The Damage Tolerance of a
Sandwich Panel Containing a
Cracked Honeycomb Core

The tensile fracture strength of a sandwich panel, with a center-cracked core made from
an elastic-brittle diamond-celled honeycomb, is explored by analytical models and finite
element simulations. The crack is on the midplane of the core and loading is normal to
the faces of the sandwich panel. Both the analytical models and finite element simulations
indicate that linear elastic fracture mechanics applies when a K-field exists on a scale
larger than the cell size. However, there is a regime of geometries for which no K-field
exists; in this regime, the stress concentration at the crack tip is negligible and the net
strength of the cracked specimen is comparable to the unnotched strength. A fracture map
is developed for the sandwich panel with axes given by the sandwich geometry. The effect
of a statistical variation in the cell-wall strength is explored using Weibull theory, and the
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1 Introduction

Ceramic honeycombs are used in catalytic converters and diesel
particulate filters for automobiles, in filters of continuous casting
plant, in plates for gas burners, and in medical prosthetic implants.
Glass honeycombs have been used as lightweight supports for
space mirrors as, for example, in the Hubble telescope. In most of
these applications, the ceramic lattices are chosen for their multi-
functional properties, such as high thermal shock resistance, high
chemical stability, and high stiffness. They are loaded in a sand-
wich panel configuration with stiff and strong face sheets. The
flaw sensitivity of the tensile strength of these honeycombs is of
concern and is the motivation for the present study: We shall
explore the tensile fracture strength of a sandwich panel, with a
center-cracked core made from an elastic-brittle diamond-celled
honeycomb. The crack is on the midplane, with loading normal to
the face of the sandwich panel, see Fig. 1. The strength is deter-
mined both by finite element simulations and by simple analytical
models. It will be shown that the tensile strength is dictated by the
Mode I fracture toughness of the honeycomb for a limited regime
of sandwich panel geometries. Accordingly, we begin by review-
ing the fracture toughness of brittle honeycombs.

1.1 Fracture Toughness of Brittle Honeycombs. The frac-
ture toughness of brittle hexagonal honeycombs has been modeled
by relating the crack tip elastic fields of an equivalent continuum
to the stress state within the lattice [1,2]. It was assumed that the
macroscopic fracture toughness is set by local tensile failure when
the maximum stress in any strut of the lattice attains the fracture
strength o of the cell-wall material. It is shown that the fracture
toughness of the hexagonal honeycomb scales linearly with oy,
quadratically with relative density and with the square root of cell
size (as demanded by dimensional analysis).

Numerical and analytical predictions for the fracture toughness
of several honeycomb topologies are now available. Fleck and
Qiu [3] have determined the fracture behavior of isotropic lattices
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of deterministic fracture strength: hexagonal, triangular, and
Kagome. Orthotropic lattices with square cells have also been
examined [4]. An analytical model of the fracture toughness of the
diamond-celled honeycomb shown in Fig. 2 has been developed
and validated by finite element calculations [5]. The diamond-
celled honeycomb is remarkably tough: Its Mode I fracture tough-
ness scales as

Kic= ,BU'ff\’sE (1)

where 7 is the ratio of cell-wall thickness ¢ to cell size €, and the
numerical constant is 8=0.44 [4]. Limited experimental studies of
the fracture toughness of honeycombs have been found in the
literature. Measurements on notched three point bend specimens
of cordierite honeycombs have been carried out by Huang and
Gibson [6]. Their data suggest that Eq. (1) gives an adequate
description of the fracture toughness of the diamond-celled
honeycomb.

Microstructural imperfections, such as wavy struts and dis-
placed joints, are expected to have a knockdown effect on the
fracture properties of elastic-brittle honeycombs. The sensitivity
of fracture toughness to imperfections in the form of displaced
joints has been explored by Romijn and Fleck [4]. They found that
the nodal connectivity of the lattice dictates the response. A con-
nectivity of four struts per joint, as in the diamond-celled lattice,
is the transition case: The behavior of these structures can be
bending-dominated or stretching-dominated depending on the
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Fig. 1 Center-cracked sandwich plate made from a diamond-
celled honeycomb and subjected to uniaxial tension
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Fig. 2 Crack morphology

level of imperfection. Consequently, the fracture toughness of the
diamond-celled topology is imperfection sensitive.

