarkably, despite differences to
the run-and-tumble chemotaxis model, the “turning-particle”
chemotaxis model exhibits many of the same dynamical
features in the long wave regimes when the parameters are
matched as suggested by linear analysis. For regimes far from
the hydrodynamic instability, we find that neutral swimmer
and puller aggregates to become stable, circular, and saturated,
whereas pusher aggregates become elongated and can move
due to local straining fluid flows. The critical size of these
aggregates can be predicted by linear analysis. We find that
when the suspension is confined in narrow domains with a
width below the critical length scale predicted by analysis,
these aggregates transition into quasi-one-dimensional bands.
Moreover, when subjected to a constant external chemoattrac-
tant gradient, these bands travel in that direction and develop
profiles reminiscent to those seen in experiments with chemo-
tactic Escherichia coli in microchannels [26]. This works
suggests that these continuum models can be appropriately
modified to study other chemotactic phenomena.

II. MATHEMATICAL MODEL

A. The run-and-tumble model

We first review the recent model developed in Ref. [31],
which incorporates a run and tumble (RT) chemotactic re-
sponse into a kinetic theory of motile suspensions. Bacteria
such as E. coli typically perform a biased random walk which
enables them to move up chemoattractant gradients [30]. Such
a random walk consists of a series of runs and tumbles whose
frequency decreases when a bacterium is moving in a fa-
vorable direction of increasing chemoattractant concentration.
This RT chemotaxis model is based on Alt’s formulation [22]
and extends subsequent models [23,24,33].

Consider self-propelled ellipsoidal-shaped swimmers each
moving with constant speed U0 := 1 in a fluid. The swimmer
center-of-mass is denoted by x and its swimming direction
along its main axis is p (|p| = 1). The configuration of mi-
croswimmers is given by a distribution function �(x, p, t ).
The positional and orientational dynamics of a suspension
of swimmers that individually execute run-and-tumbles is
described by a Fokker-Planck equation for conservation of
microswimmer number:

∂�

∂t
= −∇x · [�ẋ] − ∇p · [�ṗ]

−
[
�λ(DtC) − 1

4π

∫
�(p′)λ(DtC)dp′

]
, (1)

ẋ = U0p + u − D∇x (ln �), (2)

ṗ = (I − ppT )(γ E + W)p − dr∇p(ln �). (3)

Equations (2) and (3) give the fluxes associated with swimmer
position and orientation. The former encodes the features
that a swimmer propels itself along its axis p with speed U0

while also being carried along by the background flow u. The
last term allows for an isotropic translational diffusion with
diffusion constant D. Equation (3) describes the rotation of
an ellipsoidal particle by the local fluid flow, with E = (∇u +
∇T u)/2, W = (∇u − ∇T u)/2, and γ is a shape parameter
−1 � γ � 1 [for an ellipsoidal particle with aspect ratio A,
γ = (A2 − 1)/(A2 + 1); for a sphere γ = 0 and for a slender
rod γ ≈ 1]. With ∇p the gradient operator on the sphere |p| =
1, the last term models rotational diffusion of the swimmer
with a diffusion constant dr , as in Ref. [6].

Run-and-tumble chemotaxis is modeled by the terms in
the second line of Eq. (1), where the first represents loss
of swimmers tumbling from orientation p to other orienta-
tions and the second is a balancing source that accounts for
swimmers tumbling from other orientations p′ to p. Here
λ(DtC) is the chemical gradient-dependent tumbling fre-
quency, with C(x, t ) the chemoattractant concentration. The
tumbling frequency is related to the probability of a bacterium
having a tumbling event within a fixed time interval. The
total microswimmer population is taken to be constant, though
cell division of chemotactic cells can also lead to intriguing
dynamics [34].

From experiments [35], when the temporal rate-of-change
of the chemoattractant concentration is positive along a swim-
mer’s path, its tumbling rate reduces. If the chemoattractant
concentration is constant or decreasing, then the tumbling
rate is constant. Based on these studies [33], we model this
response with a piecewise linear form:

λ(DtC) =
⎧⎨
⎩

λ0(1 − χDtC) if 0 < DtC < 1/χ

0 if 1/χ < DtC

λ0 otherwise
, (4)

DtC = ∂C

∂t
+ (u + U0p) · ∇C, (5)

is the rate-of-change of the chemoattractant concentration
along the swimmer’s path. The parameter λ0 is the basal stop-
ping rate or tumbling frequency in the absence of chemotaxis,
whereas χ is the chemotactic strength. In the literature the
frequency response λ has been approximated in various forms,
exponential [33,36,37] or linearized [24], and most often does
not include the temporal gradient [21], chemoattractant, or
fluid dynamics. For ease of linear stability analysis, here we
use only the linear form for the the frequency response, but
note that the model and numerical simulations allow for any
form suggested by the experiments.

Anisotropic tumbling can be included in the integral term
in Eq. (1) via a “turning kernel” dependent on |p − p′|, where
p and p′ are pre- and posttumble directions [32,38]. Here we
focus on isotropic tumbles only.

