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Question 1X – Relativity

(i) (a) Explain what is meant by a geodesic curve in a manifold and an
affine parameter. [2]

(b) Write down the geodesic equation in an affine parameterisation and
show that it can be obtained by applying the Euler–Lagrange equations,

d

dλ

∂L
∂ẋa

=
∂L
∂xa

,

to L = gabẋ
aẋb, where dots denote differentiation with respect to an affine

parameter, ẋa = dxa/dλ. [5]

(c) The line element on the surface of a cylinder embedded in 3D Euclidean
space is given by ds2 = dz2 + a2dϕ2, where a is the radius of the cylinder, ϕ
is the polar angle and z is the Cartesian coordinate along the axis of the
cylinder. Write down the geodesic equations for the cylinder and solve them
to determine ϕ(λ) and z(λ) for a general geodesic curve. [3]

(ii) (a) Consider the spacetime line element

ds2 = c2dt2 −
(

R2

r2 + α2

)
dr2 −R2dθ2 − (r2 + α2) sin2 θdϕ2 , (∗)

with R2 = r2 + α2 cos2 θ, where α is a constant. By considering the t and ϕ
components of the geodesic equation, or otherwise, show that

J =
dϕ

dt
(r2 + a2) sin2 θ

is an integral of motion for a free particle. [6]

(b) Give a physical interpretation of J . [2]

(c) By considering the coordinate transformation

x =
√
r2 + α2 sin θ cosϕ ,

y =
√
r2 + α2 sin θ sinϕ ,

z = r cos θ ,

show that (∗) is Minkowski spacetime. [7]

(d) Sketch the surface r = const. and the surface θ = const. in terms of the
x, y, z coordinates. [5]
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Question 2Y – Astrophysical Fluid Dynamics

(i) (a) The entropy form of the energy equation for an ideal gas is

1

K

DK

Dt
= −(γ − 1)

(
ρ

p

)
Q̇,

where p is the pressure, ρ is the density, γ is the standard ratio of specific heat
capacities, K = p/ργ, and Q̇ is the net cooling rate per unit mass. Describe
the processes through which the gas might be locally heated or cooled. [4]

(b) Consider an ideal gas that is not experiencing any explicit heating or
cooling processes, but that is subject to the action of thermal conduction, such
that there is a thermal energy flux q = −χ∇T , where T is the gas temperature
and χ(T ) is the coefficient of thermal diffusivity. Show that the entropy form
of the energy equation can be written as

1

K

[
∂K

∂t
+ (u · ∇)K

]
=

(γ − 1)

p
∇ · (χ∇T ) ,

where u is the fluid velocity. [6]

(ii) (a) Consider an equilibrium system in which the gas from Part (i) is
distributed uniformly through space with density ρ0, pressure p0, temperature
T0, and is static with u = 0. We now introduce small perturbations (δp, δρ,
δT , δu) into the system. Using any information from Part (i), show that the
perturbed entropy equation to linear order is

1

p0

∂ δp

∂t
− γ

ρ0

∂ δρ

∂t
=

(γ − 1)χ0T0

p0
∇2

(
δp

p0
− δρ

ρ0

)
,

where χ0 ≡ χ(T0). [4]

(b) By decomposing the perturbations into plane waves, i.e., perturbations
in quantity X have the form δX ∝ ei(k·x−ωt), show that the dispersion relation
governing the perturbations is

ω(ω2 − k2c2s ) = −iωcond(ω
2 − k2c2s/γ),

where cs is the adiabatic sound speed and you should define ωcond in terms of
quantities already specified. [10]

(c) The weak conduction limit is defined by ωcond ≪ ω. By writing ω =
kcs + ϵ, where ϵ ∼ O(ωcond/ω) ≪ 1, show that the system contains damped
sound waves and determine the damping rate Γ in terms of ωcond and γ. [4]

(d) In addition to the sound waves, the cubic dispersion relation contains
one other mode. Determine the frequency ω and provide a physical interpre-
tation for this mode. [2]
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Question 3X – Cosmology

(i) (a) Consider a Friedmann-Robertson-Walker (FRW) universe with scale-
factor R(t). Show that light with wavelength λe emitted at time te is redshifted
to a wavelength λ0 at the present day t0, where

1 + z =
λ0

λe

=
R(t0)

R(te)
.

[5]

(b) Show that in an FRW universe the Hubble parameterH(t) = R−1dR/dt
can be written as

H(t) = H0

[
Ωr(1 + z)4 + Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ

]1/2
,

where H0 is the Hubble parameter at the present day, and Ωr, Ωm, ΩK and
ΩΛ are the density parameters at the present day contributed by radiation,
non-relativistic matter, curvature and a cosmological constant Λ. [5]

(ii) (a) Assuming a spatially flat FRW universe composed of non-relativistic
matter with present day density parameter Ωm and a cosmological constant,
show that the age of the universe, at the time light is emitted from an object
with an observed redshift z, is

t(z) =
2

3H0(1− Ωm)1/2
sinh−1

[(
1− Ωm

Ωm

)1/2

(1 + z)−3/2

]
, (∗)

where H0 is the present day value of the Hubble parameter. [6]
You may assume that :

∫
dx

(a+bx2)1/2
= 1√

b
sinh−1

[(
b
a

)1/2
x
]
.


(b) In the high redshift limit, (1 + z) ≫ [(1 − Ωm)/Ωm]

1/3. Show that (*)
reduces to

t(z) ≈ 2

3H0Ω
1/2
m

1

(1 + z)3/2
.

[2]

QUESTION CONTINUED ON NEXT PAGE
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(c) Consider a black hole of massMbh accreting at the Eddington luminosity

LEd =
4πGMbhmpc

σT

,

where σT is the Thomson cross section. If the efficiency of conversion of rest
mass to radiation, ϵ, is assumed to be constant, show that the black hole grows
according to

Mbh(t) = Mbh(ti) exp

(
(1− ϵ)

ϵ

(t− ti)

tEd

)
(∗∗)

and evaluate the characteristic timescale tEd. [6]

(d) If black holes are formed with Mbh(ti) = 200 M⊙ at some very early
time ti ≪ t and subsequently grow according to (**) with radiative efficiency
ϵ = 0.1, calculate the maximum redshift z∗ at which you would expect to find
a supermassive black hole with mass Mbh(z∗) = 2× 109 M⊙ in a universe with
Ωm = 0.3 and H0 = 67.5 km s−1Mpc−1. [3]

(e) How would you interpret the existence of black holes with massesMbh >
2× 109M⊙ at redshifts z > z∗? [3]
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Question 4X – Structure and Evolution of Stars

(i) (a) Sketch the Hertzsprung-Russell diagram of a Globular Cluster, la-
belling the axes carefully. Include in your sketch the approximate positions of:
the main sequence, the horizontal branch, red giants, white dwarfs, and a solar
mass star. [5]

(b) The James Webb Space Telescope has recently released observations
of the young cluster NGC 346 in the Small Magellanic Cloud galaxy. This
cluster is thought to be only 3 Myr old. Sketch what you imagine that the
Hertzsprung-Russell diagram of NGC 346 may look like once the relevant data
have been assembled, and comment on the most obvious differences from your
plot in (a). [5]

(ii) A planet orbits a 1M⊙ solar-type star and transits in front of the star
once every 3.5 days. The light curve of the transit is shown below:
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Structure and Evolution of Stars: Examples I

Example 1 Suppose the space density of stars within the Galaxy is 0.1/pc3.

(i) How many stars would you see per square degree in a direction where the Galaxy extends to
(a) 100 pc, (b) 1000 pc and (c) 10 000 pc?