Brittle solids exhibit a scatter of failure strengths: Variable flaw
sizes and a random orientation within the brittle cell walls lead to
variations in the tensile strength of the solid material 0. Huang
and Gibson [6] and later Huang and Chou [7] have included sta-
tistical effects in the fracture toughness of hexagonal and square
honeycombs by assuming that the strength of the cell walls fol-
lows a Weibull distribution. They concluded that the fracture
toughness K. increases with cell size if the Weibull modulus m is
greater than 4, is insensitive to cell size if m equals 4, and it
decreases with cell size if m is less than 4. We shall reassess this
result for the diamond-celled honeycomb.

1.2 Statement of the Problem. In the present study, we in-
vestigate the tensile fracture response of a center-cracked sand-
wich panel made from a diamond-celled honeycomb (Fig. 1). This
is a common test geometry and is representative of practical ap-
plications. The sandwich panel is of width 2W and height 2H, and
contains a crack of length 2a. Fixed grip load conditions are ap-
plied by prescribing remote displacements, as shown in Fig. 1.

The diamond-celled lattice, sketched in Fig. 2, is characterized
by its cell size ¢, wall thickness ¢, and core angle w. However,
only orthogonal honeycombs of w=45 deg are considered in this
study. The cell-wall material is linear elastic to fracture. It has
Young’s modulus E, Poisson’s ratio v, and a deterministic tensile
fracture strength o. Later in our study, we shall modify this by
considering a Weibull distribution of strength. The relative density
of the diamond-celled honeycomb is defined by the density of the
lattice divided by that of the of the cell-wall material, and is

related to 7=1/4€ by

p=12-1) 2)

Classical beam theory suffices to analyze the stress state within
the sandwich core in the absence of a crack. Straightforward
analysis reveals that the sandwich panel has an out-of-plane un-
notched tensile strength o,, which scales with the tensile fracture
strength of the solid material o and with 7 according to

i
g
1+3?f

3)

This expression takes into account both bending and stretching of
the cell walls. Upon neglecting the bending contribution, it re-
duces to

oy = ?O-f (4)

The approximation (4) is acceptable at low relative densities: At
7=0.03, it leads to an error of 15% in Eq. (3). Henceforth, we shall
assume that the unnotched strength is given by Eq. (4).

Now introduce a macroscopic crack into the honeycomb. We
write o™ as the remote gross stress required to initiate crack
growth under uniaxial loading. Then 0™/, depends on the four
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nondimensional groups 7, a/€¢, H/€, and H/W. In the current
study, we shall limit attention to practical sandwich geometries for
which H/W is small.

1.3 Scope of the Study. The structure of this paper is as
follows. First, simple analytical models are used to obtain the
deterministic fracture strength of the center-cracked panels. These
predictions are used to construct a fracture map with axes given
by the sandwich beam geometry. The map is validated by selected
finite element (FE) simulations. The statistics of brittle fracture
are then considered, and the effect of a Weibull distribution of
strength on the regimes of dominance of the fracture map is ex-
plored.

2 Analytic Description

Consider the center-cracked sandwich panel shown in Fig. 1.
The failure strength for any given geometry is determined from a
series of simple analytical models. We shall show that the effect of
geometry on strength is adequately captured by the two nondi-
mensional groups €/a and £/ (7H). These groups are used to define
the axes of a failure mechanism map, and each analytical model of
failure has a regime of dominance on the map.

We argue that there exists a Regime I of specimen geometries
for which the stresses are uniform throughout the lattice. The
stress concentration at the crack tip is negligible and the net
strength of the cracked panel equals the unnotched strength: The
panel is damage tolerant. However, there exist other geometries
for which a K-field develops around the crack tip, on a scale larger
than the cell size. We call this Regime II if the crack is long
compared to the height of the sandwich panel, and Regime III if it
is short. A detailed analysis for each regime is now given.

2.1 Regime I. A schematic representation of the stress state
within the sandwich core for Regime I is shown in Fig. 3(a).
Elastic shear regions partition zones of uniform stress state within
the sandwich panel: equibiaxial stress, uniaxial stress, and zero
stress, see Fig. 3(a).