The fluid velocity u(x, t ) satisfies the Stokes equations
with an active particle stress due to their motion in it,

−∇2
x u + ∇xq = ∇x · �a, ∇x · u = 0. (6)
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Here q the fluid pressure and �a the active stress,

�a (x, t ) = α

∫
�(x, p, t )(ppT − I/3)dp. (7)

The active stress �a is a configuration average over all
orientations p of the stresslets α(ppT − I/3) exerted by the
particles when moving in the fluid. The stresslet strength α

is a O(1) constant [6]. For pushers, swimmers like bacteria
that propel themselves with rear-mounted flagella, α < 0. For
pullers, swimmers like microalga Chlamydomonas reinhardtii
that propel with front flagella, α > 0.

We define the local swimmer concentration �(x, t ) and
mean swimmer director vector < p(x, t ) >,

�(x, t ) =
∫

�(x, p, t )dp,< p(x, t ) >=
∫

p�(x, p, t )dp.

The chemoattractant or nutrient is dispersed in the fluid
and has a dynamics of its own that includes fluid advection
and molecular diffusion. Similarly to the original KS model
[19] but with fluid advection included, the chemoattractant
evolves as

∂C

∂t
+ u · ∇C = Dc∇2C − β1C + β2�, (8)

where Dc is the diffusion constant and −β1C models
chemoattractant degradation with a constant rate β1, while
β2� describes local production (β2 > 0) or consumption
(β2 < 0) of chemoattractant by the swimmers. For ease of
writing, we differentiate between the cases of autochemo-
taxis (β2 > 0), where the swimmers themselves produce the
chemoattractant, and when the swimmers respond to an ex-
ternally supplied chemoattractant like a nutrient or oxygen
(β2 � 0). The focus of the analysis here is on autochemotaxis;
the other type is investigated experimentally in Ref. [39] and
theoretically in Refs. [32,36,37,40].

Taken together, the chemoattractant equation (8), the equa-
tion (1) for the probability distribution function � (and hence
�), and the Stokes equations (6) with active particle stress
constitute a closed system that describes the dynamics of a
motile suspension influenced by run-and-tumble autochemo-
taxis. We refer to this model as the RT chemotaxis model.

B. The turning-particle model

As an interesting alternative, we also consider a differ-
ent chemotaxis model for suspensions of nontumbling mi-
croswimmers that can directly respond to a chemoattractant
gradient. This turning model, while not applicable to bacteria
whose chemotactic motion results from a modulation of runs
and tumbles, is reminiscent of phoretic particles [41,42] that
overall turn and migrate in the direction of the gradient of
the chemical that fuels them. The suspension dynamics is
described by

∂�

∂t
= −∇x · [�ẋ] − ∇p · [�ṗ], (9)

ẋ = U0p + u − D∇x (ln �), (10)

ṗ = (I − ppT )[(γ E + W)p + ξ∇xC] − dr∇p(ln �). (11)

While there are no tumbling terms in Eq. (9), Eq. (11) now
contains the term ξ (I − ppT )∇C, which induces a “chemo-
tactic” swimmer rotation towards the local direction of steep-
est ascent of the chemoattractant gradient. The constant ξ

sets the timescale of this rotation. This rotation should be
distinguished from rotational diffusion, which acts on very
rapid timescales and is associated with very small changes in
direction. Chemotaxis represented as a bias in the direction
of individual swimming has often been used in numerical
studies of active particles [43–47]. We impose a torque on
the swimmers in Eq. (11) without accounting for the flow
consequences which would be an antisymmetric active stress
tensor in the fluid equations (6). This is justified since the
leading-order flow singularity measured for bacteria and algae
are a force dipole (decay as 1/r2 with distance r) not a torque
monopole (also decay 1/r2) [48,49].

The chemoattractant equation (8), together with Eq. (9)
for the probability distribution function � and the Stokes
equations (6) with active particle stress, constitute a closed
system of equations that describe the dynamics of a chemo-
tactic motile suspension with an evolving chemical field. We
will refer to this set of equations as the turning-particle (TP)
chemotaxis model.

C. A note on nondimensionalization

Equations (1)–(8) are shown in dimensionless form. The
characteristic scales used for nondimensionalization are

�c = n, uc = U0, 
c = 1/n
2, tc = 
c/uc, (12)

where n = N/V is the mean number density of the swim-
mers, that is, the number of particles in a box domain with
side L and volume V = L3. Here U0 is the intrinsic swimmer
speed and 
 the swimmer length. Since both our models follow
the convention in Refs. [5,6], the rescaled system size L/
c

encapsulates the swimmer concentration n, which may not
be obvious from looking at Eqs. (1)–(8). This choice helps
to decrease the number of parameters for analysis. We remark
that 
c = (V/Vp )
, where Vp = N
3 is the effective swimmer
volume.

The dimensionless stresslet or force-dipole strength is α =
σ0/(U0μ
2), where μ is the water viscosity and σ0(ppT − I)
is the stresslet generated by a swimmer with direction p
[4–7,36,37].