At 50 pc from the Sun there is a cluster of ∼3000 stars, occupying (uniformly) a sphere of radius 1.25 pc.

(ii) If in that direction the Galaxy extends to 250 pc, how many field stars will occupy the same apparent
area as the cluster? How many will be in front and how many behind?

About 2% of the stars, in both the field and the cluster, can be identified spectroscopically as being
virtually identical to the sun.

(iii) If the absolute magnitude of the Sun is 4.75, what is the apparent magnitude of the solar-type stars
in the cluster? And what is the apparent magnitude of (a) the brightest and (b) the faintest, of the
solar-type field stars projected on the cluster?

(iv) Sketch a histogram of the cumulative apparent magnitude distribution of the solar type stars, both
in the cluster and the field, putting them in ‘bins’ of width 0.5 mag. For the field component, show
that the number of stars in successive bins should increase by very nearly a factor of two per bin.

Example 2 A star is traveling at 5 km/sec transverse to the line of sight at a a distance of 10 pc.

(i) What is its proper motion, in seconds of arc per century (′′/cy)?

Suppose the Galaxy is rotating rigidly, once per 108 yrs.

(ii) Find the proper motion of any star in the plane of the Galaxy, as measured relatively to a (suppos-
edly) fixed background of extragalactic objects

Example 3 A gas planet is orbiting a 1 M" solar type-star and transits in front of the star once every 3.5 days. The
lightcurve of the transit is shown below (see figure; from Charbonneau et al 2000).

(i) From the depth of the eclipse, calculate the radius of the planet, assuming it is completely dark.

(ii) What other information might be inferred from the shape of the lightcurve?

(iii) Suppose the brightness of the star is measure with a CCD in which each photon generates one
measurable electron (“count”). How many counts are needed to get the same accuracy as shown
in the plot (i.e. errors of ∼0.002 on the relative flux, assuming Poisson statistics)? How does that
compare to the maximum counts in a CCD of ∼60 000 per pixel?

The mass of the planet is 0.001 M" (about the mass of Jupiter)

(iv) Calculate the radial velocity amplitude of the star due to the orbiting planet.

1

(a) From the depth of the eclipse, calculate the radius of the planet, as-
suming that it is completely dark. [4]

(b) What other information might be inferred from the shape of the light
curve? [4]

(c) If the mass of the planet is 0.001M⊙ (approximately one Jupiter mass),
calculate the radial velocity amplitude of the star due to the orbiting planet. [4]

QUESTION CONTINUED ON NEXT PAGE
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(d) Another similar planet orbits a white dwarf which is a remnant of a
1M⊙ solar-type star. The orbit is sufficiently wide that the planet survived
during the late stages of stellar evolution. With a very sensitive instrument
the orbit of the planet around the white dwarf can be followed. The planet’s
period is 244 yr, and the mass of the white dwarf is 0.6M⊙. What is the length
of the semi-major axis of the white dwarf–planet system? [4]

(e) As projected onto the sky, the orbit of the planet around the white
dwarf appears to be a perfect circle of radius 1′′, but the white dwarf, instead
of being in the centre of the circle, is 60% of the way to the edge. Show that
the true orbit is an ellipse, with eccentricity e = 3/5, and calculate the size of
the semi-minor axis and the distance to the system. [4]
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Question 5Z – Statistical Physics

(i) (a) What types of systems are described by microcanonical, canonical
and grand canonical ensembles? [5]

(b) Under what conditions is the choice of ensemble irrelevant? [5]

(ii) (a) Consider a classical particle of mass m moving non-relativistically
in two-dimensional space, with coordinates x and y, enclosed inside a circle of
radius R and attached by a spring to the centre. The particle therefore moves
in a potential

V (r) =

{
1
2
κr2 for r < R ,

∞ for r ⩾ R ,

where κ is the spring constant and r2 = x2 + y2. The particle is coupled to
a heat reservoir at temperature T . Calculate the partition function for the
particle. [5]

(b) Calculate the average energy ⟨E⟩ and the average potential energy ⟨V ⟩
of the particle. [6]

(c) Compute ⟨E⟩ in the two limits 1
2
κR2 ≫ kBT and 1

2
κR2 ≪ kBT , where

kB is the Boltzmann constant. How do these two results compare with what
is expected from equipartition of energy? [6]

(d) Compute the partition function for a collection of N identical non-
interacting such particles. [3]

8



Question 6Z – Principles of Quantum Mechanics

(i) (a) Write down the Hamiltonian for a quantum harmonic oscillator of
frequency ω in terms of the creation and annihilation operators A and A†. You
may work in units where ℏ = 1. Define the number operator N and state all
commutation relations among A, A† and N . [3]

(b) Show that the eigenvalues of N are real, non-negative integers. [7]

(ii) (a) Consider a system of two independent harmonic oscillators of fre-
quency ωA = 1 and ωB = 2, respectively, and let A, A†, B and B† be their
corresponding creation and annihilation operators. Find the five lowest eigen-
values of the Hamiltonian H0 of the combined system and determine their
degeneracy. Work in units where ℏ = 1. [7]

(b) The system is perturbed so that it is now described by the new Hamil-
tonian H = H0 + λH ′, where H ′ = A†A†B + AAB†. Using degenerate per-
turbation theory, calculate to O(λ) the energies of the eigenstates associated
with the level E0 = 9

2
. Write down the eigenstates, to O(λ), associated with

these perturbed energies. [10]

(c) By explicit evaluation show that these are in fact exact eigenstates of
H with these energies as eigenvalues. [3]

[Hint: you may use without proof that for the harmonic oscillator A |n⟩ =√
n |n− 1⟩ and A† |n⟩ =

√
n+ 1 |n+ 1⟩]
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Question 7Y – Stellar Dynamics and the Structure of Galaxies

(i) (a) The equation of an ellipse with semi-major axis, a, and eccentricity,
e, can be written (

x

a

)2

+

(
y2

a2(1− e2)

)
= 1,

where (x, y) is a Cartesian coordinate system with origin at the centre of the
ellipse and the focus of the ellipse is located at x = ae, y = 0. The line XY
connects the two points on the ellipse where x = ae. Calculate the fraction of
the area of the ellipse for which x > ae. [7]

(b) The ellipse describes the path of a test particle in the gravitational
potential of a point mass M which is located at the focus of the ellipse. Use
Kepler’s second law to show that the fraction of time that the particle spends
between XY and pericentre is given by

f =
1

2
− 1

π
sin−1

(
e
)
− e

π

(
1− e2)1/2. (∗)

[3]

(ii) (a) A satellite executes a circular orbit around the Sun with an orbital
radius of 1 au. A radial impulse is applied so that it attains apocentre at the
orbital radius of Jupiter, which can be assumed to be on a circular orbit at
5 au from the Sun, and to be coplanar with the satellite. The angle between
the satellite-Sun vector and the Jupiter-Sun vector is θimp at the moment that
the impulse is applied to the satellite. What value of θimp will ensure that
the satellite intercepts Jupiter at apocentre? You may use the result in (∗)
without proof. [6]

(b) Calculate the relative velocity vrel between the satellite and Jupiter at
the point that they meet. [3]

QUESTION CONTINUED ON NEXT PAGE
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(c) In practise it is decided to adjust the impulse so that the apocentre of
the satellite’s orbit is slightly beyond 5 au, so that the satellite and Jupiter
have a close encounter at a point when the satellite still has a small outward
radial velocity. In this configuration, as it approaches Jupiter (but before
its motion is affected by the gravitational attraction of Jupiter), the velocity
vector of the satellite in the frame of Jupiter is inclined at an angle β to
the tangential direction (i.e., the direction of Jupiter’s motion). Show that
if, following the dynamical encounter between the satellite and Jupiter, the
tangential component of the satellite’s velocity relative to Jupiter is reversed,
then

cosβ =

(
1 +

v2relrperi
GMJ

)−1

,

where MJ is the mass of Jupiter and rperi is the distance of closest approach
between the satellite and Jupiter. [5]

