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This paper gives the first two moments of a wave field scattered by grazing incidence on a 
moderately rough surface. The expressions are derived for normally distributed surfaces with 
arbitrary spectrum, and are valid at depths that are large compared with the surface height. It 
is demonstrated that the first moment has a weak dependence on the surface fluctuation 
spectrum. The first moment is compared with Monte Carlo simulations, and gives close 
agreement. It is also shown that for a given degree of surface roughness the first moment 
retains the fiat-surface reflection property of being determined by the distance from an "image 
source," i.e., the sum of the depths of source and receiver. 

PACS numbers: 43.30.Hw 

INTRODUCTION 

In the study of rough surface scattering a central prob- 
lem is to find the statistics of the scattered wave field •-3 and 

relate them to those of the surface. Few results are known, in 
particular, for the case of a wave T multiply scattered by 
grazing incidence on a very rough one-dimensional surface; 
expressions for the moments have been given 3 for the pertur- 
bation regime of small surface heights, and in the near-sur- 
face region 4 for slightly greater roughness. 

In this paper equations are derived, following the meth- 
od proposed previously/ for the first and second moments 
of the scattered field due to a Gaussian beam. These expres- 
sions are valid for moderate rms surface height ½, at depths 
much greater than ½. The surface is assumed to be normally 
distributed, with arbitrary autocorrelation function. Wave 
propagation in this regime is well described by the parabolic 
equation method, 6 which expresses the field in terms of a 
Green's function. In deriving the equations here, we first 
obtain the correlation between the Green's function G(•,F) 
and the incident field Tmc (F" where F, 7"are points on the 
random surface. The moments of the scattered field are then 

expressed in terms of this correlation, using an approximate 
form 5 for the vertical derivative o•/Sz along the surface. 
The equations obtained are based partly on numerical dis- 
cretization, but express the dependence of the moments on 
the surface statistics explicitly. The equation for the first 
moment is compared with Monte Carlo simulations for a 
surface with Gaussian spectrum, and gives good agreement. 
The first moments are compared for surfaces with Gaussian 
and power-law spectra, and are found to depend only weakly 
on the surface spectrum. 

For a source at a depth Zo below a flat surface as is well 
known the scattered field T s at depth z, equals the field that 
would be due directly to an "image source;" thus T s is deter- 
mined by Zo + z•. It is shown here that when the surface 
becomes rough although the mean field depends strongly on 
½, it retains this property. This result is confirmed by simula- 
tions for much larger values of •. 

The parabolic equation method and other preliminaries 

are given in Sec. I, and in Sec. II the solutions are described 
and computational results given. 

I. MATHEMATICAL PRELIMINARIES AND EQUATIONS 

In this section we set out the details of the parabolic 
equation method for simulation of surface scattering, 6 fol- 
lowing the notation used previously/ and recall the results 
which are needed. 

A. Parabolic equation method and numerical solution 

We consider the two-dimensional scattering problem, 
i.e., from a one-dimensional surface. We treat the case in 
which the field is incident at low grazing angles, and is gov- 
erned by the parabolic wave equation. The coordinate sys- 
tem (x,z) is taken as usual, where x is horizontal, x>0, and z 

is the vertical, decreasing downwards. Let • = (x,z). The 
source will be centered around 7o = (0,0), and its mean dis- 
tance from the surface will be denoted %. Let h• (x) be the 
rough surface, and let h =% - h•, so that h has mean zero. 
The derivative ofh is assumed to be bounded. The equations 
are derived here for normally distributed surfaces. Denote 
the rms of the random component h (x) of the surface by ½, 
and its correlation length by L. Here, Tmc (?) denotes the 
(complex) incident wave field. It will be assumed that 
T•.,: = 0 at the surface for x<0, and that h• (x) is a pressure- 
release surface. Here, Ts (7) denotes the wave field scattered 
from the surface and T(?) the total field, so that 
T = Ts + Tmc, and T = 0 at the surface. The surface deriv- 
ative 8T/Sz may be denoted by T'. The governing equations 
for the parabolic equation method are 

Tm•(•) = -- G(T;,7') •z'/•,•. dx', (1) at surface 

which may be written in operator form as 

Ti. c = AT' 
and 

Here G is the Green's function given by 

dx'. (2) 
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G(x,z;x',z') = '2rrk( - x ) 2 - x ]' 
0, 

for x>x', 

for x < x •, 

(3) 

whereF • (x',z') -•-(x',h I (.x')) along the surface and k is the 
wave number. 