Assuming a mean chemoattractant concentration scale Cc,
other parameters are made nondimensional as

λ0 = λ̃0tc, χ = χ̃Cc/tc, ξ = ξ̃Cctc/
c

β1 = β̃1tc, β2 = β̃2ntc/Cc, (13)

where λ̃0, χ̃ , ξ̃ , β̃1, β̃2 are the dimensional constants.
The nondimensional diffusion constants are

D = D̃tc/

2
c, dr = d̃r tc, Dc = D̃ctc/


2
c . (14)

These choices normalize the distribution function as

1

V

∫
V

dx
∫

dp�(x, p, t ) = 1 (15)

with �0 = 1/4π the uniform isotropic state.
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D. Estimating parameters from experiments

To help in comparisons with experiments, we discuss
here how parameters measured in experiments can translate
to our nondimensionless constants. While many types of
microswimmers and chemoattractant types can be found in
nature and in the laboratory, we illustrate the process for
the case of swimming chemotactic bacteria E. coli for which
many of these constants are either known or can be estimated.

Escherichia coli has length 
 ≈ 2–5μm and swims in water
with speed U0 ≈ 20–25 μm/s and the strength of its force
dipole has been measured in experiments as σ0 = 0.1–1 pN
[48]. Assuming water viscosity μ = 10−3 kg/ms, we obtain
α ≈ 0.1–10, which is consistent with O(1) used in prior
simulation studies [5,6,31].

We assume a swimmer concentration n = 5 × 109/cm3 as
in experiments with bacteria Bacillus subtilis [1,2]. This gives
us characteristic scales 
c = 50 μm and tc = 2s assuming
uc = 25 μm.

Using data from the experiments of Saragosti et al. [25,26]
with E. coli, we can approximate the other rate constants. They
give basal a tumbling frequency of λ̃0 = 3s−1, mean chemoat-
tractant concentration Cc = 1.5 × 1017 mol/cm3, degradation
rate β̃1 = 5 × 10−3 mol s−1, production rate β̃2 = 4 × 105 s−1

and the chemotactic strength can be extracted as χ̃/Cc =
4. Using Eqs. (13) we obtain λ0 = 6, β1 = 0.01, β2 = 0.05,
and χ = 2. Notice that χβ2/β1 = 10 > 1/6 = 1/λ0 so these
parameters lie in the unstable regime predicted by the linear
analysis.

Also from Refs. [25,26] we get D̃c ≈ 5 × 10−6 cm2/s
which gives us Dc = 0.4. Note that the Péclet number is
then Pe = 1/Dc ≈ 2.5. For faster-swimming organisms, such
as marine bac0teria this intrinsic Péclet number can reach
O(10 − 20) [31].

We note that the estimated values above are of similar
magnitude to those used in many theoretical studies.

III. STABILITY ANALYSIS

A. Linear stability of RT autochemotaxis

Analysis of the system linearized about the uniform
isotropic state (�0 = 1/4π ), with quasistatic chemoattractant
field in the case of no swimmer diffusion (D = 0 = dr ) re-
veals two distinct dispersion relations,

1 = −3αγ

4ik

[
2a3

H − 4

3
aH + (

a4
H − a2

H

)
log

aH − 1

aH + 1

]
, (16)

1 = λ0χ

2
R

[
2 + aC log

aC − 1

aC + 1

]
− λ0

2

1

ik
log

aC − 1

aC + 1
, (17)

where a = (σ + λ0)/ik and R = β2/(β1 + k2Dc ), with σ

the growth rate and k = |k| the wave number. We refer to
Eqs. (16) and (17) as the hydrodynamic and autochemotactic
dispersion relations, respectively.

The relation (16) is the same as that found for purely tum-
bling nonchemotactic swimmers by Subramanian and Koch
[4], while the autochemotactic relation in (17) was reported
earlier in Ref. [31]. Note that chemotaxis enters the hydro-
dynamic relation (16) solely through stopping rate λ0. The
fluid dynamics and its effects (e.g., the swimming mechanism

typified by the parameter α) do not appear in the autochemo-
tactic relation (17), but the quasistatic chemoattractant dy-
namics is included in the term R = β2/(β1 + k2Dc ).

From Eq. (16) we obtain two branches for σ (k) in the small
k (large system size) limit, namely

σH1 ≈ −αγ/5 − λ0 + 15/(7αγ )k2 + . . . ,

σH2 ≈ −λ0 − 1/(αγ )k2 + . . . . (18)

The chemotactic relation Eq. (17) gives only one branch

σC ≈ 1/(3λ0)(λ0χβ1/β2 − 1)k2 + . . . . (19)

We solve the dispersion relations Eqs. (16) and (17) for
σ (k) numerically using Newton’s method and the small-k
asymptotic solutions as initial guesses (Fig. 1).

For pushers (α < 0) there is a hydrodynamic instability for
a finite band of wave numbers k ∈ [0, kc ≈ 0.55). Tumbling
diminishes this range of unstable wave numbers as the branch
is brought down by λ0 [while Im(σH ) and the oscillatory
modes remain unaffected]. Moreover, we can obtain a range of
λ0 for which a hydrodynamic instability is possible for push-
ers. We find that for λ0 � 0.2 there can be no hydrodynamic
instability for any system size or swimmer shape. For pullers,
there is no hydrodynamic instability, as Re[σH (k)] < 0 even
for λ0 = 0.