(d) If the mass and radius of Jupiter are 10−3M⊙ and 7× 104 km, use the
value of vrel from (b) to evaluate βmin, the minimum value of β for which a
collision is avoided. [3]

(e) Discuss whether the satellite can avoid a collision with Jupiter and still
have enough energy to be ejected from the Solar system. [3]
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Question 8Y – Topics in Astrophysics

(i) (a) Write the expression for Kepler’s third law and define the terms. [1]

(b) Provide a physical description of the Hill radius of an object. [2]

(c) Show that the Hill radius, rH, for a planet of mass Mp in orbit around
a star of mass M⋆ at a semi-major axis a is given by

rH = a

(
Mp

3M⋆

)1/3

. (∗)

[7]

(ii) (a) A planet is moving on a circular orbit through a protoplanetary
disk that contains pebbles. The radial drift velocity of the pebbles is given by

vr,d =
−η vK

τf + τ−1
f

,

where η is a dimensionless parameter, vK is the Keplerian velocity and τf is
the pebble’s dimensionless frictional timescale. The azimuthal velocity of the
pebbles is given by

vϕ,d = vK − τ−1
f η vK

2(τf + τ−1
f )

.

Giving your answer in terms of η and vK, derive an approximate expression
for the magnitude of the relative velocity ∆v between pebbles with τf ≤ 1 and
the planet as they cross its orbit. [4]

(b) Provide a physical interpretation of your result in (a). [2]

(c) Show that the velocity dispersion of pebbles, σv, due to Keplerian shear
at the Hill radius of the planet is given by

σv =
3

2
ΩprH,

where Ωp is the Keplerian angular velocity of the planet and rH is its Hill
radius. [6]

(d) Derive an expression for the transition mass for a growing planet be-
tween drift- and Hill-limited accretion of pebbles. If necessary you may assume
the result in equation (∗) from Part (i). Give your answer in terms of ∆v, Ωp,
and known constants. [6]

(e) Comment on how the transition mass for a planet’s growth being drift-
or Hill-limited depends on the disk’s physical properties. [2]

END OF PAPER
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Question 1X – Relativity

(i) Consider the spacetime with line element

ds2 = c2dt2 − A2(t)dx2 −B2(t)
(
dy2 + dz2

)
.

Show that the non-vanishing Christoffel symbols (other than those related by
the symmetry Γρ

µν = Γρ
νµ) are

Γt
xx =

AA′

c2
, Γt

yy = Γt
zz =

BB′

c2
, Γx

tx =
A′

A
, Γy

ty = Γz
tz =

B′

B
,

where A′ = dA/dt and B′ = dB/dt. [10]

(ii) (a) For the spacetime in Part (i), show that component Rtt of the Ricci
tensor is

Rtt =
A′′

A
+ 2

B′′

B
. [5]

[You may use Rµν = −∂ρΓ
ρ
µν + ∂µΓ

ρ
ρν + Γτ

ρνΓ
ρ
µτ − Γτ

µνΓ
ρ
ρτ .]

(b) Given that the other non-zero components of the Ricci tensor are

Rxx = −A2

c2

(
A′′

A
+ 2

A′

A

B′

B

)
, Ryy = Rzz = −B2

c2

[
B′′

B
+

A′

A

B′

B
+

(
B′

B

)2
]
,

determine the Ricci scalar. [3]

(c) A dust-like fluid with mass density ρ is at rest in the x, y, z coordinates of
this spacetime, so that the only non-zero component of the energy–momentum
tensor is T tt = ρ. Construct the Einstein field equations in terms of A and B
and their derivatives. [5]

(d) Determine the possible values of the constants m and n such that

A(t) = A0t
m + A1t

n and B(t) = B0t
m

are solutions of the Einstein field equations, where A0, A1 and B0 are constants. [5]

(e) How does the density ρ evolve with time for A1 = 0? [2]
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Question 2Y – Astrophysical Fluid Dynamics

(i) (a) The expressions for the conservation of mass and angular momentum
for an axisymmetric geometrically thin accretion disk are

∂Σ

∂t
+

1

R

∂

∂R
(RΣuR) = 0,

∂

∂t
(RΣuϕ) +

1

R

∂

∂R
(ΣR2uϕuR)−

1

R

∂

∂R

(
νΣR3 dΩ

dR

)
= 0,

where Σ(R, t) is the surface density of the disk, uR(R) is the radial velocity,
uϕ(R) is the azimuthal velocity, Ω(R) is the angular velocity of the flow, R is
the radial distance, and ν is the viscosity of the flow. Show that, for accretion
onto a point mass M ,

uR = − 3

ΣR1/2

∂

∂R
(νΣR1/2).

[7]

(b) By making any approximations necessary, show that the radial velocity
is of order −uR ∼ ν/R. [1]

(c) Hence show that the mass accretion rate is of order Ṁ ∼ νΣ. [2]

(ii) (a) Using any results from Part (i) necessary, show that

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R
(νΣR1/2)

]
.

[3]

(b) Assuming hydrostatic equilibrium and an isothermal temperature pro-
file in the vertical direction, show that the vertical thickness of the disk (in
a sense that you should define more rigorously) is H = cs/Ω, where cs is the
isothermal sound speed of the gas and Ω(R) is the angular velocity of the flow.

[4]

(c) Use dimensional analysis to argue that ν = αcsH, where α is a dimen-
sionless parameter of order or less than unity. [4]

QUESTION CONTINUED ON NEXT PAGE
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(d) In some settings, accretion disks can have regions where a thermal
instability (driven by the ionization of hydrogen) causes the gas to quickly
transition from Tc ∼ 103K to Th ∼ 104K over a small range of mass accretion
rates Ṁ1 → Ṁ2. Explain the effect of this transition on the viscosity, and why
this results in an inverse relationship between Σ and ν, so that ∂ lnΣ/∂ ln ν <
0. [4]

(e) With reference to a sketch of Ṁ against Σ, or otherwise, explain without
detailed calculation why a disk close to the ionization threshold may be subject
to an instability. [5]
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Question 3X – Cosmology

(i) (a) The number density of particles of species i with momentum in the
range p to p+ dp in thermal equilibrium at temperature T is given by

dni(p) =
4π

h3

gip
2dp[

exp
(

E−µi

kBT

)
± 1

] {
+1 for fermions
−1 for bosons

,

where E2 = p2c2 +m2
i c

4, gi is the number of spin states, kB is the Boltzmann
constant and µi is the chemical potential. Show that in the non-relativistic
limit, the particle number density is

ni =
π3/2

h3
gi(2mikBT )

3/2 exp

[
(µi −mic

2)

kBT

]
. (∗)

[5]

[
You may assume that

∫∞
0

x2 exp(−αx2)dx = 1
4α

√
π
α
.

