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The Damage Tolerance of a
Sandwich Panel Containing a
Cracked Honeycomb Core
The tensile fracture strength of a sandwich panel, with a center-cracked core made from
an elastic-brittle diamond-celled honeycomb, is explored by analytical models and finite
element simulations. The crack is on the midplane of the core and loading is normal to
the faces of the sandwich panel. Both the analytical models and finite element simulations
indicate that linear elastic fracture mechanics applies when a K-field exists on a scale
larger than the cell size. However, there is a regime of geometries for which no K-field
exists; in this regime, the stress concentration at the crack tip is negligible and the net
strength of the cracked specimen is comparable to the unnotched strength. A fracture map
is developed for the sandwich panel with axes given by the sandwich geometry. The effect
of a statistical variation in the cell-wall strength is explored using Weibull theory, and the
consequences of a stochastic strength upon the fracture map are outlined.
�DOI: 10.1115/1.2912995�
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Introduction
Ceramic honeycombs are used in catalytic converters and diesel

articulate filters for automobiles, in filters of continuous casting
lant, in plates for gas burners, and in medical prosthetic implants.
lass honeycombs have been used as lightweight supports for

pace mirrors as, for example, in the Hubble telescope. In most of
hese applications, the ceramic lattices are chosen for their multi-
unctional properties, such as high thermal shock resistance, high
hemical stability, and high stiffness. They are loaded in a sand-
ich panel configuration with stiff and strong face sheets. The
aw sensitivity of the tensile strength of these honeycombs is of
oncern and is the motivation for the present study: We shall
xplore the tensile fracture strength of a sandwich panel, with a
enter-cracked core made from an elastic-brittle diamond-celled
oneycomb. The crack is on the midplane, with loading normal to
he face of the sandwich panel, see Fig. 1. The strength is deter-

ined both by finite element simulations and by simple analytical
odels. It will be shown that the tensile strength is dictated by the
ode I fracture toughness of the honeycomb for a limited regime

f sandwich panel geometries. Accordingly, we begin by review-
ng the fracture toughness of brittle honeycombs.

1.1 Fracture Toughness of Brittle Honeycombs. The frac-
ure toughness of brittle hexagonal honeycombs has been modeled
y relating the crack tip elastic fields of an equivalent continuum
o the stress state within the lattice �1,2�. It was assumed that the

acroscopic fracture toughness is set by local tensile failure when
he maximum stress in any strut of the lattice attains the fracture
trength � f of the cell-wall material. It is shown that the fracture
oughness of the hexagonal honeycomb scales linearly with � f,
uadratically with relative density and with the square root of cell
ize �as demanded by dimensional analysis�.

Numerical and analytical predictions for the fracture toughness
f several honeycomb topologies are now available. Fleck and
iu �3� have determined the fracture behavior of isotropic lattices
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of deterministic fracture strength: hexagonal, triangular, and
Kagome. Orthotropic lattices with square cells have also been
examined �4�. An analytical model of the fracture toughness of the
diamond-celled honeycomb shown in Fig. 2 has been developed
and validated by finite element calculations �5�. The diamond-
celled honeycomb is remarkably tough: Its Mode I fracture tough-
ness scales as

KIC = �� f t̄�� �1�

where t̄ is the ratio of cell-wall thickness t to cell size �, and the
numerical constant is �=0.44 �4�. Limited experimental studies of
the fracture toughness of honeycombs have been found in the
literature. Measurements on notched three point bend specimens
of cordierite honeycombs have been carried out by Huang and
Gibson �6�. Their data suggest that Eq. �1� gives an adequate
description of the fracture toughness of the diamond-celled
honeycomb.

Microstructural imperfections, such as wavy struts and dis-
placed joints, are expected to have a knockdown effect on the
fracture properties of elastic-brittle honeycombs. The sensitivity
of fracture toughness to imperfections in the form of displaced
joints has been explored by Romijn and Fleck �4�. They found that
the nodal connectivity of the lattice dictates the response. A con-
nectivity of four struts per joint, as in the diamond-celled lattice,
is the transition case: The behavior of these structures can be
bending-dominated or stretching-dominated depending on the

Fig. 1 Center-cracked sandwich plate made from a diamond-

celled honeycomb and subjected to uniaxial tension
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evel of imperfection. Consequently, the fracture toughness of the
iamond-celled topology is imperfection sensitive.