For the autochemotactic dispersion relation, the long-wave
asymptotics in Eq. (17), there are wave numbers k with
Re[σC (k)] > 0 for pushers and pullers alike and for any
swimmer shape parameter γ . Autochemotaxis thus introduces
a new instability branch, which is solved numerically from
Eq. (17) and plotted in Fig. 1(b) for two sets of λ0, χ,Dc.
Note that we can obtain a range of parameters for which there
is a chemotactic instability (σC > 0 for k > 0); they have to
satisfy χβ2λ0/β1 > 1.

B. Linear stability of TP autochemotaxis

The linear stability analysis of the TP model of is done
in a similar manner, and the results obtained are remarkably
similar to the RT model with linearized tumbling rate, even
though there is no tumbling in this instance. For swimmers
with no translational or rotational diffusion (D = dr = 0), the
two dispersion relations are

1 = −3αγ

4ik

[
2a3

H − 4

3
aH + (

a4
H − a2

H

)
log

aH − 1

aH + 1

]
, (20)

1 = ξR

[
2 + aC log

aC − 1

aC + 1

]
, (21)

with a = −iσ/k. The long-wave (small k) asymptotics for the
hydrodynamics relation yields

σH1 ≈ −αγ

5
+ 15

7αγ
k2 + . . . , σH2 ≈ − 1

αγ
k2 + . . . ,

(22)

which resemble the RT results without basal tumbling,
Eqs. (18). The small-k asymptotics of the autochemotactic
relation give

σC ≈ σ1k + σ3k
3 + . . . (23)
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FIG. 1. (a) The two branches of the growth rate obtained by the hydrodynamic relation with α = −1, γ = 1. Inset shows the imaginary
parts. (b) The growth rate obtained from the RT chemotaxis relation for λ0 = 0.025, χ = 50 used later for simulations. For both, β1 = β2 =
1/4, Dc = 1/20. Also shown is the growth rate from the TP relation: with ξ = 5 and ξ = 0.625 (inset) and β1 = β2 = 1/4, Dc = 1/20.
Dashed line show the long-wave asymptotic result. Parameters ξ are chosen so that ξ = λ0χ/2. (c) The growth rate obtained from the RT
chemotaxis relation for λ0 = 6, χ = 2, Dc = 0.4, β1 = β2 = 0.1 from the estimates in Sec. II D.

with σ1 ≈ ξ [1 − arctan(1)]β2/β1 and σ3 ≈ Dc/β1. While this
does not look similar to the RT result Eq. (19), the numerical
solution in Figs. 1(b) and 1(c) shows similarities in the overall
curve shape, maxima, and critical kc where σ (kc ) = 0. It can
also be shown that the hydrodynamic instability increases
growth of the shear stresses, whereas the autochemotactic in-
stability increases fluctuations in the swimmer concentration
and normal stresses [31,32,50].

Including translational diffusion merely shifts down the
Re(σH ) and Re(σC ) by −Dk2. As found in Ref. [51]
for nonchemotactic swimmers, the hydrodynamic instability
branch Re(σH ) shifts down by approximately 6dr . Note that
swimmer tumbling also shifts down the Re(σH ) branches in
Eqs. (18) by the basal frequency λ0. We do not investigate here
how nonzero rotational diffusion dr affects the chemotactic
instability.

C. Configurational entropy

The configurational entropy S = ∫∫
�
�0

log( �
�0

)dpdx, with
�0 = 1/4π , plays the role of a system energy [6]. Note that
S � 0 and realizes its minimum value of zero only for the
homogenous and isotropic state �0. An increase in S means a
departure from �0, e.g., through aggregation or alignment of
swimmers.

For the TP model, it is possible to show that

4πST P
t = 2ξ

∫
�n · ∇xCdx − 6γ

α

∫
E : Edx

−
∫∫

�
[
D|∇x log �|2 + dr |∇p log �|2]dpdx.

(24)

The significance of the last two terms on the right-hand
side is known for nonchemotactic swimmers. The second term
includes the rate of the viscous dissipation and indicates a
growth for suspensions of pushers (α = −1) and decay for
pullers (α = 1) [6]. The last term indicates decay due to trans-
lational and rotational diffusion. The first term on the right-
hand side implies growth due to a chemical gradient ∇xC if
the chemotactic sensitivity ξ is positive (i.e., the chemical is
an attractant) for any type of swimmer of any shape. Specif-
ically, if the swimmer flux �n aligns in the chemoattractant

gradient direction ∇xC, then there is a positive contribution
to the configurational entropy. The chemoattractant dynamics
does not appear other than by its spatial gradient ∇xC.

Obtaining a similar equation for the full RT model is not
easy, but for a system linearized around the uniform isotropic
state �0 = 1/4π it is possible to show that

4πSRT
t = −λ0SRT + λ0χ

∫
�n · ∇xCdx − 6γ

α

∫
E : Edx

−
∫∫

�
[
D|∇x log �|2 + dr |∇p log �|2]dpdx.

(25)

This equation shows the same last two terms as in Eq. (24)
that are due to hydrodynamics and diffusion. The chemotactic
term is also similar, except here it has the factor λ0χ instead
of 2ξ . A new term −λ0SRT appears here indicating the stabi-
lization due to tumbling.