]
(b) Discuss the implications of (*) for the relic density of massive particles

created in thermal equilibrium in the early Universe. [3]

(c) Protons and neutrons, of number density np and nn respectively, remain
in thermal equilibrium via weak interactions until the temperature drops to
Tfreeze ∼ 0.8 MeV. How does the baryon density nB = np + nn vary with
temperature during nucleosynthesis? [1]

(d) Explain your answer. [1]

(ii) (a) Discuss the evolution of the neutron-proton ratio nn/np during the
epoch of nucleosynthesis in the standard Big Bang Cosmology. [6]

(b) Using the result (*) of Part (i), show that during nucleosynthesis the
proton chemical potential µp behaves as

µp = mpc
2+kBT ln

[(
kBT

mpc2

)3/2

2ζ(3)

√
2

π

η

(1 + nn/np)

]
,

where η is the baryon-to-photon ratio, nB/nγ, the photon number density is
nγ = 16πζ(3)(kBT/hc)

3, and ζ(3) = 1.202 is a Riemann zeta function. [6]

(c) Assuming η = 5 × 10−10, estimate the values of µp in units of MeV at
T = 100 MeV and T = 1 MeV. [5]

(d) During this period, the contribution of protons to the total entropy of
the universe increases logarithmically as the temperature decreases. Give a
physical explanation for this behaviour. [3]
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Question 4X – Structure and Evolution of Stars

(i) (a) Two early-type stars in the same cluster start their lives on the
H-burning main sequence with the same mass: MA = MB = 5M⊙. Star A
is single. Star B is a member of a binary system and throughout its life on
the main sequence loses mass to a compact companion at an average rate
Ṁ = 1 × 10−8M⊙ yr−1. Which of the two stars will leave the main sequence
first and why? [3]

(b) An astronomer equipped with a photometer and two broad-band filters,
V and B, measures the following magnitudes for two stars in the constellation
of Pegasus: mV (αPeg) = 2.45, mB(αPeg) = 2.45; and mV (β Peg) = 2.40,
mB(β Peg) = 4.04. On the basis of this information alone, which of the two
stars would you consider more likely to be the closer one to the Sun? What
other information would you require to definitely establish which is closer? [7]

(ii) (a) The gas density within a star decreases from the centre to the
surface as a function of radial distance r according to

ρ(r) = ρc

[
1−

( r

R

)2
]

where ρc is the core density and R is the star’s radius. Find a function,
m(r), describing how the mass contained within radius r varies with r. [5]

(b) Derive the relation between the total mass of the star M and R. [3]

(c) What is the average density of the star in units of the core density ρc? [3]

(d) The gravitational potential energy of a star of mass M and radius R is
given by:

Ug = −α
GM2

R
,

where α is a constant of order unity determined by the distribution of
matter within the star. Find the value of α for the density profile given above.

[9]
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Question 5Z – Statistical Physics

(i) (a) A simple one-dimensional model of a rubber molecule consists of a
chain of n links, where n is fixed. Each link has a fixed length a and can be
oriented in either the positive or negative direction. A unique state i of the
molecule is specified by giving the orientation of each link and the molecule’s
length in this state is li. If n+ links are oriented in the positive direction and
n− in the negative direction, then n = n++n− and the length of the molecule
is l = (n+ − n−)a. All links have the same energy. What is the range of
possible values of l? What is the number of states of the molecule for fixed n+

and n−? [3]

(b) Now consider an ensemble with M ≫ 1 copies of the molecule in which
mi members are in state i. Write down an expression for the mean length
L. By introducing Lagrange multipliers τ and α show that the most probable
configuration for the {mi} with given L is found by maximising

ln

(
M !∏
i mi!

)
+ τ

∑
i

mi li − α
∑
i

mi .

Hence show that the most probable configuration has

pi = eτli/Z ,

where pi is the probability for finding an ensemble member in state i and
Z =

∑
i e

τli is the partition function. [7]

(ii) (a) Consider the ensemble described in Part (i). Show that Z can be
expressed as

Z =
∑
l

g(l) eτl

where the meaning of g(l) should be explained. Hence show that

Z =
n∑

n+=0

n!

n+!n−!
(eτa)n+

(
e−τa

)n− ,

where n = n+ + n−. [3]

QUESTION CONTINUED ON NEXT PAGE
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(b) Show that the free energy G for the system at temperature T is

G = −nkBT ln (2 cosh τa) ,

where kB is the Boltzmann constant. G is the Gibbs free energy because the
setup corresponds to a system with fixed tension rather than with a fixed
length. Hence, show that

L = − 1

kBT

(
∂G

∂τ

)
and tanh τa =

L

na
,

where L = ⟨ l ⟩ is the average length. [7]

(c) Why is the tension f in the rubber molecule equal to kBTτ? [6]

(d) Now assume that na ≫ L. Show that the chain satisfies Hooke’s law
f ∝ L. What happens if f is held constant and T is increased? [4]
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Question 6Z – Principles of Quantum Mechanics

(i) A two-state quantum system has Hamiltonian H0 with eigenvectors |−⟩
and |+⟩, and corresponding eigenvalues E− < E+. The system is perturbed
by

∆H = λ

(
0 i
−i 0

)
,

where λ is a real constant. To first order in λ, the perturbed Hamiltonian,
eigenvalues, and eigenstates are:

H = H0 +∆H ,

E±(λ) = E± + λδE±

|−, λ⟩ = |−⟩+ λ (a− |−⟩+ a+ |+⟩)
|+, λ⟩ = |+⟩+ λ (b− |−⟩+ b+ |+⟩) .

Starting from the full Schrödinger equation, show that the first-order correc-
tions to the energy eigenstates and eigenvalues obey δE± = a− = b+ = 0 and
a+ = b− = i/(E+ − E−). Explicitly derive any necessary results of first-order
perturbation theory in λ. [10]

(ii) (a) Consider the system described in Part (i). Find the exact eigen-
states and eigenvalues and show that they agree with the results of perturba-
tion theory to first order in λ. [14]

(b) Determine the radius of convergence in λ of the solution under first-
order perturbation theory. [6]
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Question 7Y – Stellar Dynamics and the Structure of Galaxies

(i) (a) Write down the effective potential of a particle with specific angular
momentum h orbiting in a spherical potential Φ(r), explaining the physical
meaning of each term. [2]

(b) Show that if the angular velocity for particles on circular orbits at
radius r is Ωc(r), the frequency of radial oscillations κ(r) is given by

κ(r)2 =
1

r3
d

dr

(
r4Ωc(r)

2

)
. (∗)

[6]

(c) What does this result suggest about the expected radial profile of the
specific angular momentum of circular orbits in real systems? [2]

[You may assume without proof that for a particle moving in a potential V (x)
with an equilibrium at x = x0, the frequency ω of small oscillations about
x = x0 is given by ω2 = d2V

dx2 |x=x0.]

(ii) (a) A disc of stars orbits in the z = 0 plane of a spherical potential
Φ = Φ0 ln r. Define the local standard of rest (LSR) at radius r = R in the
z = 0 plane and derive both the angular velocity of the LSR, and the frequency
of radial oscillations about the LSR, for which you may assume equation (∗)
without proof. Is the orbital precession prograde or retrograde? [5]

(b) Determine the frequency of azimuthal excursions about the LSR. In
what direction does the orbit precess in the frame of the LSR? Provide a
labelled sketch of the motion of a test particle undergoing epicyclic excursions
in the frame of the LSR. [5]

(c) Consider the case that the disc of stars has a surface density profile

Σ = Σ0 exp(−R/R0).