Brittle solids exhibit a scatter of failure strengths: Variable flaw
izes and a random orientation within the brittle cell walls lead to
ariations in the tensile strength of the solid material � f. Huang
nd Gibson �6� and later Huang and Chou �7� have included sta-
istical effects in the fracture toughness of hexagonal and square
oneycombs by assuming that the strength of the cell walls fol-
ows a Weibull distribution. They concluded that the fracture
oughness KIC increases with cell size if the Weibull modulus m is
reater than 4, is insensitive to cell size if m equals 4, and it
ecreases with cell size if m is less than 4. We shall reassess this
esult for the diamond-celled honeycomb.

1.2 Statement of the Problem. In the present study, we in-
estigate the tensile fracture response of a center-cracked sand-
ich panel made from a diamond-celled honeycomb �Fig. 1�. This

s a common test geometry and is representative of practical ap-
lications. The sandwich panel is of width 2W and height 2H, and
ontains a crack of length 2a. Fixed grip load conditions are ap-
lied by prescribing remote displacements, as shown in Fig. 1.

The diamond-celled lattice, sketched in Fig. 2, is characterized
y its cell size �, wall thickness t, and core angle �. However,
nly orthogonal honeycombs of �=45 deg are considered in this
tudy. The cell-wall material is linear elastic to fracture. It has
oung’s modulus Es, Poisson’s ratio �s, and a deterministic tensile

racture strength � f. Later in our study, we shall modify this by
onsidering a Weibull distribution of strength. The relative density
f the diamond-celled honeycomb is defined by the density of the
attice divided by that of the of the cell-wall material, and is
elated to t̄� t /� by

�̄ = t̄�2 − t̄� �2�

lassical beam theory suffices to analyze the stress state within
he sandwich core in the absence of a crack. Straightforward
nalysis reveals that the sandwich panel has an out-of-plane un-
otched tensile strength �u, which scales with the tensile fracture
trength of the solid material � f and with t̄ according to

�u =
t̄

1 + 3t̄
� f �3�

his expression takes into account both bending and stretching of
he cell walls. Upon neglecting the bending contribution, it re-
uces to

�u = t̄� f �4�

he approximation �4� is acceptable at low relative densities: At
=0.05, it leads to an error of 15% in Eq. �3�. Henceforth, we shall
ssume that the unnotched strength is given by Eq. �4�.

Now introduce a macroscopic crack into the honeycomb. We
rite �� as the remote gross stress required to initiate crack

�

Fig. 2 Crack morphology
rowth under uniaxial loading. Then � /� f depends on the four
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nondimensional groups t̄, a /�, H /�, and H /W. In the current
study, we shall limit attention to practical sandwich geometries for
which H /W is small.

1.3 Scope of the Study. The structure of this paper is as
follows. First, simple analytical models are used to obtain the
deterministic fracture strength of the center-cracked panels. These
predictions are used to construct a fracture map with axes given
by the sandwich beam geometry. The map is validated by selected
finite element �FE� simulations. The statistics of brittle fracture
are then considered, and the effect of a Weibull distribution of
strength on the regimes of dominance of the fracture map is ex-
plored.

2 Analytic Description
Consider the center-cracked sandwich panel shown in Fig. 1.

The failure strength for any given geometry is determined from a
series of simple analytical models. We shall show that the effect of
geometry on strength is adequately captured by the two nondi-
mensional groups � /a and � / �t̄H�. These groups are used to define
the axes of a failure mechanism map, and each analytical model of
failure has a regime of dominance on the map.

We argue that there exists a Regime I of specimen geometries
for which the stresses are uniform throughout the lattice. The
stress concentration at the crack tip is negligible and the net
strength of the cracked panel equals the unnotched strength: The
panel is damage tolerant. However, there exist other geometries
for which a K-field develops around the crack tip, on a scale larger
than the cell size. We call this Regime II if the crack is long
compared to the height of the sandwich panel, and Regime III if it
is short. A detailed analysis for each regime is now given.

2.1 Regime I. A schematic representation of the stress state
within the sandwich core for Regime I is shown in Fig. 3�a�.
Elastic shear regions partition zones of uniform stress state within
the sandwich panel: equibiaxial stress, uniaxial stress, and zero
stress, see Fig. 3�a�.