D. Relating the two chemotaxis models

In the RT model tumbling stabilizes the system; the hydro-
dynamic instability branches are shifted downwards by the
basal tumbling frequency λ0, as seen in Fig. 1. Rotational
diffusion shifts down the hydrodynamic instability branches
in by approximately 6dr as shown by Hohenegger and Shelley
[51] for k � 1. In this respect, at large system sizes tumbling
with basal frequency λ0 acts like rotational diffusion with
coefficient 6dr , as noted by other theoretical studies [4].

Comparing the chemotactic dispersion relations, Eqs. (17)
and (21), and the configurational entropy results in Eqs. (24)
and (25) suggests that ξ ≈ λ0χ/2 relates the RT model
with basal tumbling λ0 and chemotactic strength χ to the
TP chemotaxis model with strength ξ . Since in the k �
1 regime the chemotactic growth rate of the TP model is
σC ≈ ξ [1 − arctan(1)]β2/β1k, we plot the line with slope
λ0χ/2[1 − arctan(1)]β2/β1 in Fig. 1(b) and see that it gives
a remarkable approximation to the growth rate from the RT
model. Comparison of the curves in Figs. 1(b) and 1(c) for
the RT and the TP models, when the chemotactic parameters
are matched as such, shows also their similarity in overall
curve shape, maxima, and critical wave numbers kc where
σ (kc ) = 0.
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Thus, for k � 1 or large wavelengths, the linearized TP
model with chemotactic parameter ξ and rotational diffusion
dr behaves similarly to the linearized RT model with basal
tumbling λ0 and chemotactic sensitivity χ , when the param-
eters are related as ξ ≈ λ0χ/2 and λ0 = 6dr . Full nonlinear
simulations with parameters chosen as above also support this
matching, as is shown in the next section. Differences, how-
ever, may occur at small wavelengths or due to nonlinearities.

IV. NONLINEAR SIMULATIONS

For relative ease of computation, we perform simula-
tions in two dimensions (2D) instead of 3D and modify
the Eqs. (1)–(8) accordingly. We consider doubly periodic
systems in which the particles are in the (x, y) plane with
orientation p = (cos θ, sin θ, 0) parametrized by an angle θ ∈
[0, 2π ). We use discrete Fourier transforms to approximate
spatial derivatives and to solve the fluid equations (6). Integra-
tions in θ to obtain the swimmer density � and active particle
stresses �a [Eq. (7)] use the trapezoidal rule. Equations (1)
and (8) are integrated in time using a second-order scheme.
Particle translational and rotational diffusion are included in
all the simulations for numerical stability (with values of D =
dr = 0.025). We consider only slender rodlike microorgan-
isms with shape parameter γ = 1 and pick the computational
domain is a square with side L = 50 or L = 25. The initial
swimmer distribution, used in all the examples, is taken to
be a small perturbation about the uniform and isotropic state
�0. The initial chemoattractant concentration is taken to be
uniform and C(x, 0) = β2/β1.

A. Effect of mixing dynamics on autochemotaxis of pusher
suspensions

It is known that pusher suspensions (α < 0) develop a hy-
drodynamic instability [4,6]. In that case (without chemotaxis
or tumbling), that instability gives rise to strongly mixing
flows with bands of high swimmer concentration [6]. We
now illustrate the suspension dynamics when tumbling and
chemotaxis are included.

We perform nonlinear simulations with λ0 = 0.025, χ =
50, Dc = 1/20, β1 = β2 = 1/4 in a square domain with side
L = 50. For these parameters, the linear theory predicts
dynamics with both strong autochemotactic and hydrody-
namic instabilities. The parameters in this comparison are
chosen to accentuate the differences in the results. For com-
parison we include the cases of purely tumbling suspen-
sions (λ0 = 0.025, χ = 0), nonchemotactic suspension (λ0 =
0), and another case for which linear analysis predicts
just hydrodynamic, but no autochemotactic instability (with
λ0χβ2/β1 < 1).

Figure 2 shows plots of the swimmer concentration at
the onset of the mixing regime. Chemotactic swimmers pro-
duce chemoattractant as well as aggregate towards it. A
strongly mixing flow emerges and advects both swimmers
and chemoattractant, resulting in dynamic aggregation of
swimmers occurring due to the local autochemotactic ten-
dency. This effect is seen from the sharper and narrower
concentration bands in the autochemotactic suspension in
Fig. 2(a) compared to nonchemotactic tumblers in Fig. 2(c).

FIG. 2. RT chemotaxis model: Concentration � of pusher swim-
mers that are (a) strongly autochemotactic λ0 = 0.025, χ = 50, (b)
weakly autochemotactic λ0 = 0.025, χ = 35 (λ0χβ2/β1 < 1), (c)
tumbling nonchemotactic λ0 = 0.025, χ = 0, (d) nontumbling λ0 =
0, all at time t = 150.