The incident wave is a simple Gaussian beamed source 
of width w traveling at a small angle 0 to the surface: 

•i,c (x,z) = 
x/w + 2a/t 

• exp - , (4) 
2(w • + 2ix/k) 

where S = sin(0). In the computation• examples that fol- 
low we have t•en k = 1 and w = 8, and have •nsider• the 
fo•ard-traveling c•e 0 = 0. In most of the r•ults the cor- 
relation length is L = 8, which is of the order of a wave- 
length. 

We n•d •me additional notation: •t 

•o (x) = •i,• (X•o) • the incident field along zo, and let 
ß • and •o denote the (dete•inistic) fo•s of •' and •, 
res•tively, which would be due to a fiat surface at %. For 
•y of thee quantities • say, •) will denote its ensemble 
average, t•en over realizations of the surfak. The no•al- 
ized autocorrelation function of the surfa• (with mean re- 
move) is given by 

p(g) = (h(x)h(x + •))/•. 
We will make use of the auto•gelation functions for sur- 

fa• with Gaussian and fourth-order power-law s•tra. 
For the Gaussian case this is 

p(•) = exp( -- • Z/L •), 
and the authorrelation function •rres•nding to the pow- 
er-law spatrum is 

p(g) = (i + Ig I/L)exp( - I/L). 

•e inte•s in •s. (1) and (2) both contain w•k 
(i.e., integrable) singularities. We give brief details here of 
the numerical treatment • of thee equations, from which 
Monte Carlo simulations are run for •mpafison with the 
moment •uations. 

•tion ( 1 ) is diserefiz• with reset to x, using N 
equ•ly spaced points x• .... •, •y. The integral is divid• 
into co•espond•g subintervals, on each of which pr•uet 
inmgration is appli•, 7 treating the function •' as constant. 
A may thus be represented by an N • N lower-triangular ma- 
trix with entries 

•,'l•i 
for i>j, and this is inve• numerically. 

•uation (2) for the seatmred field is evaluated using a 
semi-analytical approach: the integral is again divided into 
subin•s [x•,x•+• ] and the •gument is exp•ded in 

terms of (x' -- xr ). By making a change of variables and 
integrating by parts the integrand may be expressed in terms 
of Fresnel integrals. 

B. Approximations 

The results here make use of several approximations dis- 
cussed previouslyJ The first is the following expression for 
the incident field at the surface: 

[ 4zoh(x) -- ikSw•h(x) 
•I/i"½ (X) • •I/ø (X) exp• 2-•w2'• 2• ')' (5) 

This neglects a factor exp [ikh 2/(to • q_ 2ix/k) ]. It holds for 
•g uJ • provided the source is sufficiently far from the sur- 
face, i.e., {b gz o. (When •b is comparable with %, although 
the error term may remain small, it represents a significant 
part of the random variation in •i,c, and neglecting it may 
then corrupt the statistics.) 

We will be concerned with the single random variable 
form G(x,z,x',h• (x')) of the Green's function as it appears 
in Eq. (2). Let z' = z o -- z so that z' is the depth (relative to 
the mean surface level). When z' is large compared with •, 
the exponent in the Green's function can be approximated as 
follows: 

ik(z' -- h(x') )•--•ik z'• -- 2z'h(x') (6) 
2(x--x') 2(x -x') 

This again holds for any k• provided z' is sufficiently large. 
(The error is a factor exp[ikh •/2(x- x')]; although this 
exponent becomes large as x'-,x it gives rise to negligible 
errors in q• as the phase variation in G is dominated by 
approximate exponent (6) .) 

The third approximation replaces the operator A in ( 1 ) 
by its deterministic form,4 0: 

•i•c •Ao•'. (7) 

It follows from this that the mean of•' may be approximat- 
ed by {•P') --•,4 •- • {•Pi• ), which was shown s in this scatter- 
ing regime to be fairly accurate for k• up to around 2. The 
expression (7) is a crucial step, since it enables us to write the 
integrand in Eq. (2) as an explicit function of surface heights 
h(x). 