A simple physical model can be developed for the macroscopic
strength �8�. It is assumed that only bars that connect one face
sheet to the other carry load. Bars that end on the crack faces or
on the side edges of the sandwich panel are unloaded. The remain-
ing bars connect both face sheets and are subjected to an axial
stress on the bar cross section of

�a =
u2

2H
Es �5�

The number n of load carrying bars is given by

n =
4�W − H − a�

��2
�6�

Equilibrium in the vertical x2-direction of Fig. 3�a� gives the re-
lation between the macroscopic gross stress �� and the local ten-
sile stress in the bars �a as

�� = n
t�2

4W
�a �7�

Failure occurs when the axial stress in the bars, �a, attains the
tensile strength of the solid material, � f. The gross-section
strength of the sandwich panel follows as

�� = �1 −
H

W
−

a

W
� t̄� f �8�

The net-section strength is defined by �n=�� / �1−a /W� and in

nondimensional form it reads
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�̄ �
�n

�u
=

��

�1 −
a

W
��u

�9�

ow limit attention to the case H /W�1. Substitution of Eq. �8�
nto Eq. �9� gives �̄=1 since �u= t̄� f according to expression �4�.

e emphasize that the nondimensional parameter �̄ compares the
et-section strength of the cracked sandwich panel to the un-
otched strength. It is therefore a measure of the damage tolerance
f the sandwich panel.

2.2 Regime II. Assume that the crack is sufficiently long
ompared to the height 2H of the sandwich panel that the core
ehaves as an orthotropic elastic strip with a semi-infinite crack,
ee Fig. 3�b�. Upstream of the crack tip, a biaxial state of stress
revails while downstream the core is unloaded. In the intermedi-
te zone, a crack tip K-field exists on a length scale larger than
hat of the cell size. The Mode I stress intensity factor KI at the
rack tip is given by the steady state solution as follows.

First, calculate the energy release rate GI by advancing the
rack tip a virtual increment �a. The energy released GI�a equals
he difference in stored elastic energy within a strip of width �a
nd height 2H upstream and downstream of the crack tip. Treat
he lattice as an effective medium, subjected to a uniform stress
tate far ahead of the crack tip and far behind the crack tip. Ma-

ig. 3 „a… Regime I: uniform stress with practically no stress
oncentration at the crack tip. „b… Regime II: K-field exists.
trength is independent of crack length. „c… Regime III: K-field
xists. Strength scales with crack length as a−1/2. In all three
egimes, the effective stress far ahead of the crack tip is equibi-
xial, and of magnitude t̄�a upon neglecting the contribution
rom beam bending.
erial elements downstream of the crack tip are unloaded. Up-

ournal of Applied Mechanics
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stream, material elements are subjected to the macroscopic strain
state 	11=	12=0 and 	22=u2 /H. The macroscopic stress compo-
nent �22 is �4�

�22 =
1

2
Es�t̄ + t̄3�	22 �10�

with �12=0. Consequently, an energy balance reads

GI�a =
1

2
�22	222H�a =

2H�22
2

Es�t̄ + t̄3�
�a �11�

It remains to determine the stress intensity factor KI in terms of
GI.

The energy release rate GI and the stress intensity factor KI in
an orthotropic material in plane stress are related through the ex-
pression

GI = CIKI
2 �12�

where the elastic coefficient CI is a function of the elastic moduli,
see, for example, Tada et al. �9�. For the orthotropic honeycomb
under consideration, CI is given by

CI =
�t̄2 + 1

�2

1

t̄2Es

�13�

The stress intensity factor KI follows as

KI =
23/4t̄�22

�H

�t̄ + t̄3�1/2�t̄2 + 1�1/4
�14�

We modify this expression to account for the case of a finite crack.
Since �22 is the net-section stress, the remote gross stress �� reads

�� = �1 − a/W��22, �15�

Also assume that t̄ is much less than unity. Then Eqs. �14� and
�15� simplify to

KI = FI�
��H �16�

where the calibration function FI is

FI =
23/4�t̄

�1 − a/W�
�17�

Recall that Mode I fracture toughness KIC of the diamond-celled
lattice has already been given by Eq. �1� in terms of a single
numerical constant �=0.44, as calibrated by FE simulations �4�.
Failure occurs when KI=KIC. Consequently, the gross-section
strength of the sandwich panel is

�� =
KIC

FI
�H

= 2−3/4��t̄ � �

H
�1/2�1 −

a

W
�� f �18�

and the nondimensional net-section strength reads

�̄ �
��

�1 −
a

W
��u

= 2−3/4�� �

Ht̄
�1/2

�19�

We mention in passing that the calibration factor FI derived here
is in excellent agreement with that obtained by Georgiadis and
Papadopoulos �10� using Fourier transforms and the Wiener–Hopf
technique. Additional FE simulations have been performed for a
cracked strip made from an orthotropic continuum. They confirm
the accuracy of Eq. �19� for finite a /W, and are omitted here for
the sake of brevity.