Autochemotaxis stabilizes the formation of concentration
bands that pure tumbling had diminished through its
diffusion-like effect. The effect is apparent even for the case
where no autochemotactic instability is predicted by linear
theory (λ0χβ2/β1 < 1), as shown in Fig. 2(b). In Figs. 2(a)–
2(d) we see that autochemotaxis has also hastened the onset
of the mixing regime when compared to the purely tumbling
pusher suspension. Linear stability predicts that pure tumbling
has a stabilizing effect on the suspension. This is confirmed
in simulations when comparing the weak concentration bands

FIG. 3. RT chemotaxis model: (a) The maximum of the swimmer
concentration � and (b) the maximum of the generated fluid flow u
in Figs. 2(a), 2(c) and 2(d).
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FIG. 4. Swimmer concentration � in pusher suspensions for the
RT chemotaxis model with λ0 = 0.025, χ = 60, dr = 0.025 (left)
and TP chemotaxis model with ξ = 0.75, dr = 0.175 (right) at time
t = 150.

for pure-tumblers and the nontumbling nonchemotactic push-
ers in Figs. 2(c) and 2(d). These effects are also illustrated

in plots of the swimmer concentration and generated fluid
flow in Fig. 3. Note from Fig. 3(b) that in pusher suspensions
with the same tumbling frequency λ0 = 0.025, autochemo-
taxis strengthens the emerging fluid flows. This suggests that
autochemotaxis can be used to enhance mixing in pusher
suspensions.

B. Similarities between the chemotaxis models

We illustrate the qualitative similarities in the dynamics
of the two chemotaxis models when parameters are matched
as suggested by the linear theory: λ0 ≈ 6dr and ξ ≈ λ0χ/2.
Figure 4 shows pusher swimmer concentration for the two
models at the onset of mixing. The profiles and dynamics are
remarkably similar, and similarity is observed in the chemoat-
tractant field generated fluid flows (not shown). Similarity is

(b) (c)(a)

(e) (f )(d)

(h) (i)(g)

FIG. 5. Aggregation and clustering of autochemotactic microswimmers in the RT chemotaxis model. Displayed are the concentration � of
(a) neutral, (b) puller, and (c) pusher swimmers at time t = 50. (d) Close-up of a peak in the puller suspensions showing concentration � level
sets and mean swimmer direction < p >. (e) Close-up of of a peak in the pusher suspension showing concentration � level sets and mean
swimmer direction < p >; in (f) the generated fluid flow u. Panels (g), (h), and (i) show the concentration � of neutral, puller, and pusher
swimmers at later time t = 150. See movies of the dynamics in Ref. [53].
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FIG. 6. The concentration field � in a channel with width 6.25 >

Ls = 3 at times (a) t = 0 and t = 300 for (b) neutral, (c) puller, and
(d) pusher swimmers.

observed in simulations with pullers and neutral swimmers as
well.

The TP model assumes that a swimmer is able to detect
the local chemoattractant gradient and adjust its orientation to
swim towards the regions of high chemoattractant concentra-
tion. This chemotactic response is induced through a torque
that aligns the swimmers with the chemoattractant gradient.
While not applicable to bacteria, it is intriguing that there are
similarities to the RT chemotaxis model in the linear analysis
and the also the nonlinear dynamics at the long wavelengths.

C. Clusters and squiggling aggregates

We perform simulations with parameters estimated from
experiments (Sec. II D) λ0 = 6, χ = 2, Dc = 0.4, and we
pick β1 = β2 = 0.1 and square domain side L = 25. The
results are shown in Fig. 5. For these parameters, linear
stability predicts chemotactic aggregation [see in Fig. 1(c) the
plot of the growth rate] but no hydrodynamic instability for
pushers since λ0 > 0.2.

All three cases—neutral, puller, and pusher—begin from
identical initial data that is a perturbation about uniform
isotropy. As seen in Figs. 5(a) and 5(b), both the neutral
swimmer and the puller suspensions stabilize into nearly
identical patterns. This is not surprising since at these pa-
rameters, hydrodynamics is suppressed for puller suspensions.
The aggregates are circular and saturated in magnitude. Con-
versely, the pusher suspension initially aggregates in the same
locations, but the aggregates are now ellipsoidal [Fig. 5(c)]
and are slowly squiggling as is suggested by the mean director
field [Fig. 5(e)]. The underlying mechanism for the motion of
the aggregates has to do with the local fluid flows generated
in pusher suspensions, which though small, are present in
regions of high swimmer concentration. The beanlike aggre-
gate shapes seem to be due to the local straining flows at the
local concentration peaks, and the shape is consistent with the
direction of strain, as shown in Fig. 5(f).

FIG. 7. The concentration field � in a channel with width
3.125 < Ls = 5.5 at times t = 0, 100, 200, 300 for (a) neutral, (b)
puller, and (c) pusher swimmers. The profiles (side-views) of � are
shown at time t = 300. See the movie in Ref. [53].

In later times the neutral and puller aggregates remain
stable circular aggregates, though the number of peaks may
not be identical due to occasional merging of the peaks. The
puller suspension has more peaks, and as explained in our
prior study, this is likely due to the nontrivial straining fluid
flows between peaks that keep them from further merging.
In the pusher suspension though the initially elongated peaks
squiggle and merge with each-other and occasionally break.
The aggregate shape is asymmetric and continually changing.
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TABLE I. Length scale of aggregates Ls measured in simulations
for chemotactic parameters (λ0, χ ). We note with Y/N whether the
patterns become quasi-1D in domains with one side 50 and the other
side 50

4 = 12.5, 50
8 = 6.25, or 50

16 = 3.125.