A simple physical model can be developed for the macroscopic
strength [8]. It is assumed that only bars that connect one face
sheet to the other carry load. Bars that end on the crack faces or
on the side edges of the sandwich panel are unloaded. The remain-
ing bars connect both face sheets and are subjected to an axial
stress on the bar cross section of

Uy

=—E 5
Ta= 7 Es &)
The number n of load carrying bars is given by
4(W-H -
"= # (6)
€2

Equilibrium in the vertical x,-direction of Fig. 3(a) gives the re-
lation between the macroscopic gross stress o™ and the local ten-
sile stress in the bars o, as

n2
o =n—o, 7
aw%e (7
Failure occurs when the axial stress in the bars, o, attains the
tensile strength of the solid material, oy The gross-section
strength of the sandwich panel follows as

Uw=(1—2—2>fa» (8)

w W

The net-section strength is defined by o,=0”/(1—a/W) and in
nondimensional form it reads
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Fig. 3 (a) Regime I: uniform stress with practically no stress
concentration at the crack tip. (b) Regime II: K-field exists.
Strength is independent of crack length. (¢) Regime lll: K-field
exists. Strength scales with crack length as a='2. In all three
regimes, the effective stress far ahead of the crack tip is equibi-

axial, and of magnitude fo, upon neglecting the contribution
from beam bending.
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Now limit attention to the case H/ W<<1. Substitution of Eq. (8)
into Eq. (9) gives ¢=1 since o, =70 according to expression (4).
We emphasize that the nondimensional parameter o compares the
net-section strength of the cracked sandwich panel to the un-
notched strength. It is therefore a measure of the damage tolerance
of the sandwich panel.
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2.2 Regime II. Assume that the crack is sufficiently long
compared to the height 2H of the sandwich panel that the core
behaves as an orthotropic elastic strip with a semi-infinite crack,
see Fig. 3(b). Upstream of the crack tip, a biaxial state of stress
prevails while downstream the core is unloaded. In the intermedi-
ate zone, a crack tip K-field exists on a length scale larger than
that of the cell size. The Mode I stress intensity factor K; at the
crack tip is given by the steady state solution as follows.

First, calculate the energy release rate G; by advancing the
crack tip a virtual increment da. The energy released G;da equals
the difference in stored elastic energy within a strip of width da
and height 2H upstream and downstream of the crack tip. Treat
the lattice as an effective medium, subjected to a uniform stress
state far ahead of the crack tip and far behind the crack tip. Ma-
terial elements downstream of the crack tip are unloaded. Up-
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stream, material elements are subjected to the macroscopic strain
state £;,=g€1,=0 and &,,=u,/H. The macroscopic stress compo-
nent oy, is [4]

1
O = 5E5(7+ ey (10)
with o,=0. Consequently, an energy balance reads
1 2Ho%,
Giba=Zonen2Héa=——""_"+ (11)
2 E(f+7)

It remains to determine the stress intensity factor K; in terms of
GI.

The energy release rate G; and the stress intensity factor K; in
an orthotropic material in plane stress are related through the ex-
pression

G;=CK?} (12)

where the elastic coefficient C; is a function of the elastic moduli,
see, for example, Tada et al. [9]. For the orthotropic honeycomb
under consideration, C; is given by

VE2+1 1 .
2 g
The stress intensity factor K; follows as
245,V H

2 (14)

1=
(t+t3)1/2(?2+ 1)1/4
We modity this expression to account for the case of a finite crack.

Since o, is the net-section stress, the remote gross stress o™ reads
(TOO=(1—C{/W)0'22, (15)

Also assume that 7 is much less than unity. Then Egs. (14) and
(15) simplify to

K= Fo™NH (16)
where the calibration function F; is
23/4\“’%
=TT (17)
(I-a/W)

Recall that Mode I fracture toughness K- of the diamond-celled
lattice has already been given by Eq. (1) in terms of a single
numerical constant 8=0.44, as calibrated by FE simulations [4].
Failure occurs when K;=Kjc. Consequently, the gross-section
strength of the sandwich panel is

i KIC o /:( e )1/2< ; )
o' =—==27"pNt| — 1-—o (18)
FAH H w7
and the nondimensional net-section strength reads
oo € 172
g=— = 2-3/43( —_) (19)
1-—o,
w

We mention in passing that the calibration factor F; derived here
is in excellent agreement with that obtained by Georgiadis and
Papadopoulos [10] using Fourier transforms and the Wiener—Hopf
technique. Additional FE simulations have been performed for a
cracked strip made from an orthotropic continuum. They confirm
the accuracy of Eq. (19) for finite a/W, and are omitted here for
the sake of brevity.