2.3 Regime III. Regime III is schematically depicted in Fig.
3�c�. Now, the crack is much smaller than the height and width of
the sandwich panel. The K-calibration for an orthotropic panel

containing a short central crack of length 2a is approximately

NOVEMBER 2009, Vol. 76 / 061003-3
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KI =
���
a

�1 −
a

W
� �20�

more precise calibration can be found in the literature �11�.
owever, the approximate relation �20� is adequate for our pur-
oses and it leads to a major simplification of subsequent algebra.

Failure occurs when the stress intensity factor KI reaches the
ritical value, KIC. The gross-section strength of the sandwich
anel is given by

�� =
�1 −

a

W
�KIC

�
a
=

�

�

t̄��

a
�1/2�1 −

a

W
�� f �21�

nd the normalized net-section strength is

�̄ �
��

�1 −
a

W
��u

=
�

�

��

a
�1/2

�22�

2.4 Construction of the Fracture Map. The above three
nalytical models can be used to construct a fracture map, with
uitably chosen axes in terms of the sandwich geometry. The non-
imensional net-section strength �̄ equals unity in Regime I, de-
ends on � / t̄H in Regime II, and depends on � /a in Regime III.
onsequently, we construct a fracture map with axes �� /a ,� / t̄H�,
s shown in Fig. 4. The boundaries between regimes are obtained
y equating the expressions for the strength within each regime.
he boundary between Regimes I and II is given by � / t̄H=14.6
pon taking �̄=1 in Eq. �19�. Likewise, the boundary between
egimes II and III is obtained by equating �̄ from Eq. �19� with �̄

rom Eq. �22�, to give � / t̄H=0.9� /a. A physical constraint on the
inimum crack length is also imposed on the map: The minimum

rack length in the lattice is a /�=�2. It is straightforward to add
ontours of nondimensional strength �̄ to the map, upon making
se of �̄=1 in Regime I, and relations �19� and �22� in Regimes II
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ig. 4 Fracture map for a panel containing a center crack and
ubjected to prescribed displacements. The sample geometries
1, P2, and P3 are explored in detail in Sec. 3 to illustrate the

esponse within each regime.
nd III, respectively. We emphasize that the fracture map is uni-
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versal for all relative densities and for all geometries of sandwich
panel, provided W /H is sufficiently large. It remains to perform a
series of FE simulations to validate the map.

3 Numerical Calculations
Selected FE simulations have been carried out to determine the

gross-section fracture strength �� of centrally cracked sandwich
panels made from an elastic-brittle, diamond-celled honeycomb. It
is assumed that the honeycomb fails when the maximum tensile
principal stress anywhere in the lattice attains a critical value � f.

The linear elastic calculations were performed using the com-
mercial FE code ABAQUS �version 6.5-3�. Each strut in the lattice
was modeled as a two-noded Euler–Bernoulli beam element �type
B23 in ABAQUS notation�: This element uses cubic interpolation
functions and allows for both stretching and bending deformations
but neglects shear deformation.

The symmetries of the geometry and loading were such that a
FE mesh was generated for one-quarter of the sandwich panel.
The crack in the lattice was defined by splitting the joints along
the cracking plane while keeping intact the struts on each face of
the crack �Fig. 2�. The face sheets were not explicitly modeled in
the FE simulations. Rather, all lattice joints attached to the face
sheets were subjected to the same prescribed vertical displace-
ment, with zero transverse displacement and zero rotation.

The FE mesh of the sandwich core comprised 1400 cells in the
x1 direction by 70 cells in the x2 direction. Throughout this nu-
merical study, two aspect ratios were held constant: H /�=70�2
and H /W=1 /20. We investigated the sensitivity of the fracture
strength of the sandwich panel to crack length a /� and to relative
density as parametrized by t̄� t /�.