Explain why the average azimuthal velocity of particles at any location is not
equal to the velocity of the LSR. What is the sign of the deviation? [5]

(d) Explain why the orbital eccentricity of stars increases with their age
and why the gas clouds from which they form have low orbital eccentricity.
Hence explain which types of stars should be used to obtain the best estimates
of the LSR velocity. [5]
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Question 8Y – Topics in Astrophysics

(i) (a) The number of asteroids with absolute magnitudes in the range H
to H + dH is given by N(H)dH ∝ 10αHdH, where α is a constant. The
asteroid size distribution is such that the number with radii in the range r to
r + dr is N(r)dr ∝ r−qdr, where q is a constant. Find an expression to link
the constants α and q. [5]

(b) What constraints do observations of the asteroid belt place on planet
formation processes and dynamics in the early Solar system? [5]

(ii) (a) A transit survey is conducted to detect habitable exoplanets, de-
fined as those with a radius of Rp = 1 Earth radius and an equilibrium tem-
perature of Tp = 300K. Derive an expression for the transit probability of a
habitable zone planet in terms of Rp, Tp, the mass of the host star M⋆, and
known constants. You may assume a stellar mass–radius relation of M⋆ ∝ R⋆

and a stellar luminosity–mass relation of L⋆ ∝ M3
⋆ , and that habitable exo-

planets behave like black bodies. [7]

(b) Stars in the vicinity of the Sun have a number density of ρ̄ = 1pc−3,
and the fraction of stars with masses in the range M⋆ to M⋆ + dM⋆ is ∝ M−2

⋆

for M⋆ > 0.1M⊙. Calculate the distance to which stars must be surveyed
before, on average, one star with a transiting habitable exoplanet has been
found. You may assume that all stars have a planet in their habitable zone
and that there are no limits on the sensitivity of the transit detection. [9]

(c) What is the most probable spectral type and mass of the star the planet
will be found around, and what is the depth of the transit signal that would
be observed for such a system? [4]

END OF PAPER
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Question 1X – Relativity

(i) (a) An atom in an excited state has (rest) mass m∗. This atom (la-
belled “1”) makes a transition to the ground state of mass m (labelled “2”) by
emitting a photon γ,

1 → 2 + γ .

Show that the energy of the photon in the rest-frame S of the original excited
atom is

Eγ =
m∗2 −m2

2m∗ c2 . [6]

(b) Determine the recoil speed v2 of the atom in the ground state (“2”) in
the frame S. [4]

(ii) (a) For the set-up in Part (i), the emitted photon subsequently collides
with another atom of the same type, which is in the ground state (labelled
“3”). The photon is absorbed and the atom transitions to the excited state
with mass m∗ (labelled “4”), i.e.,

3 + γ → 4 .

Using conservation of 4-momentum, express p3∥ ≡ ê · p⃗3 in terms of the energy
E3 of the atom “3”. Here, ê is the unit vector in the direction of propagation
of the photon and p⃗3 is the relativistic 3-momentum of atom “3”, all quantities
being defined in the frame S. [6]

(b) By considering the energy–momentum invariant for atom “3”, E2
3 −

|p⃗3|2c2 = m2c4, show that the condition on E3 that is required for the atom to
absorb the photon and transition to the excited state “4” is

E3 ≥
m2 +m∗2

2m∗ c2 . [6]

(c) What is this condition in terms of the speed of atom “3”? [6]

(d) How does the minimum possible speed of atom “3” compare to the
recoil speed v2 of atom “2” determined in Part (i)? [2]
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Question 2Y – Astrophysical Fluid Dynamics

(i) (a) Consider an equilibrium consisting of a uniform plasma of density ρ0
threaded by a uniform field B0 = B0x̂. Show that, for perturbations with k =
kyŷ, the magnetic force term in the MHD equations becomes −(1/µ0)∇(B2/2).

[4]

(b) By considering the direct analogy to sound waves, show that these
waves are dispersion-free and propagate with speed (c2s +B2

0/µ0)
1/2. [6]

[You may assume without proof that the linear perturbations of the quantity
∇[p + (1/µ0)B

2/2] are (c2s + B2
0/µ0)∇(δρ), where p is the gas pressure, cs is

the sound speed, and δρ is the perturbation in density.]

(ii) (a) Consider a small patch of a plasma of density ρ0 that, in its equi-
librium state, is rotating about the z-axis with angular velocity Ω(R), where
R is the distance from the axis. The plasma is threaded by a weak magnetic
field B0 which is aligned with the axis of rotation. With some simplifying
assumptions the dispersion relation governing the evolution of axisymmetric
perturbations is

ω4 − ω2

[
4Ω2 +

dΩ2

d(lnR)
+ 2(k · vA)

2

]
+ (k · vA)

2

[
(k · vA)

2 +
dΩ2

d(lnR)

]
= 0,

where the perturbation in quantity X is assumed to have form δX ∝ ei(k·x−ωt)

and vA ≡ B0/
√
ρ0µ0. With the aid of a diagram, explain why

(k · vA)
2 +

dΩ2

d(lnR)
< 0

is a sufficient but not necessarily required condition for instability. [5]

(b) We now assume that the rotation profile is Keplerian, Ω ∝ R−3/2. Show
that the fastest growing unstable mode has growth rate Γ = 3Ω/4, and occurs
when (k · vA)

2 = 15Ω2/16. [10]

(c) Sketch the growth rate Γ as a function of |(k · vA)|. [5]
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Question 3X – Cosmology

(i) (a) Consider a Friedmann-Robertson-Walker universe with negligible
spatial curvature and scale factor R(t) that is dominated by a uniform scalar
field with equation of state

P = −ρc2. (∗)

Show that the Einstein field equations are solved if

R(t) ∝ exp(Ht),

where H is a constant. [3]

(b) Show that the scale factor can be written in terms of the conformal
time τ =

∫
dt/R(t) as

R(τ) = − 1

Hτ
,

and that the singularity, R = 0, is pushed back to τ = −∞. [3]

(c) Explain how an inflationary phase in the early Universe driven by a
scalar field with equation of state (*) solves the horizon problem of conventional
Big Bang cosmology. [4]

(ii) (a) Observations of distant Type Ia supernovae have shown that the
Universe at late times is experiencing accelerated expansion d2R/dt2 > 0. If
the Universe is dominated by dark energy with equation of state,

PDE = −wρDEc
2, (∗∗)

where w is a constant, show that accelerated expansion requires w < −1/3. [2]

(b) Show that the density of dark energy with equation of state (**) evolves
as

ρDE ∝ R−3(1+w).

[3]

QUESTION CONTINUED ON NEXT PAGE
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(c) If the universe is spatially flat and is composed of non-relativistic matter
and dark energy with density parameters at time t0 of Ωm and ΩDE = (1−Ωm)
respectively, show that if the dark energy equation of state parameter w is less
than −1, the scale factor goes to infinity in a finite time,

trip =
1

H0Ω
1/2
m

1

(−3w)

(
1− Ωm

Ωm

) 1
2w Γ

(
− 1

2w

)
Γ
(
1
2
+ 1

2w

)
Γ(1

2
)

,

where H0 is the Hubble parameter at time t0 and Γ(x) is the Gamma function.
[11]

You may assume that :

∫∞
0

x1/2dx
(1+βxγ)1/2

= 1
γ
β− 3

2γ
Γ( 3

2γ )Γ(
1
2
− 3

2γ )
Γ( 1

2
)

.


(d) Give a physical interpretation of the result in Part (ii)(c). [4]
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Question 4X – Structure and Evolution of Stars

(i) (a) Sketch the behaviour of the radius of the Sun as a function of age.
Set the origin as the time the Sun first appears on the Hertzsprung-Russell
diagram. Annotate the plot to indicate the evolutionary phases corresponding
to significant changes in the Solar radius. [10]

(ii) (a) Show that the equations of mass continuity and hydrostatic equi-
librium can be combined into the second-order differential equation:

1

r2
d

dr

[
r2

ρ

dP

dr

]
= −4πGρ.