2.3 Regime III. Regime III is schematically depicted in Fig.
3(c). Now, the crack is much smaller than the height and width of
the sandwich panel. The K-calibration for an orthotropic panel
containing a short central crack of length 2a is approximately
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Fig. 4 Fracture map for a panel containing a center crack and
subjected to prescribed displacements. The sample geometries
P,, P,, and P; are explored in detail in Sec. 3 to illustrate the
response within each regime.

(20)

A more precise calibration can be found in the literature [11].
However, the approximate relation (20) is adequate for our pur-
poses and it leads to a major simplification of subsequent algebra.

Failure occurs when the stress intensity factor K; reaches the
critical value, K;-. The gross-section strength of the sandwich
panel is given by

a
1-—|K
. ( W)’C B[\ 4
0 =———=——="7=1| — 1-—]oy (21)
\ma Vo \a w
and the normalized net-section strength is
o ¢ 12
ST o)
a v \a
(1-3)e

w

24 Construction of the Fracture Map. The above three
analytical models can be used to construct a fracture map, with
suitably chosen axes in terms of the sandwich geometry. The non-
dimensional net-section strength & equals unity in Regime I, de-
pends on €/7H in Regime II, and depends on €/a in Regime III.
Consequently, we construct a fracture map with axes (€/a,€¢/7H),
as shown in Fig. 4. The boundaries between regimes are obtained
by equating the expressions for the strength within each regime.
The boundary between Regimes I and 1I is given by €/tH=14.6
upon taking =1 in Eq. (19). Likewise, the boundary between
Regimes II and III is obtained by equating & from Eq. (19) with &
from Eq. (22), to give €/tH=0.9¢/a. A physical constraint on the
minimum crack length is also imposed on the map: The minimum
crack length in the lattice is a/€=12. It is straightforward to add
contours of nondimensional strength & to the map, upon making
use of =1 in Regime I, and relations (19) and (22) in Regimes II
and III, respectively. We emphasize that the fracture map is uni-
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Fig. 5 Normalized net strength as a function of crack size. The
width of the sandwich panel is much larger than its height
(W/IH=20), and its height is much larger than the cell size
(H/€=70v2). The solid lines denote analytic predictions.

versal for all relative densities and for all geometries of sandwich
panel, provided W/H is sufficiently large. It remains to perform a
series of FE simulations to validate the map.

3 Numerical Calculations

Selected FE simulations have been carried out to determine the
gross-section fracture strength o™ of centrally cracked sandwich
panels made from an elastic-brittle, diamond-celled honeycomb. It
is assumed that the honeycomb fails when the maximum tensile
principal stress anywhere in the lattice attains a critical value o.

The linear elastic calculations were performed using the com-
mercial FE code ABAQUS (version 6.5-3). Each strut in the lattice
was modeled as a two-noded Euler—Bernoulli beam element (type
B23 in ABAQUS notation): This element uses cubic interpolation
functions and allows for both stretching and bending deformations
but neglects shear deformation.

The symmetries of the geometry and loading were such that a
FE mesh was generated for one-quarter of the sandwich panel.
The crack in the lattice was defined by splitting the joints along
the cracking plane while keeping intact the struts on each face of
the crack (Fig. 2). The face sheets were not explicitly modeled in
the FE simulations. Rather, all lattice joints attached to the face
sheets were subjected to the same prescribed vertical displace-
ment, with zero transverse displacement and zero rotation.

The FE mesh of the sandwich core comprised 1400 cells in the
x; direction by 70 cells in the x, direction. Throughout this nu-
merical study, two aspect ratios were held constant: H/€=70v2
and H/W=1/20. We investigated the sensitivity of the fracture
strength of the sandwich panel to crack length a/€ and to relative

density as parametrized by 7=1/¢.