3.1 Verification of the Regimes of Behavior. A series of FE
calculations has been performed for selected values of t̄ in the
range 5�10−5 to 0.25 and a /� between �2 and 1050�2. The
results are given in Fig. 5 in the form of a plot of �̄ versus a /�,
together with the analytic prediction �̄=1 for all t̄ in Regime I, the
prediction �19� for selected values of t̄ in Regime II, and the
prediction �22� for all in t̄ Regime III. Good agreement between

10-1 100 101 102 103 104 105
10-2

10-1

100

101

45 10−×

σ

a

0.005

0.05
0.15
0.25

55 10−×
42 10−×

tt

REGIME I
Uniform

stress

REGIME II
K-field
Eq. (19)

REGIME III
K-field
Eq. (22) a=W

Fig. 5 Normalized net strength as a function of crack size. The
width of the sandwich panel is much larger than its height
„W /H=20…, and its height is much larger than the cell size
„H /�=70�2…. The solid lines denote analytic predictions.
the analytical formulas and numerical predictions is noted for all
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hree regimes. For t̄ below a transition value of �2� /2�2H=6.9
10−4, the response lies within Regime I: The FE simulations

onfirm that �̄	1. For t̄ above this transition value, the strength
f the sandwich panel is toughness controlled and �̄ is below the
nnotched value. In Regime II, the strength of the panel is inde-
endent of crack length and scales with relative density according
o �̄� �t̄H /��−1/2, recall Eq. �19�. In Regime III, the nondimen-
ional strength of the panel is independent of relative density and
cales with crack length as �̄� �a /��−1/2.

Additional insight is obtained by plotting in Fig. 6 the normal-
zed net-section strength �̄ as a function of t̄; this is done by cross
lotting the seven data points of Fig. 5 at fixed a /�=3�2. Three
dditional simulations were run and added to Fig. 6 in order to
resent a more complete comparison between FE results and ana-
ytical estimates. At small t̄, the response lies within Regime I: No
tress concentration exists and the unnotched strength is main-
ained, �̄=1. With increasing t̄, the response switches to Regime II
nd �̄ scales as t̄−1/2 in accordance with Eq. �19�. At large t̄,
egime III exists such that �̄ is insensitive to t̄, as stated in Eq.

22�. It is remarkable that the simple estimates of Sec. 2, based on
inear elastic fracture mechanics for a continuum, capture the re-
ponse in Regimes II and III despite the fact that the lattices of
ig. 6 contain only a few broken cells.

3.2 Normal Traction Directly Ahead of the Crack Tip.
onsider the forces in the joints of the lattice directly ahead of the
rack tip. These forces are used to construct a traction distribution
n the crack plane directly ahead of the crack tip, in order to make
omparisons with the stress state in a cracked continuum. This
raction distribution has been obtained for the geometries P1, P2,
nd P3, as defined in Fig. 4. These geometries are taken to be
epresentative of the response for each of the three regimes.

�i� The traction distribution for geometry P1 �representative
of Regime I� is uniform at �22	��, see Fig. 7�a�. This
implies that no K-field exists.

�ii� The traction �22�r� for geometry P2 of Regime II is com-
pared to the asymptotic crack tip field �22=KI /�2
r in
Fig. 7�a�, where r is the distance ahead of the crack tip.
Note that Eq. �16� is used for KI. It is clear that the traction
in the discrete lattice is consistent with the K-field of a

10-5 10-4 10-3 10-2 10-1 100

10-1

100

t

σ

REGIME REGIME REGIME
I II III

E q. (19)

E q. (22)

ig. 6 Net strength as a function of relative density for a sand-
ich panel made from a lattice, which contains a central crack
f length a /�=3�2. The panel has aspect ratios W /H=20 and
/�=70�2.
continuum.
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�iii� Finally, consider geometry P3 of Regime III. The traction
within the discrete lattice is plotted in Fig. 7�b� along with
the Savin �12� solution for an infinite orthotropic panel
containing a center crack. It is clear that the traction ahead
of the crack tip in the lattice is adequately represented by
the continuum solution. The agreement is remarkably
close given the fact that the crack in the lattice is short,
a /�=3�2.

The comparisons made in Fig. 7 support the applicability of
linear elastic fracture mechanics in Regimes II and III: KIC serves
as a useful fracture parameter to describe the local conditions near
the crack tip of the lattice.

4 Statistics of Brittle Failure
Brittle solids, such as engineering ceramics, contain a random

distribution of flaws of stochastic length. Consequently, the solid
cell walls of a brittle honeycomb exhibit a statistical distribution
of tensile fracture strength � f. Weibull statistics are commonly
used to model this scatter in strength: the survival probability Ps
of a brittle solid of volume V subjected to a maximum principal

1 10 100

1

10

22σ
σ ∞

1

2
−

r

2PGeometry

1PGeometry

2P

(a)

K-field for

0.1 1 10 100

1

5

3PGeometry

r

22σ
σ ∞

1

2
−

(b)

Savin’s solution

Fig. 7 Normal tractions directly ahead of the crack tip. The
geometries are specified by P1: t̄=5Ã10−5, a /�=3�2; P2: t̄=0.15,
a /�=350�2, and P3: t̄=0.15, a /�=3�2.
tensile stress �1 is given by
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Ps��1� = exp
−�
V

��1

�0
�mdV

V0
� �23�

here m is the Weibull modulus and �0 is a reference fracture
trength for a reference volume V0. The magnitude of the Weibull
odulus is a measure of the variability in strength: The lower the

alue of m, the greater the variability in strength.
We proceed to include the statistical component of cell-wall

trength in our analysis of the cracked sandwich panel. Strength-
ontrolled failure �Regime I� and toughness-controlled failure
Regimes II and III� are treated in turn.