(λ0, χ ) (1,2) (1,4) ( 1
2 ,4) ( 1

2 ,8) ( 1
4 ,8) ( 1

4 ,16) ( 1
8 ,16)

Ls 5.5 6.2 5.5 9.4 5.1 12 5.5
12.5 N N N N N N N
6.25 N N N Y N Y N
3.125 Y Y Y Y Y Y Y

These asymmetric and moving aggregates seem related to
the filamentary aggregates reported in our previous study [31].
The pusher suspensions there were found to aggregate in long
filaments that were slowly moving and squiggling; they would
merge and break in a dynamic fashion but their characteristic
width would remain unchanged. The beanlike aggregates seen
in Fig. 5(c) and later time aggregates in Fig. 5(i) are a simpler
version of the more complex dynamic structure reported in
Ref. [31].

Note that in most cases of Fig. 5 the aggregates exhibit
a characteristic size Ls ≈ 3 where L = 25 is the domain size.
The characteristic size Ls here is defined to be the mean length
between isolines (contour lines) of the swimmer concentration
with mean value � = 1, i.e., we measure the size of the
aggregates from where their height surpasses the suspension
mean concentration.

D. Stabilizing suspensions into concentration bands

Simulations shown previously reveal a length scale asso-
ciated with the aggregates of all swimmer types. We conduct
simulations in thin rectangular domains where the thin side
is greater or smaller than this critical length scale Ls with
otherwise the same parameters as in Fig. 5. Having one short
domain direction mimics the thin microchannels used for
experiments [26,52].

In domains with one side much larger than this criti-
cal length scale (6.25 > Ls = 3), the initially uniform and
isotropic pusher suspension stabilizes into bean-shaped squig-
gling aggregates, as seen in Fig. 6. These aggregates are of
similar size as those seen in the wider box-shaped domains of
Fig. 5. Here the channel width is just above the critical length
scale Ls , and the aggregate shapes oscillate between beanlike
and bands.

In an even narrower domain with one side below the crit-
ical length (3.125 < Ls = 5.5), the pusher suspension now
stabilizes instead into steady nearly one-dimensional bands,
as seen in Fig. 7. These bands exhibit slow squiggling motion
but are stable and do not further merge.

We explored this phenomenon for a variety of chemotactic
parameters shown in Table I. Simulations in a rectangular
domain with one side under this critical length scale Ls always
show a transition into quasi-1D patterns.

E. Traveling concentration bands

Many experiments with autochemotactic bacteria have
been performed in confined experimental setups such as

FIG. 8. The concentration field � under an imposed chemoat-
tractant gradient in a channel with width 3.125 < Ls = 5.5 at times
t = 0, 100, 200, 300 for (a) neutral, (b) puller, and (c) pusher swim-
mers. The profiles (side views) of the concentration field are shown
at time t = 300. See the movie of the dynamics in Ref. [53].

microchannels, with an imposed external chemoattractant
[26] or temperature gradient [52]. Theoretical studies pre-
dicted that applied chemoattractant gradients affect hydrody-
namic instabilities in pusher suspensions [54]. In experiments
[25,26,52], the formation and propagation of one-dimensional
concentration waves was observed. Autochemotactic aggrega-
tion seems to be a key ingredient in the production of traveling
concentration pulses with the external chemoattractant or
temperature gradient guiding them.
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FIG. 9. Aggregation of autochemotactic microswimmers in the RT chemotaxis model when subjected to an external chemoattractant
gradient with λ0 = 6, χE = 6. Displayed are the concentration � of (a) neutral, (b) puller, and (c) pusher swimmers at time t = 50. Panels (d),
(e), and (f) show the concentration � of neutral, puller, and pusher swimmers at time t = 150. See movies in Ref. [53].

We explore this phenomenon by introducing a constant
chemoattractant gradient along the channel, in addition to
the intrinsically produced chemoattractant field. To do this,
we include another term, DtC

E , in Eq. (4) with constant
∇CE = [1, 0] and chemotactic parameters λE

0 = 6, χE = 6
which are consistent with the parameters in the experiments
with chemotactic bacteria [25,26,52]. Note that such an im-
plementation of the external gradient assumes it to be constant
and does not account the stirring of the imposed attractant by
the swimmers. The initial suspension is uniform and isotropic,
with a uniform intrinsically produced chemoattractant (C =
β2/β1). The results are shown in Fig. 8.

The short-term dynamics is dominated by autochemotac-
tic aggregation into quasi-one-dimensional bands, Fig. 8(b).
However, under the influence of the external gradient, these
aggregate bands now propagate and interact with each other.
Merging of the existing bands is observed, as are the birth
and propagation of new ones; though the aggregates do not
necessarily merge into one superband. Here the profiles are
visibly asymmetric (compare to the case of no external gra-
dient in Fig. 7). The profiles have a protruding front from
which smaller bands may later emerge and break-off—a phe-
nomenon observed in experiments with chemotactic bacteria,
e.g., compare to Fig. 1 of Saragosti et al. [25].

F. Unconfined traveling aggregates

We saw in Fig. 5 that in unconfined spaces the chemotactic
aggregates for neutral and puller swimmers are circular and
nearly identical, whereas the pusher swimmer aggregates or

droplets squiggle and move due to the hydrodynamic interac-
tions.