As described above the operator Ao may be represented 
as a matrix and inverted numerically, to give A d- •- Ao is a 
Toeplitz matrix, i.e., one which is lower triangular and con- 
stant along the diagonal and each subdiagonal, with entries 

a;j = 2•rk(x, -- x') 
= 

The inverse A •- t is therefore also a Toeplitz matrix, and its 
entries may be written aq = rh_ •, where the a's are deter- 
ministic constants. Thus for any x, we have 
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•'(X,)• • a•_i•i,•(xi) , (8) 

whereX, = (x, + x, _, )/2. This discrete representation of 
A o- t is important for us because it allows the correlation 
(6xI•') robe expressed as a sum of terms (G-xI•i, c ). [Note that 
the equation q•,• = Ao q•' has the solution 7 

2rr 2•rk dx (x - x') ,/2 

Although this formula is analytical, any potential gain in 
accuracy over (8) is lost in discretization. However it is a 
more convenient form from which to derive explicit coeffi- 
cients a,_ i. For example if the derivative is approximated 
using a backward finite difference and the integral discre- 
tized as before we can write ak = ( 1/rr6) (a• + •., -- a•.• ) for 
k>0 and ao = a•.,/rr6, where a•.• is as above and 6 is the 
constant step size (xj -- xj_ • ). ] 

II. MOMENTS OF THE SCATTERED FIELD 

We can now derive the equations for the first and second 
moments of*•. We first give expressions for the moments of 
the product of the Green's function (7 with the incident field 
ß i,, at the surface. 

A. Statistics of G •,, 

Consider again the form G(x,z,x',h• (x')) of the Green's 
function appearing in Eq. (2), which we may write 
G(x,z,x'). Denote by F the correlation function 

F(x,x',x" ,z) = (G(x,z,x') q•m• (x") ). 

Similarly denote by F2 the four-point correlation 

F• (•;•) = {G(x,z• ,x')G*(y,ze,y') 

x•2• (x")q,• (y") ), 

where 5: (x,x',x",z•), y = (y,y',y",z•), the asterisk de- 
notes complex conjugation, and all the coordinates except 
for z•, z2 are x coordinates. 

Consider first the function F(x,x',x",z), and again de- 
note the depth by z' = Zo - z. Using Eqs. (5) and (6), we 
can write G(x,z,x')•,• (x") as 

O(x.z.x')qS.• (x") 

•c(x,x',x",z')exp[ b(x")h(x" ) -- a(x,x',z')h(x') ], 
(9) 

where 

a(x,x',z') = ikz'/(x -- x'), 

b(x") : (4z o -- ikSw•)/2(w • + 2ix"/k), 
and 

C(X,X',X",Z') 

1 i exp( •kz • (x" =-- - •o ). 2 2rrk(•- x') \2(x-x')! 

Now the exponent in (9) is itself a normal random vari- 
able X, whose variance {X 2) is given by 

a2(x,x',x",Zo,Z ') = •2[a: + b • -- 2abp(x' - x" ) ]. 

The mean of the exponential in (9) is just exp(a•/2), (e.g., 
Papoulis • ), and therefore, since c is deterministic, 

F( x,x',x",z ) • c( x,x',x",z' )exp( a2 /2 ). (10) 
The function F2 may be calculated similarly. Writing 

a(x,x',z'• ) as a(•), b(x".) as b(X), and so on, we have 

F2 (•;•) -- c(•)c* (y)exp(a•/2), ( 11 ) 

where rr2 • is the variance of 

b(•)h(x") - a(•)h(x') + b *(y)h(y" ) - a*(•)h(y'), 

and is given by 

a2 2 = • •(a•(•) + b •(•) + d(y) + b *•(y) 

- 2a(•) [b(•)p(x' - x" + a(y)p(x' - y') 

+ b *(y)p(x' -y") ] + 2b(.•) [a(y)p(x" - y') 

+ b *(y)p(x" -y")] + 2a(y)b *(y)p(y' --y")}. 
It is easy, but notationally cumbersome, to extend this to 

the higher moments of G q•,•, and this will not be done here. 