4.1 Strength-Controlled Regime I. In Regime I, the deter-
inistic net-section strength of the cracked panel is adequately

redicted by the unnotched strength �u= t̄� f. It is straightforward
o modify this analysis for a statistical distribution of strength.
ssume that the cell walls are uniaxially loaded. Then, the maxi-
um principal tensile stress �1 can be written in terms of the

emote applied net-section stress �n as �1=�n / t̄. The Weibull dis-
ribution �23� now takes the form

Ps��n� = exp
− � �n

t̄�0
�m V

V0
� �24�

he average net-section strength ��n�mean immediately follows as

��n�mean =�
0

�

Ps��n�d�n = �0t̄�V0

V
�1/m


�m + 1

m
� �25�

here 
�1+1 /m� is the gamma function and V=4H�W−a��̄ is the
otal volume of cell-wall material per unit depth.

4.2 Statistics of Fracture Toughness. So far, we have used a
eterministic value of fracture toughness; however, statistical
ariations in the strength of the solid cell walls lead to variations
n the fracture toughness of the lattice. We proceed to use Weibull
heory to predict the variability in fracture toughness in terms of
, �0, and V0.

4.2.1 Weibull Analysis for a Crack Tip Field. Consider the
roblem of a diamond-celled lattice containing a long crack, as
ketched in Fig. 8. The polar coordinates �r ,�� are centered on the
rack tip and are defined in the usual manner, see Fig. 8. We
ubject the outer boundary of the lattice to the displacement field

associated with the macroscopic crack tip K-field for an ortho-
ropic elastic solid �13�.

Write the maximum principal tensile stress �1 within the cell
alls of the lattice in the form

�1 =
KI

¯� g�r/�,�, t̄� �26�

2x

1x

θ
r

2R

2R

ulattice

ig. 8 FE model used to assess the fracture toughness of the
attice
t �
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where KI is Mode I stress intensity factor and the function g gives
the dependence on position within the lattice and on the bar stub-
biness t̄.

According to Weibull theory, the probability of survival of the
lattice subjected to a stress intensity KI is found by substituting
Eq. �26� into Eq. �23�:

Ps�KI� = exp
−�
V
� KIg

�0t̄��
�mdV

V0
�

= exp
− � KI

�0t̄��
�m�

V

gmdV

V0
� �27�

The average fracture toughness of the lattice follows as

�KIC�mean =�
0

�

Ps�KI�dKI = K̄�0t̄�� �28�

where

K̄ �
�KIC�mean

�0t̄��
= 
�m + 1

m
�
�

V

gmdV

V0
�−1/m

�29�

4.2.2 Finite Element Simulations. We shall now evaluate K̄
from FE simulations. A square mesh of the diamond-celled lattice
was created using ABAQUS �version 6.5-3�. Each strut of the lattice
was modeled as an Euler–Bernoulli beam element. The square
mesh was of side 600 unit cells and contained a traction-free edge
crack along the negative x1-axis �Fig. 8�. Loading was applied by
imposing the displacement field corresponding to the K-field on
the boundary of the mesh �13�. A mesh convergence study based
on the maximum local tensile stress in the lattice revealed that the
mesh suffices for the present investigation.

K̄ is calculated as follows. The maximum principal tensile
stress �1 within the cell walls of the lattice is determined from the
FE simulations. These stresses are used to obtain the function g as
defined in Eq. �26�. Note that only the maximum principal tensile
stress �1 enters the calculation. Figure 9 shows a typical strut in
the lattice with the zone of tensile stress. Introduce a local Carte-
sian reference frame �x ,y� for each strut such that x is the distance
along the strut and y is the distance from the neutral section. The
stress distribution �1�x ,y�=F / t+12My / t3 is obtained from the
bending moment along the strut M�x�=M1+ �M2−M1�x /� and the
axial force F. By setting �1�x ,y�=0, we locate the position of the
neutral axis as a function of the distance x along the beam,
yNA�x�=−Ft2 /12M�x�. The integral within expression �29� then
reads

�
V

gm�r/�,�, t̄�
rdrd�

V0
= � �2

V0
�� t̄��

KI
�m�

V

�1
m��,�, t̄��d�d�

�30�

where �=r /� is used as a dummy variable. This integral is calcu-
lated over a square region of side 2R centered at the crack tip �Fig.