3.1 Verification of the Regimes of Behavior. A series of FE
calculations has been performed for selected values of 7 in the
range 5X 107° to 0.25 and a/€ between \2 and 105012. The
results are given in Fig. 5 in the form of a plot of & versus a/¥,
together with the analytic prediction =1 for all 7 in Regime I, the
prediction (19) for selected values of 7 in Regime II, and the

prediction (22) for all in 7 Regime III. Good agreement between
the analytical formulas and numerical predictions is noted for all
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Fig. 6 Net strength as a function of relative density for a sand-
wich panel made from a lattice, which contains a central crack
of length a/(=3\2. The panel has aspect ratios W/H=20 and
HI€¢=702.

three regimes. For 7 below a transition value of 8%€/ Z\EH =69
X 107*, the response lies within Regime I: The FE simulations
confirm that = 1. For 7 above this transition value, the strength
of the sandwich panel is toughness controlled and & is below the
unnotched value. In Regime II, the strength of the panel is inde-
pendent of crack length and scales with relative density according
to oo (7H/€)7"2, recall Eq. (19). In Regime III, the nondimen-
sional strength of the panel is independent of relative density and
scales with crack length as & (a/€)~"2.

Additional insight is obtained by plotting in Fig. 6 the normal-
ized net-section strength & as a function of 7; this is donel)y Cross
plotting the seven data points of Fig. 5 at fixed a/€=3\2. Three
additional simulations were run and added to Fig. 6 in order to
present a more complete comparison between FE results and ana-
lytical estimates. At small 7, the response lies within Regime I: No
stress concentration exists and the unnotched strength is main-
tained, o= 1. With increasing 7, the response switches to Regime 1T
and & scales as 72 in accordance with Eq. (19). At large 7,
Regime III exists such that & is insensitive to 7, as stated in Eq.
(22). It is remarkable that the simple estimates of Sec. 2, based on
linear elastic fracture mechanics for a continuum, capture the re-
sponse in Regimes II and III despite the fact that the lattices of
Fig. 6 contain only a few broken cells.

3.2 Normal Traction Directly Ahead of the Crack Tip.
Consider the forces in the joints of the lattice directly ahead of the
crack tip. These forces are used to construct a traction distribution
on the crack plane directly ahead of the crack tip, in order to make
comparisons with the stress state in a cracked continuum. This
traction distribution has been obtained for the geometries Py, P,,
and P3, as defined in Fig. 4. These geometries are taken to be
representative of the response for each of the three regimes.

(i) The traction distribution for geometry P, (representative
of Regime 1) is uniform at o,,~ 0™, see Fig. 7(a). This
implies that no K-field exists.

(ii) The traction 0,(r) for geometry P, of Regime II is com-
pared to the asymptotic crack tip field o,,=K,;/ 277 in
Fig. 7(a), where r is the distance ahead of the crack tip.
Note that Eq. (16) is used for K. It is clear that the traction
in the discrete lattice is consistent with the K-field of a
continuum.

Journal of Applied Mechanics
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Fig. 7 Normal tractions directly ahead of the crack tip. The
geometries are specified by P;:{=5X10"5, al(=3\2; P,:=0.15,
al(=350\2, and P;:f=0.15, a/(=32.

(iii) Finally, consider geometry P3 of Regime III. The traction
within the discrete lattice is plotted in Fig. 7(b) along with
the Savin [12] solution for an infinite orthotropic panel
containing a center crack. It is clear that the traction ahead
of the crack tip in the lattice is adequately represented by
the continuum solution. The agreement is remarkably
close given the fact that the crack in the lattice is short,

a/€=3\5‘

The comparisons made in Fig. 7 support the applicability of
linear elastic fracture mechanics in Regimes II and III: K. serves
as a useful fracture parameter to describe the local conditions near
the crack tip of the lattice.

4 Statistics of Brittle Failure

Brittle solids, such as engineering ceramics, contain a random
distribution of flaws of stochastic length. Consequently, the solid
cell walls of a brittle honeycomb exhibit a statistical distribution
of tensile fracture strength o, Weibull statistics are commonly
used to model this scatter in strength: the survival probability P;
of a brittle solid of volume V subjected to a maximum principal
tensile stress o is given by
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Fig. 8 FE model used to assess the fracture toughness of the
lattice

(23)

B ﬁ md_‘/
Py(oy) —expl— JV<%> VJ

where m is the Weibull modulus and oy is a reference fracture
strength for a reference volume V{,. The magnitude of the Weibull
modulus is a measure of the variability in strength: The lower the
value of m, the greater the variability in strength.