[4]

(b) For a gas with an equation of state, P = Kργ, where K is a constant,
use the above equation to derive a second-order differential equation involving
only density and radius. Using the dimensionless variables r′ ≡ r/R∗ and
ρ′ ≡ ρ/ρ0, show that the term Kργ−2

0 /R2
∗ is a dimensionless constant, and

hence that R∗ ∝ ρ
γ/2−1
0 . [10]

(c) White dwarfs obey the equation of state P = Kργ, with γ = 5/3 for non-
relativistic conditions and γ = 4/3 in the relativistic regime. Using the above

result, R ∝ ρ
γ/2−1
0 , show that for non-relativistic white dwarfs R ∝ M−1/3,

while for relativistic white dwarfs R is independent of M . [4]

(d) What is the significance of the mass-radius relations of Part (ii)(c)? [2]
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Question 5Z – Statistical Physics

(i) (a) State the formula for the Bose-Einstein distribution for the mean
occupation numbers nr of discrete single-particle states r with energies Er ⩾ 0
in a gas of identical ideal bosons in terms of the chemical potential µ and
β = 1/(kBT ), where kB is the Boltzmann constant, and T is the temperature.
Write down expressions for the total particle number N and the total energy
E when the single-particle states can be treated as continuous with energies
E ⩾ 0 and density of states g(E). [3]

(b) Consider the bosonic vibrational modes (phonons) in a two-dimensional
crystal with dispersion relation ω = C|k|α, where ω is the frequency, k is the
wavevector, and C > 0 and 0 < α < 2 are constants. The crystal is square
with area A. Show that the density of states is

g(ω) = Bωb , (*)

where B and b are constants that you should determine. You may assume that
the phonons have two polarizations. [7]

(ii) (a) Consider the crystal described in Part (i)(b). Calculate the Debye
frequency ωD by identifying the number of single-phonon states with the total
number of degrees of freedom, 2n, where n is the number of atoms in the
crystal. What is the Debye temperature TD? You may leave your answers in
terms of B and b, as defined in (∗), and other constants. [6]

(b) Derive an expression for the total energy, leaving your answer in integral
form with the integral over x = βℏω. You may also leave your answer in terms
of B and b, as defined in (∗), and other constants. [3]

(c) Now consider the case b = 3. Calculate the heat capacity at constant
volume CV in the limit that the temperature T ≫ TD. Show that CV ∼ T d

in the limit T ≪ TD, where d is a real number that you should determine.
Comment on these two results. [11]
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Question 6Z – Principles of Quantum Mechanics

(i) (a) Consider a composite system of several distinguishable particles.
Describe how the multiparticle state is constructed from single-particle states.

[3]

(b) For the case of two identical particles, describe how considering the
interchange symmetry leads to the definition of bosons and fermions. [7]

(ii) (a) Consider two non-interacting, identical particles, each with spin 1.
The single-particle, spin-independent HamiltonianH(Xi,Pi) has non-degenerate
eigenvalues En, labelled by n ∈ {0, 1, 2, 3, . . . }, and corresponding wavefunc-
tions ψn(xi), where i ∈ {a, b} labels each particle. In terms of these single-
particle wavefunctions and single-particle spin states |1⟩, |0⟩ and |−1⟩, write
down all of the two-particle states and energies for the ground state and the
first excited state. [10]

(b) Assume now that En is a linear function of n. Find the degeneracy of
the N th energy level of the two-particle system for N even and N odd. [10]
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Question 7Y – Stellar Dynamics and the Structure of Galaxies

(i) (a) The distribution function for a spherical system is described by

f = Aϵn−3/2

for ϵ > 0, and f = 0 otherwise, where ϵ = Φ0−E, E is the particle energy per
unit mass, Φ0 is the gravitational potential at the outer edge of the system,
and A and n are constants. Explain why this distribution function implies
that the particle velocities are isotropic. [1]

(b) The potential Ψ is defined by Ψ = Φ0−Φ, where Φ is the gravitational
potential. Derive the form of the power law relationship between ρ and Ψ for
this distribution function. [4]

(c) The first moment Jeans equation for a steady state spherically symmet-
ric system with isotropic velocity dispersion σ is given by

−ρ∇Φ = ∇P, (∗)

where P = ρ σ2. Use this to derive the form of the power law relationship
between P and ρ for this distribution function and comment on your results. [4]

(d) How is P to be understood in the context of a stellar system? [1]

(ii) (a) The potential generated by a spherically symmetric star cluster is
given by

Φ = Φ0

(
1 + (r/b)2

)−1/2
,

where Φ0 and b are constants. Evaluate the density distribution ρ(r) that
produces this potential. [4]

(b) If ρ(0) = 104M⊙ pc−3 and b = 1pc, determine the value of Φ0. Show
that a black hole falling radially inwards with velocity at infinity of v∞ =
200 km s−1 is accelerated by less than 1% when it passes through the centre of
the cluster. [4]

(c) Under the assumption that the stellar velocity distribution is isotropic,
use the Jeans equation (∗) from Part (i) to determine the pressure at the
cluster centre, and hence evaluate the velocity dispersion of the stars at r = 0.
Hence show that the relative velocity vrel between the black hole and the stars
in the cluster is dominated by the motion of the black hole. [6]

QUESTION CONTINUED ON NEXT PAGE
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(d) Stars are swallowed by the black hole if they pass within its Schwarzschild
radius Rs = 2GM/c2, where M is the black hole’s mass. Assuming that
M = 103M⊙ and that the typical stellar mass is 1M⊙, estimate the number of
stars that the black hole will swallow as it crosses the cluster. [6]

[You may assume without proof that the black hole’s cross-section for swallow-

ing stars is given by πR2
s

(
1 + 2GM

Rsv2rel

)
. ]
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Question 8Y – Topics in Astrophysics

(i) (a) Consider a planet of mass M that is orbited at a distance a by a
moon of mass m. The planet is spinning with angular frequency Ω and has a
moment of inertia I. The moon’s spin can be neglected. Show that the total
angular momentum in the system is given by

Jtot = IΩ +mM

√
Ga

M +m
. [3]

(b) Hence show that
ȧ = −2IΩ̇/(µaω),

where the dot denotes a differentiation with respect to time, µ = mM/(M+m)
is the reduced mass, and ω is the angular velocity of the planet-moon system
about its centre of mass. [3]

(c) It has been measured that the Moon is receding from the Earth at a
rate of 3.8 cm per year. Use this to estimate the rate of change of the length of
the day in ms per year. You may assume that the Earth has a uniform density
and so has a moment of inertia of (2/5)M⊕R

2
⊕, and that the Moon is 80 times

less massive than the Earth. [4]

(ii) (a) Consider the general planet-moon system described in Part (i) and
use any equations therein. Give an expression for the total energy E in the
system and hence show that the rate of change of this energy is given by

Ė = IΩ̇(Ω− ω). [3]

(b) Henceforth consider the Earth-Moon system. By considering its angular
momentum, or otherwise, show that

Ω/ω ≈ A(a/anow)
3/2 −B(a/anow)

2,

where a is the Earth-Moon distance at any given time, with anow as its present
day value, and A and B are constants whose numerical values you should
estimate from the information provided in Part (i)(c). [4]

(c) Explain the physical meaning of Ω/ω and sketch its dependence on
orbital separation, quantifying wherever possible, and commenting on its past
and future evolution. [5]

QUESTION CONTINUED ON NEXT PAGE
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(d) Estimate the current rate of energy loss due to tides and comment on
how this energy is lost from the system. [3]

(e) Compare this with the energy input from solar radiation to estimate
the resulting increase in the Earth’s equilibrium temperature. [3]

(f) The energy in the tide raised on the Earth by the Moon is∼ Gm2R5
⊕ a

−6,
where R⊕ is the Earth’s radius and m is the mass of the Moon. Without de-
tailed calculation, comment on the rate of energy loss due to tides shortly after
the Moon formed. [2]

END OF PAPER
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Question 1X – Relativity