1 0σ <

y

x
1 0σ <

1 0σ >
M2

S

Fig. 9 Maximum principal stress distribution for a typical strut
in the lattice
8�. As the size of the square region increases, the volume integral
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n Eq. �30� converges to a constant value. The higher the Weibull
odulus m, the faster the convergence is achieved.

The dependence of K̄��KIC�mean /�0t̄�� on Weibull modulus is
lotted in Fig. 10 for the two values of cell-wall stubbiness, t̄
0.15 and t̄=0.01, with the arbitrary volume V0 taken to be V0
�2. The plots display a peak value of fracture toughness for m
bout equal to 6. A large Weibull modulus m implies small varia-
ions in cell-wall strength, and deterministic fracture toughness,

=�=0.44. However, at low m, the effect of a stochastic strength

s significant. There exists a limit m=4 below which K̄ drops to
ero. A scaling argument can be used to explain this. Conventional
inear elastic fracture mechanics suggests that the nondimensional
unction g scales with distance r from the crack tip as g�r−1/2.
herefore, the integral within Eq. �29� has the following scaling:

�
V

gmdV ��
V

r−m/2rd�dr ��
�

�

r2−m/2dr 	
2

4 − m
�r4−m/2�r=�

r=�

�31�

here the lower limit of integration � is on the order of the cell
ize of the lattice �. Note that this integral has a finite value for
�4; however, for m�4 the integral is unbounded at the outer

imit and K̄ equals zero. We conclude from Eq. �28� that the frac-
ure toughness of the lattice tends to zero for m�4. The physical
nterpretation is the following: The variability in strength is suffi-
iently great for m�4 that struts remote from the crack tip fail
nd the effective “stressed volume” is unbounded.

4.2.3 Analytical Estimate of the Mean Fracture Toughness.
or large values of Weibull modulus m, failure always occurs near

he crack tip. An estimate for the mean fracture toughness is found
y considering only the critical strut directly ahead of the crack tip
Fig. 2�. Assume that this critical strut deforms as a built-in beam,
s sketched in Fig. 3�a�. Ignore the tensile stress caused by axial
nd shear forces so that only the tensile stress due to bending is
aken into account. The survival probability is given in terms of
he maximum local bending stress in the built-in beam �A by �14�

Ps = exp
−
1

2�m + 1�2� V

V0
���A

�0
�m� �32�

ere, the volume V per unit depth is equal to 2�t since only two
truts are critical: the one containing the fracture site A, as shown
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ig. 10 Dependence of K̄ on the Weibull modulus. The dotted
ines denote the analytical estimate of Eq. „33… for large m.
n Fig. 2, and its mirror image about the cracking plane. Numeri-

ournal of Applied Mechanics
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cal investigations �4� have revealed that the maximum local bend-
ing stress �A in the beam reads �A=KI /0.44t̄��. Substitution of
this value into Eq. �32� provides

K̄ �
�KIC�mean

�0t̄��
= 
�m + 1

m
�
0.44m�1 + m�2�V0

�2 �1

t̄
�1/m

�33�

Equation �33� is plotted in Fig. 10 as a dotted line for the two
values of t̄ considered in the numerical calculation of the previous
section. As expected, the estimate is valid only for large m. For
example, for m�10, the error is less than 4%. However, the ana-
lytical estimate considerably deviates from the numerical calcula-

tion of K̄ as the Weibull modulus is decreased.

4.3 Implications of Weibull Statistics on the Fracture
Map. The variability in cell-wall strength leads to a variability in
strength of the cracked sandwich panel in Regime I of the fracture
map, recall Eq. �8�. Likewise, the variability in fracture toughness
leads to a variability in strength of the cracked sandwich panel,
recall Eqs. �18� and �21� for Regimes II and III, respectively.

The implications of cell-wall strength variability on the fracture
map are now examined. We make use of expressions �25� and �33�
in order to derive analytical estimates for the boundaries between
regimes.