We proceed to include the statistical component of cell-wall
strength in our analysis of the cracked sandwich panel. Strength-
controlled failure (Regime I) and toughness-controlled failure
(Regimes 11 and III) are treated in turn.

4.1 Strength-Controlled Regime I. In Regime I, the deter-
ministic net-section strength of the cracked panel is adequately
predicted by the unnotched strength o, =7oy. It is straightforward
to modify this analysis for a statistical distribution of strength.
Assume that the cell walls are uniaxially loaded. Then, the maxi-
mum principal tensile stress o can be written in terms of the

remote applied net-section stress o, as ;=0,/1. The Weibull dis-
tribution (23) now takes the form

Ps<on>=exp[— (%) VK]
0

The average net-section strength (07,)mean immediately follows as

“ 1/m
I I ) C IS

0 m

(24)

where I'(1+1/m) is the gamma function and V=4H(W-a)p is the
total volume of cell-wall material per unit depth.

4.2 Statistics of Fracture Toughness. So far, we have used a
deterministic value of fracture toughness; however, statistical
variations in the strength of the solid cell walls lead to variations
in the fracture toughness of the lattice. We proceed to use Weibull
theory to predict the variability in fracture toughness in terms of
m, 0y, and V().

4.2.1 Weibull Analysis for a Crack Tip Field. Consider the
problem of a diamond-celled lattice containing a long crack, as
sketched in Fig. 8. The polar coordinates (r, 6) are centered on the
crack tip and are defined in the usual manner, see Fig. 8. We
subject the outer boundary of the lattice to the displacement field
u associated with the macroscopic crack tip K-field for an ortho-
tropic elastic solid [13].

Write the maximum principal tensile stress o within the cell
walls of the lattice in the form

K
o= :’zg(r/e, 6.7) (26)

A
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Fig. 9 Maximum principal stress distribution for a typical strut
in the lattice

where K; is Mode I stress intensity factor and the function g gives
the dependence on position within the lattice and on the bar stub-
biness 7.

According to Weibull theory, the probability of survival of the
lattice subjected to a stress intensity K; is found by substituting
Eq. (26) into Eq. (23):

K, "dv
T I
v 0'0[\“6 VO

K, \" dv
=exp| - | —= " (27)
oo\t v Vo
The average fracture toughness of the lattice follows as
(KIC)mezm = J Px(KI)dKI = EO’O?\e (28)
0

where

—1/m
_ K 1 av
K= ( IC_)n;Ean _ I,(m + > f gm— (29)
(Tot\}€ m 1% VO

4.2.2  Finite Element Simulations. We shall now evaluate K
from FE simulations. A square mesh of the diamond-celled lattice
was created using ABAQUS (version 6.5-3). Each strut of the lattice
was modeled as an Euler—Bernoulli beam element. The square
mesh was of side 600 unit cells and contained a traction-free edge
crack along the negative x,-axis (Fig. 8). Loading was applied by
imposing the displacement field corresponding to the K-field on
the boundary of the mesh [13]. A mesh convergence study based
on the maximum local tensile stress in the lattice revealed that the
mesh suffices for the present investigation.

K is calculated as follows. The maximum principal tensile
stress o within the cell walls of the lattice is determined from the
FE simulations. These stresses are used to obtain the function g as
defined in Eq. (26). Note that only the maximum principal tensile
stress o enters the calculation. Figure 9 shows a typical strut in
the lattice with the zone of tensile stress. Introduce a local Carte-
sian reference frame (x,y) for each strut such that x is the distance
along the strut and y is the distance from the neutral section. The
stress distribution o(x,y)=F/t+12My/f is obtained from the
bending moment along the strut M (x)=M ;+(M,—M)x/ € and the
axial force F. By setting o(x,y)=0, we locate the position of the
neutral axis as a function of the distance x along the beam,
yya(x)==F*/12M(x). The integral within expression (29) then
reads

. rdrdg (% a_?)’"
fvg (r/eaevf) VO _(VO)( KI fvdr(f,ﬁ,f)gdfdﬁ

(30)

where £é=r/¢ is used as a dummy variable. This integral is calcu-
lated over a square region of side 2R centered at the crack tip (Fig.
8). As the size of the square region increases, the volume integral
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Fig. 10 Dependence of K on the Weibull modulus. The dotted
lines denote the analytical estimate of Eq. (33) for large m.

in Eq. (30) converges to a constant value. The higher the Weibull
modulus m, the faster the convergence is achieved.