B. First moment of •, 

Consider the integral (2) for a fixed x = x•. We can 
divide the region of integration into subintegrals of the form 

•' G(x,,z,x')q•'(x')dx'. 
Since q•' is smoothly varying each subintegral can be written 
approximately as 

ß '(X.) G(x,,z,x')dx', 

where X• = (x• +x•_t )/2. Applying Eq. (8) and rear- 
ranging this becomes 

a r _j (J(X n ,Z,X') •l/in c (Xj)dx'. 

The mean of this is obtained by taking the average of the 
integrand, and thus, averaging both sides of Eq. (2), we get 

<%(x.,z)) 

_--__ a. _ •F(x. ,x',x•,z) dx', ( 12 ) 
r=lj=l r I 

where Fis given by (10) 

C. Second moment of 

The full second moment <q•(x,z, )q•*(y,z2 )) may be 
obtained similarly. Consider the product 
q•, (Xm ,Z• ) q•* (X, ,Z2 ). Applying Eq. ( 2 ) to each term, divid- 
ing again into subintegrals, and multiplying we get 

[IIs(Xrn,Zl ) •/s• (Xn,Z2) 

= G(x•,z•,x )G (x,,z2,x) 

Xad'(x')q•'*(x"dx' dx". 

Each of the double subintegrals can be written, using Eq. 
(8), as 
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ar_•a,_ t, G(x,,,,z• ,x') 

XG* (x.,z2,x )•i,,c (xj)•c (x,)dx' dx". 
On averaging, the integrand becomes 
F:• (x,,,,x',xj,z• ;x,,,x',xt,,z• ) and so the second moment of 
•P, is approximately 

r=ls--lj=l k=l 

X F• (xm•c',x]•q ;x,,x",xk,z2 )dx' dx". 

Rearranging the order of summation and taking the coeffi- 
cients under the integral signs this becomes 

j=lk=lr=J$=& _ x,_ I 

XF• (x=,x',x•gt ;x,,x",x•,z• )dx' dx •. 
Each coefficient a, may be regarded as the value at x, of a 
step-function a(x), so that a(x) =--a, for x, <x <x, + i- This 
allows us to replace the double integral and the two inner 
summations by a double integral over a larger region, and we 
get 

j=l k--I _ •_• 

Although numerical evaluation of Eq. (13) is feasible it is 
computationally intensive, and further analytical treatment 
of the integral is clearly required. 

D. Computational results 

The expression (12) for the first moment was evaluated 
and compared with simulations, taking the average over 
many realizations, for various depths and degrees of surface 
roughness. An example of this comparison is shown in Fig. 1 
as a function ofx for kqb ---- 1.6. The deterministic (flat sur- 
face) form is also given. Note that the surface roughness 
causes a slight shift in the position of the peak of the averaged 
field (•). In Fig. 2 simulations are compared with equation 
12 for k•b ---- 1.5 as a function of depth z', to illustrate the 
increasing accuracy of the approximation with z'. [The sim- 
ulations were carried out as described in Sec. I above. The 

flat surface curves are given by the exact solution 
q•(z) = - •,• (2Zo - z).] 

In order to examine the behavior of the mean with 

changes in the surface statistics, Eq. (12) was compared for 
two different correlation functions. Figure 3 gives the ampli- 
tude of (• > as a function ofx for a Gaussian and a power- 
law surface, with k•b = 1.6, and the curves show only a slight 
difference. The corresponding real parts are compared in 
Fig. 4. 

Wc now consider briefly the effect of changing the 
depths of source and receiver so that their sum is kept fixed. 
As mentioned above this sum would represent distance from 
an image source in the case of a fiat surface. In Fig. 5 the real 
part of (• > is shown, calculated from (12), for three cases 
with z o + z' = 42.4 and •b = 1.4. The resulting curves are 
indistinguishable. A similar comparison was carried out us- 
ing simulations, for • = 5 and zo + z' = 67.4, taking the 
average over 400 realizations. The real parts are shown in 
Fig. 6, and show the same behavior. The fiat surface curves 
in each case are given for comparison. 