First, consider the boundary between Regimes I and II. Upon
equating the mean strength �25� in Regime I with the mean
strength in Regime II, as specified by Eqs. �18� and �33�, we
obtain

�

Ht̄
=

2�2

�2 
 1

2�1 + m�2� �2

2HW
��2/m

�34�

Second, the boundary between Regimes I and III is obtained via
Eqs. �25�, �21�, and �33�, giving

�

a
=




�2
 1

2�1 + m�2� �2

2HW
��2/m

�35�

Third, the boundary between Regimes II and III is obtained by
equating the strengths as specified by Eqs. �18� and �21�; Note that
this boundary is insensitive to the value of m.

The effect m on the boundaries of the fracture map is shown in
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Fig. 11 Fracture map for a honeycomb core sandwich panel
where the statistical variability of the cell-wall strength is
included
Fig. 11. Boundaries are plotted for selected values of m=10 and
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=6 together with the deterministic result m=�. It is clear that as
he Weibull modulus decreases the regimes of fracture toughness
ontrol shrink in favor of the strength-governed Regime I.

Boundaries are given in Fig. 11 for two values of HW /�2. One
hoice corresponds to the geometry considered in the FE analysis
f the present study such that W /H=20 and H /�=70�2, giving
W /�2=196�103. A second choice assumes a much larger struc-

ure such that W /H=20 and H /�=700�2, giving HW /�2=196
105. It is clear from Fig. 11 that for finite m Regime I expands
ith increasing volume of panel, for a given cell size �.
Engineering ceramics have a wide range of m value from 3 to

0 depending on the processing route. For example, cordierite in
atalytic converters has approximately m=6 �6�. Thus, it is nec-
ssary to include statistical effects on the strength of the sandwich
anel.

Concluding Remarks
In this study, it is shown that the fracture strength of a center-

racked sandwich panel made from a brittle diamond-celled hon-
ycomb depends on the relative density of the lattice, the crack
ize, and the geometric dimensions of the panel. The FE method
as been used to investigate the damage tolerance of the structure.
fracture map has been constructed with axes �� /a ,� / t̄H� given

y the sandwich geometry. Three regimes of behavior have been
bserved. Simple analytical models of each regime are able to
apture the mechanical response of the sandwich panel.

Statistical variations in the cell-wall strength have been quanti-
ed by assuming that it follows a Weibull distribution. The effect
f specimen geometry and Weibull modulus on the fracture map
as been explored. As expected, a large sandwich panel is more
ikely to be strength controlled, for a given cell size of the hon-
ycomb. It is also found that the domain of toughness-controlled
racture shrinks as the Weibull modulus m is decreased. For m

4, the fracture toughness of the honeycomb falls to zero and
ailure is strength governed.

The results presented above give the fracture toughness of the
attice KIC in terms of the tensile strength � f of the cell-wall

aterial. However, � f derives from the fracture toughness Ks of
he cell wall and the intrinsic flaw size c within the cell walls

� f 	
Ks

�
c
�36�

ubstition of Eq. �36� into Eq. �1� gives

KIC

Ks
= 0.23t̄��

c
�1/2

�37�

his alternative presentation of the fracture toughness KIC sug-
ests that improved processing techniques, which reduce c, will
ead to an enhanced toughness of the lattice.

The current study is also of relevance to the fatigue strength of
etallic lattices. Following Gibson and Ashby �2� and Huang and
in �15�, we argue that fatigue failure of the cracked lattice is due

o the cyclic failure of the most heavily loaded strut. Now limit
ttention to the fatigue limit of the lattice. At infinite fatigue life,

his critical strut is subjected to local stress of amplitude equal to
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the endurance limit �e of the solid. The map shown in Fig. 4 can
be reinterpreted as a fatigue fracture map for infinite life once we
rewrite �̄ as amplitude of net-section fatigue loading normalized
by �e. Also, the stress intensity range for fatigue crack growth in
the metallic lattice �Kth can be directly stated from Eq. �1� as

�Kth = 2��et̄�� �38�
The authors are unaware of any experiments in the literature,
which support or refute Eq. �38�. Formulas similar to Eq. �38�
have been developed for open-cell metallic foams and polymeric
foams, see Gibson and Ashby �2�, Olurin et al. �16�, and Burman
and Zenkert �17�. These experimental and theoretical studies sup-
port the idea that the fatigue crack growth threshold �Kth is de-
pendent on the cyclic fatigue strength �e of the cell wall and on
the cell size �. The authors are unaware of any experimental stud-
ies, which can be used to validate the fracture and fatigue maps
presented here. It is suggested that such validation is a topic for
future study.
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