The dependence of K= (K;¢)mean/ 0'0?\3‘? on Weibull modulus is
plotted in Fig. 10 for the two values of cell-wall stubbiness, 7
=0.15 and 7=0.01, with the arbitrary volume V|, taken to be V,
=(2. The plots display a peak value of fracture toughness for m

about equal to 6. A large Weibull modulus m implies small varia-
tions in cell-wall strength, and deterministic fracture toughness,

K=p=0.44. However, at low m, the effect of a stochastic strength

is significant. There exists a limit m=4 below which K drops to
zero. A scaling argument can be used to explain this. Conventional
linear elastic fracture mechanics suggests that the nondimensional
function g scales with distance r from the crack tip as goer™V2.
Therefore, the integral within Eq. (29) has the following scaling:

- 2
f g"dv « f r"2rd Odr f L
v v 5 4-
31

where the lower limit of integration & is on the order of the cell
size of the lattice €. Note that this integral has a finite value for
m=>4; however, for m =4 the integral is unbounded at the outer

A—m/2r=>
[r r=6

limit and K equals zero. We conclude from Eq. (28) that the frac-
ture toughness of the lattice tends to zero for m=4. The physical
interpretation is the following: The variability in strength is suffi-
ciently great for m=4 that struts remote from the crack tip fail
and the effective “stressed volume” is unbounded.

4.2.3 Analytical Estimate of the Mean Fracture Toughness.
For large values of Weibull modulus m, failure always occurs near
the crack tip. An estimate for the mean fracture toughness is found
by considering only the critical strut directly ahead of the crack tip
(Fig. 2). Assume that this critical strut deforms as a built-in beam,
as sketched in Fig. 3(a). Ignore the tensile stress caused by axial
and shear forces so that only the tensile stress due to bending is
taken into account. The survival probability is given in terms of
the maximum local bending stress in the built-in beam o, by [14]

o] - ) 2)]
TP T 2\ \ oy

Here, the volume V per unit depth is equal to 2€7 since only two
struts are critical: the one containing the fracture site A, as shown
in Fig. 2, and its mirror image about the cracking plane. Numeri-

(32)
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Fig. 11 Fracture map for a honeycomb core sandwich panel

where the statistical variability of the cell-wall strength is
included

cal investigations [4] have revealed that the maximum local bend-
ing stress o in the beam reads o,=K;/0.447\€. Substitution of
this value into Eq. (32) provides

1/m
(KIC)nEan =I~<m+ 1>|:044m(1 +m)2<1(2)>%:| / (33)
m e

0'()[_\"“6
Equation (33) is plotted in Fig. 10 as a dotted line for the two
values of 7 considered in the numerical calculation of the previous
section. As expected, the estimate is valid only for large m. For
example, for m> 10, the error is less than 4%. However, the ana-
Iytical estimate considerably deviates from the numerical calcula-

K=

tion of K as the Weibull modulus is decreased.

4.3 Implications of Weibull Statistics on the Fracture
Map. The variability in cell-wall strength leads to a variability in
strength of the cracked sandwich panel in Regime I of the fracture
map, recall Eq. (8). Likewise, the variability in fracture toughness
leads to a variability in strength of the cracked sandwich panel,
recall Egs. (18) and (21) for Regimes II and III, respectively.

The implications of cell-wall strength variability on the fracture
map are now examined. We make use of expressions (25) and (33)
in order to derive analytical estimates for the boundaries between
regimes.