We impose an external chemoattractant gradient to an
initially isotropic suspensions of swimmers and show the
results in Fig. 9. The parameters used are the ones extracted
from experiments in Ref. [26] and discussed in Sec. II D.
The swimmers cluster and travel in group in the direction
of the gradient. The aggregates of the neutral and puller
swimmers are no longer similar, and the imposition of the
external gradient highlights the differences. The puller swim-
mer aggregates in Figs. 9(b) and 9(e) are semicircular with
the flat face facing the external gradient. The pusher swimmer
aggregates [Fig. 9(c)] are mostly sickle shaped and the convex
part faces the gradient. In the later times, the aggregates for all
the swimmer types may have merged into larger aggregates.
The external gradient helped the coarsening and merging
of aggregates. For pullers and pushers hydrodynamics has
further helped the merging process since there’s fewer active
droplets than in neutral swimmer case.

V. DISCUSSION AND CONCLUSION

We have presented and elaborated upon two kinetic mod-
els that couple chemoattractant production and response in
colonies of microswimmers with the fluid flows that the
swimmers generate while moving. These two models, and our
study of them, merge together two separate areas of investi-
gation: chemotactic aggregation due to population-produced
chemoattractants and the hydrodynamics of active motile
suspensions.
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We performed the linear stability analysis and entropy
analysis for both the models and find two distinct sources of
instability: the chemotaxis-induced one which exhibits itself
as an aggregation of swimmers and a hydrodynamic one in
“pushers” that exhibits itself with local swimming alignment
and the generation of nontrivial fluid flows. In the long-wave
regime we see qualitative agreement between the two models
when the parameters are matched as analysis predicts. We
found that while tumbling by itself dampens the pusher collec-
tive dynamics, autochemotaxis can be used to revive it. This
suggests chemotactic bacteria can achieve a more accelerated
collective dynamics than nonchemotactic ones.

In our first study [31] we investigated the RT model using
parameters close enough to those in the the Saragosti et al.
experiments [26] and found the production of filamentary
squiggly aggregates. Despite this system being well outside
of the regime of hydrodynamic instability predicted by lin-
ear analysis, hydrodynamics was plainly important in their
local dynamics. We explain here the emergence of those
complex structures. In a setting of a narrow domain that
mimics the microfluidic thin channels, these aggregates can
become quasi-one-dimensional bands. These bands transi-
tion into one-dimensional traveling pulses when an external
chemoattractant gradient is applied, and the results strongly
resemble those observed in experiments with autochemotactic
E. coli confined in microfluidic channels [26,52]. By mim-
icking the channel confinement with a narrow rectangular
domain, our model qualitatively captures the traveling pulses.
While most experiments are done in narrow microchannels,
our simulations predict that in wide channels or unconfined
spaces the traveling band or pulse phenomenon would exhibit
itself as asymmetric squiggling aggregates that propagate in
the direction of the imposed gradient.

We note that in our simulations here do not resolve the
direct or hydrodynamic swimmer interactions with a solid
boundary. It has recently been found that those mechani-
cal interactions alone can lead to unidirectional motion of
dense suspensions of bacteria along narrow microchannels or
racetracks even in the absence of autochemotaxis or external
gradients [55,56]. The full coupling of all mechanical and
chemical interactions undoubtedly would yield rich behavior
yet to be explored, whether theoretically or experimentally.

Our models use a dilute to semidilute theory that does not
include local interactions between swimmers, either lubrica-
tion or steric; see Refs. [3,12,13,55,56] for relevant experi-
ments using bacteria. In denser suspensions the swimmer size
limits local swimmer density through steric interactions, and

well-founded models that combine these with hydrodynamic
interactions are being developed [57]. We note a recent study
by Taktikos et al. [45] for discrete disk-shaped chemotactic
random walkers in 2D with steric but no hydrodynamic ef-
fects showing that steric interactions can limit aggregation, as
indeed they must. Further, in dense suspensions it is not clear
how run-and-tumble dynamics, as it is typically modeled,
is affected by crowding and steric interactions. Intuitively,
one expects the swimmer tumbling frequency to decrease in
denser suspensions where mobility is limited due to crowding.
Moreover, the particle swimming speed is not necessarily
constant and may depend on the local swimmer density, which
can also lead to fascinating patterns [58].

The coupling of autochemotaxis with collectively gener-
ated flows has not yet been systematically studied in an ex-
perimental setting. Chemotaxis in bacterial colonies has been
previously exploited for enhancing mixing in microfluidic de-
vices [59], but it has not yet been studied experimentally how
such mixing is affected by autochemotaxis. With the recent
possibility of specific engineering and tuning of the locomo-
tion, tumbling and chemosensing in microswimmers [17], it
might become possible to optimize mixing and transport of
materials at the microscale. Moreover, the interplay among
locomotion, fluid flows, chemotaxis, and quorum sensing can
be further illuminated through the controlled introduction
of exogenous chemoattractants [60]. Notably, chemotactic-
like behavior is also observed in suspensions of synthetic
microswimmers that exist in microfluidic environments (e.g.,
see Ref. [61] for experiments and Ref. [42] for theory). Such
chemotactic responses might be exploited in the future in
technological applications [61–68].
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