(i) (a) A particle moves around a circle of radius r with constant angular
speed ω in some inertial frame S. The circle lies in the plane z = 0 and is
centred on the origin. Write down the worldline of the particle, expressing
time ct and the Cartesian coordinates x, y and z as functions of the particle’s
proper time τ . [3]

(b) Define the acceleration 4-vector and determine its components in S for
the particle above. [3]

(c) Find the magnitude of the 3D acceleration of the particle in its instan-
taneous rest frame. [4]

(ii) (a) An observer O and a distant star are at rest in an inertial frame in
Minkowski spacetime. The star subtends a small solid angle dΩ at the observer.
The specific intensity of the radiation from the star is I(ν), as measured by O,
such that the power arriving per area dA (perpendicular to the line of sight
to the star), per frequency interval dν around ν and per solid angle dΩ is
I(ν)dνdAdΩ. At some instant, a second observer O′ is coincident with O but
moving at speed βc along the line of sight towards the star. Determine the
ratio of frequencies ν ′/ν and of solid angles subtended by the star, dΩ′/dΩ,
where primes denote quantities measured by O′, and verify that νdνdΩ is the
same for both observers. [8]

(b) By considering the rate of arrival of photons per area for both observers,
show that the specific intensity measured by O′ satisfies

I ′(ν ′)

ν ′3 =
I(ν)

ν3
. [6]

(c) Describe the appearance of the Sun to an observer passing Earth with
speed 0.5c towards the Sun. Include a discussion of the apparent surface
temperature and its angular size. You may assume that the Sun radiates as a
blackbody at temperature 5800K in its rest frame and has an angular diameter
of 0.5◦ as seen from the Earth. [6]
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Question 2Y – Astrophysical Fluid Dynamics

(i) (a) A small spherical asteroid of density ρa and radius R enters the
Earth’s atmosphere at an angle α relative to the vertical and a highly super-
sonic speed v. It disintegrates once it has passed through a column of air with
mass camparable to that of the asteroid. By treating the Earth’s atmosphere
to be isothermal and plane-parallel, show that the asteroid disintegrates at a
height above the surface of

zdis ≈ H ln

[
3

4 cosα

(
H

R

)(
ρ0
ρa

)]
,

where ρ0 is the density at the base of the Earth’s atmosphere, H = c2s/g is
the scale-height of the Earth’s atmosphere, cs is the isothermal sound speed of
the atmosphere, and g is the acceleration due to gravity close to the Earth’s
surface. [8]

(b) Derive an approximate condition on the size that the asteroid needs to
be to impact the surface. [2]

(ii) (a) The asteroid of Part (i) disintegrates at a height zdis above the
ground, dumping its entire kinetic energy into a small volume of air. This
results in a fireball, a hot and low density expanding bubble driving a shock
front into the surrounding air. By using dimensional analysis, or otherwise,
and any results from Part (i) necessary, and assuming that radiative cooling
of the heated air is negligible, show that the radius of the fireball evolves at
early time according to

r = ξ0

(
ρaR

3v2t2

ρ0

)1/5

exp

(
zdisg

5c2s

)
,

where t is the time elapsed since the disintegration event, and ξ0 is a dimen-
sionless constant that you do not need to determine. [6]

(b) The fireball “stalls” when its expansion velocity drops to the speed of
sound cs in the ambient atmosphere. Assuming ξ0 = 1, determine the maxi-
mum size reached by the fireball when a 5m asteroid of density 3500 kgm−3

traveling with a Mach number of 50 disintegrates at a height where the density
of air is 1.0 kgm−3. [8]

(c) Qualitatively describe the subsequent evolution of both the shock and
the hot gas making up the fireball. [6]

3



Question 3X – Cosmology

(i) (a) Consider a spherical cloud of characteristic density ρ and sound
speed cs. Use dimensional arguments to show that gravity will dominate over
pressure forces if the size of the gas cloud exceeds the Jeans length

λJ ∼ cs

(
1

Gρ

)1/2

.
[3]

(b) Prior to recombination, baryons and radiation are tightly coupled by
Thomson scattering and behave like a single fluid with sound speed

cs =
c√
3

(
3

4

ρb
ργ

+ 1

)−1/2

,

where ρb is the mean baryon density and ργ is the mean radiation density. As-
suming ρb/ργ = 920/(1+z), estimate the comoving size of the Jeans length just
prior to recombination which occurs at redshift z ≈ 1000 when the Universe
is about 380,000 years old. [4]

(c) Discuss briefly the signatures of acoustic oscillations in the cosmic mi-
crowave background and in the matter distribution. [3]

(ii) (a) In the absence of pressure, linear perturbations in the matter distri-
bution in a Friedmann-Robertson-Walker universe satisfy the following equa-
tion:

d2δ

dt2
+ 2H

dδ

dt
− 4πGρmδ = 0,

where δ is the fractional matter overdensity δ = (ρm−ρm)/ρm, ρm is the mean
matter density, H = R−1dR/dt is the Hubble parameter and R is the scale
factor. Show that the growth function

f =
d ln δ

d lnR
,

satistfies the linear perturbation equation

df

d lnR
+ f 2 +

[
2 +

1

2

d lnH2

d lnR

]
f − 3

2
Ωm(z) = 0, (∗)

where Ωm(z) is the matter density parameter at redshift z. [6]

QUESTION CONTINUED ON NEXT PAGE
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(b) Assume that the universe is spatially flat and dominated by non-
relativistic matter and a cosmological constant with present day density pa-
rameters Ωm(0) and ΩΛ(0), where ΩΛ(0) = 1−Ωm(0). As a trial solution write
f = Ωm(z)

γ, where γ is a constant. Show that (*) requires

3γΩm(z)
γ−1[Ωm(z)

2 − Ωm(z)] +

Ωm(z)
2γ +

[
2− 3

2
Ωm(z)

]
Ωm(z)

γ − 3

2
Ωm(z) = 0. (∗∗)

[9]

(c) Equation (**) is satisfied if:

1. γ ≈ 0.550 for Ωm(z) = 0.70;

2. γ ≈ 0.560 for Ωm(z) = 0.30;

3. γ ≈ 0.575 for Ωm(z) = 0.10.

Verify the solution for case 2. [2]

(d) Discuss how these results can be used to approximate the true linear
growth function f(z) for this cosmology. [3]
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Question 4X – Structure and Evolution of Stars

(i) (a) Explain what astronomers mean by the term ‘proper motion’. [2]

(b) The Gaia satellite has measured the following parallaxes for two stars:
π(αCam) = 0.1 arcsec and π(β Cam)=0.001 arcsec. Which of the two stars
would you expect to show the higher proper motion and why? [2]

(c) Two solar-type stars are both at a distance of 50 pc from the Sun. One
star is a member of the halo population, while the other is a disk star. Which
of the two stars would you expect to show the higher proper motion? Which
other physical properties would you expect to be different between the two
stars? [3]

(d) A star at a distance of 10 pc is travelling at 5 km s−1 along a path
perpendicular to our line of sight. What is its proper motion, in seconds of arc
per century? [3]

(ii) (a) The gravitational binding energy of a star of mass M and radius
R is given by:

U = −αGM2

R
,

where α is a constant. Such a star contracts homologously at constant effective
temperature, radiating at a rate L(t).