First, consider the boundary between Regimes I and II. Upon
equating the mean strength (25) in Regime I with the mean
strength in Regime II, as specified by Egs. (18) and (33), we

obtain
i_&[ 1 ( €2 ):|2/m
Hr B 200 +m)*\2HW

Second, the boundary between Regimes I and III is obtained via
Egs. (25), (21), and (33), giving

ﬁ_i[;( €2 ):|2/m
a  BL2(1+m)*\2HW

Third, the boundary between Regimes II and III is obtained by
equating the strengths as specified by Egs. (18) and (21); Note that
this boundary is insensitive to the value of m.

The effect m on the boundaries of the fracture map is shown in
Fig. 11. Boundaries are plotted for selected values of m=10 and

(34)

35)
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m=06 together with the deterministic result m=00. It is clear that as
the Weibull modulus decreases the regimes of fracture toughness
control shrink in favor of the strength-governed Regime 1.

Boundaries are given in Fig. 11 for two values of HW/€2. One
choice corresponds to the geometry considered in the FE analysis
of the present study such that W/H=20 and H/€=7012, giving
HW/€>=196 X 103. A second choice assumes a much larger struc-
ture such that W/H=20 and H/€=700v2, giving HW/{2=196
X 103, It is clear from Fig. 11 that for finite m Regime I expands
with increasing volume of panel, for a given cell size €.

Engineering ceramics have a wide range of m value from 3 to
20 depending on the processing route. For example, cordierite in
catalytic converters has approximately m=6 [6]. Thus, it is nec-
essary to include statistical effects on the strength of the sandwich
panel.

5 Concluding Remarks

In this study, it is shown that the fracture strength of a center-
cracked sandwich panel made from a brittle diamond-celled hon-
eycomb depends on the relative density of the lattice, the crack
size, and the geometric dimensions of the panel. The FE method
has been used to investigate the damage tolerance of the structure.
A fracture map has been constructed with axes (€/a,€/tH) given
by the sandwich geometry. Three regimes of behavior have been
observed. Simple analytical models of each regime are able to
capture the mechanical response of the sandwich panel.

Statistical variations in the cell-wall strength have been quanti-
fied by assuming that it follows a Weibull distribution. The effect
of specimen geometry and Weibull modulus on the fracture map
has been explored. As expected, a large sandwich panel is more
likely to be strength controlled, for a given cell size of the hon-
eycomb. It is also found that the domain of toughness-controlled
fracture shrinks as the Weibull modulus m is decreased. For m
=4, the fracture toughness of the honeycomb falls to zero and
failure is strength governed.

The results presented above give the fracture toughness of the
lattice K¢ in terms of the tensile strength oy of the cell-wall
material. However, oy derives from the fracture toughness K of
the cell wall and the intrinsic flaw size ¢ within the cell walls

K
\re

Substition of Eq. (36) into Eq. (1) gives

K e 1/2
e O 0.23?(—)
K, c

This alternative presentation of the fracture toughness K;- sug-
gests that improved processing techniques, which reduce ¢, will
lead to an enhanced toughness of the lattice.

The current study is also of relevance to the fatigue strength of
metallic lattices. Following Gibson and Ashby [2] and Huang and
Lin [15], we argue that fatigue failure of the cracked lattice is due
to the cyclic failure of the most heavily loaded strut. Now limit
attention to the fatigue limit of the lattice. At infinite fatigue life,
this critical strut is subjected to local stress of amplitude equal to

(37)
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the endurance limit o, of the solid. The map shown in Fig. 4 can
be reinterpreted as a fatigue fracture map for infinite life once we
rewrite ¢ as amplitude of net-section fatigue loading normalized
by o,. Also, the stress intensity range for fatigue crack growth in
the metallic lattice AKy, can be directly stated from Eq. (1) as

AKy, =201t (38)

The authors are unaware of any experiments in the literature,
which support or refute Eq. (38). Formulas similar to Eq. (38)
have been developed for open-cell metallic foams and polymeric
foams, see Gibson and Ashby [2], Olurin et al. [16], and Burman
and Zenkert [17]. These experimental and theoretical studies sup-
port the idea that the fatigue crack growth threshold AKy, is de-
pendent on the cyclic fatigue strength o, of the cell wall and on
the cell size €. The authors are unaware of any experimental stud-
ies, which can be used to validate the fracture and fatigue maps
presented here. It is suggested that such validation is a topic for
future study.
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