, , ,, I ,, ,, I• ,, ,I .... I .... I .... I 

0 10• 2•0 300 400 500 6• 

x 

FIG. 1. Comparison between predicted form (full line) of the amplitude of 
(q•, (x,z)) as a function ofx and the value from simulations (dashed line) 
fork• = 1.6at adepthofze = 16.0, using 200realizations. The form oflq•ßl 
due to a flat surface is also shown (dotted line). 

9.35 

o 

0.10 .... I .... I .... I .... I .... 
el 5 10 15 20 

x 

25 

FIG. 2. Predicted amplitude of (•, (x,z)) (full line) compared with simu- 
lations (dashed line) as a function of depth z', with k• = 1.5. 
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FIG. 3. Amplitude of the mean as a function ofx for surfaces with Gaussian 
(dotted line) and fourth-order power law (dashed line) spectra, with 
k• = 1.6 at z' = 16.0, together with the flat surface form of la2• I (full line). 

FIG. 4. Real part of the mean as in Fig. 3, for Gaussian (dotted line) and 
fourth-order power law (dashed line) spectra, together with the flat surface 
form (full line). 

In the above examples the integral in Eq. (12) was eval- 
uated numerically. As with the stochastic analog [Eq. (2) ] 
there is a weak singularity at x'= x., where the phase 
changes with (x. -x') -•. For •%0, however, the ampli- 
tude of the integrand approaches zero exponentially as 
x' --.x.. We can estimate the contribution of the integral over 
a small interval [x. - •5,x. ] as follows: use product-inte- 

gration' to take the slowly varying factors outside the inte- 
gral, and replace x. --x' by the variable y---- (x• -x') -• 
The integral then takes the form 

fl • y- 3/2 exp(ay - dy')dy, /,5 

where d is real and positive and a is complex. This is bound- 
ed by 

0.25 

0.20 - 

0.15 - 

0.05 - 

-0.10 - 

-0.15 .... I .... I .... I .... I .... I .... 
0 100 200 ]00 400 500 600 

x 

FIG. 5. Real part of the mean as a function ofx for a surface with Gaussian 
spectrum for • = 1.4, for three pairs of depths (zo,z'), with z' = 10 (full 
line), 20 (dotted line), and 25 (dashed line), and in each case 
zo = 42.4 -- z'. The flat surface form of [q•,l is also shown (widely spaced 
dotted line). 

0.28 

0A$ - 

0.10 - 

0.05 

0.00 

-e.05 

-•.15 

-•.20 

x 

FIG. 6. Real part of the mean as a function ofx for a surface with Gaussian 
spectrum for • = 5, for three pairs of depths (zo,z'), with z' = 20 ( full line), 
30 (dotted line), and 35 (dashed line), and in each case zo = 67.4 -- z'. The 
flat surface form is also given (widely spaced dotted line). 
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•3/2 exp(ay -- dy•)dy, 
/,5 

which may be expressed in terms of Fresnel integrals [e.g., 
Gradshteyn and Ryzhik 9 ] and decreases rapidly with 6. 

III. SUMMARY 

Equations have been given for the first two moments of a 
wave scattered by grazing incidence on a rough surface, and 
the equation for the first moment agrees well with Monte 
Carlo simulations. The formulation of these equations is 
partly numerical, but they express the dependence of the 
moments on the surface statistics explicitly. It was found 
that for moderate surface heights changes in the surface fluc- 
tuation spectrum have relatively little effect on the first mo- 
ment. It was seen that the scattering causes a shift in the 
position of the peak of the reflected wave, which is known 
from simulations to increase with surface height. It was also 
seen that for given surface roughness the mean scattered 
field is determined by the sum of the depths of source and 
receiver. Such features are of some importance, and the full 
spatial dependence of the mean and second moment must be 
addressed in future work. 

Note that the range of validity of these expressions is 
slightly increased if the approximation (7) is replaced by 
•mc --• (A)•', where (A) is known. 4 However the explicit 
dependence of the moments on the surface statistics then 

becomes obscured when (A) is inverted, without significant- 
ly increasing the rms surface heights for which these equa- 
tions hold. 
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