Derive expressions for L(t) and R(t) for a star of fixed mass which at time
t = 0 had L = L0 and R = R0. [10]

(b) Show that at late times L and R display power law dependences on
time. [5]

(c) Where would such a star be found in the Hertzsprung-Russell diagram?
[5]
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Question 5Z – Statistical Physics

(i) Give Clausius’ statement of the second law of thermodynamics and
Kelvin’s statement of the second law of thermodynamics. Show that these two
statements are equivalent. [10]

(ii) (a) Consider a classical ideal gas and assume that the number of par-
ticles N is fixed. Write down the equation of state for the ideal gas. Write
down an expression for its internal energy in terms of the heat capacity CV at
constant volume. [2]

(b) Describe the meaning of an adiabatic process. Using the first law of
thermodynamics, derive the relationship between pressure p and volume V for
an adiabatic process occurring in the ideal gas. [5]

(c) Consider a Diesel cycle involving the ideal gas and consisting of the
following four reversible steps:

A → B: Adiabatic compression;

B → C: Expansion at constant pressure with heat in Q1;

C → D: Adiabatic expansion;

D → A: Cooling at constant volume with heat out Q2.

Sketch this cycle in the (p, V )-plane and in the (T, S)-plane. Derive equations
for the curves DA and BC in the temperature-entropy (T, S)-plane. [8]

(d) For this Diesel cycle, derive an expression for the efficiency, η = W/Q1,
where W is the work out, in terms of the temperatures at points A (TA), B
(TB), C (TC), and D (TD). [5]
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Question 6Z – Principles of Quantum Mechanics

(i) (a) A composite system is made of two sub-systems with total angular
momentum j1 and j2, respectively. Let J = {Jx, Jy, Jz} be the angular mo-
mentum operator of the composite system and |j,m⟩ a basis of eigenstates of
J2 and Jz. Write J and the associated ladder operators J± in terms of the
angular momentum operators J1,2 of each sub-system. [Use units in which
ℏ = 1 throughout this Question.] [2]

(b) State the possible values of j in terms of j1 and j2 and show that j = 0
only if j1 = j2. [3]

(c) Write down all the states with m ≥ j1 + j2 − 1 in terms of the states of
the sub-systems. [5]

[The states |j,m⟩ obey J± |j,m⟩ =
√

(j ∓m)(j ±m+ 1) |j,m± 1⟩.]

(ii) (a) Consider the system described in Part (i). Explain why, if it exists,
the state with j = 0 must be of the form

|0, 0⟩ =
j1∑

m1=−j1

αm1 |j1,m1⟩1 |j1,−m1⟩2 .
[3]

[Use units in which ℏ = 1 throughout this Question.]

(b) By considering J+ |0, 0⟩, determine a relation between αm1+1 and αm1 ,
and hence find |αm1|. [12]

(c) If the system is in the state |j1, j1⟩1 |j1,−j1⟩2, compute the probability
of measuring zero for the combined total angular momentum. [5]

[The states |j,m⟩ obey J± |j,m⟩ =
√

(j ∓m)(j ±m+ 1) |j,m± 1⟩.]
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Question 7Y – Stellar Dynamics and the Structure of Galaxies

(i) (a) The first moment Jeans equation describing the steady state struc-
ture of an axisymmetric stellar distribution is given by

1

R

∂

∂R

(
ρRvRvz

)
+

∂

∂z

(
ρv2z

)
+ ρ

∂Φ

∂z
= 0.

Explain how each of these terms describes the change of the z-momentum per
unit volume and identify the physical source of each term. Why is the first
term sub-dominant in the Galactic disc compared with the other two terms? [4]

(b) Explain how the second term can be evaluated by an astronomer located
at the mid-plane of the Galactic disc using a population of stars located at
different distances in a direction perpendicular to the disc plane. Your answer
should mention the observations that should be made and how they can be
used to construct this term. [4]

(c) Describe an astronomical issue that can be addressed once this term
has been evaluated. [2]

(ii) (a) A binary star, with components of masses 0.7M⊙ and 0.5M⊙ in a
circular orbit with separation 2 au, travels at velocity 10 km s−1 in the core of
a globular cluster. The binary undergoes an exchange interaction with a star
of mass 0.7M⊙ travelling at 5 km s−1. After the interaction, the 0.5M⊙ star
is released from the original binary and a new binary traveling at 6 km s−1 is
formed consisting of the two stars each of mass 0.7M⊙, with an orbital period
of 1 year. If the escape velocity from the cluster core is 15 km s−1, describe the
fate of the 0.5M⊙ star. [10]

(b) Discuss the role of interactions between binary and single stars in driv-
ing the evolution of globular clusters. [5]

(c) The binary undergoes further interactions with stars in the cluster core
which raise the eccentricity of the binary while conserving energy. What is
the eccentricity threshold which results in a stellar collision at pericentre if the
stars have radii of 0.75R⊙? [2]

(d) How would the effect of the collision be observable to astronomers long
after the event? [3]
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Question 8Y – Topics in Astrophysics

(i) (a) A cluster of N stars has a mass function f(m), defined such that
f(m) dm is the number of stars with masses in the rangem tom+dm. Assume
that the mass function is

f(m) =


0, for m < mmin,

k(m/mmin)
−1.3, for mmin < m < mt,

k(mt/mmin)
−1.3(m/mt)

−2.3 for m > mt,

where k is a constant, mmin is the minimum mass, and mt is the mass at the
transition between the two power laws. Derive an expression for the total
number of stars in the distribution in the range mmin to mmax > mt, and hence
show for mmin ≪ mt that N ≈ kmmin/0.3. [5]

(b) By considering the total number of stars above a given mass m′ > mt

that would be expected from this mass function, determine the mass mmax of
the most massive star expected to be found in the cluster. [3]

(c) Hence, determine the number of stars in the cluster required for it
to be likely to contain at least one star of mass sufficient to become a core
collapse supernova, which requires a mass of > 20M⊙. You may assume that
mmin = 0.1M⊙ and mt = 0.5M⊙. [2]

(ii) (a) A young star, named X3a, has been observed at 2.6 arcsec from
the 4 × 106M⊙ supermassive black hole (SMBH) at the centre of the Milky
Way Galaxy, which is at a distance of 8 kpc from the Sun. Its projected
separation from the SMBH was found to change by 0.065 arcsec over 10 years,
and spectroscopic measurements found its radial velocity to be 49 km/s relative
to the SMBH. Assuming its orbit to be circular, determine its distance from
the SMBH in parsecs. [4]

(b) Without detailed calculation, comment on the orientation of the orbit
with respect to our line of sight and comment on whether these measurements
are likely to be compatible with a circular orbit. [3]

(c) The mass of X3a is 15M⊙. An additional much fainter source, X3b, is
detected near X3a at a projected separation of 0.12 arcsec. Do you expect the
two objects to be gravitationally bound to each other? [2]

QUESTION CONTINUED ON NEXT PAGE
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(d) It is suggested that X3a formed in the nearby cluster IRS13, subse-
quently becoming gravitationally unbound from it. That cluster is currently
at 1 arcsec projected separation from X3a and at a similar physical distance
from the SMBH. Observations show IRS13 to be made up of 7 massive stars
with total mass ∼ 100M⊙ within a region of angular diameter 0.5 arcsec. Ex-
plain why there is likely a black hole at the centre of the cluster and provide
a constraint on its mass. [4]

(e) The age of X3a is determined to be 0.04Myr. Estimate the ejection
velocity from the cluster and so comment on the plausibility of X3a’s formation
in IRS13. [3]

(f) The cluster is assumed to have formed at ∼ 10 parsec from the SMBH,
having migrated inwards due to interactions with nearby objects also orbiting
the SMBH. Describe the dynamical processes at work within the cluster that
might have contributed to the scenario outlined in parts (d) and (e) above. [4]

[You may assume that the Roche lobe of an object of mass m, orbiting at a

distance of R from another object of mass M ≫ m, has a radius R
(

m
3M

)1/3
.]

END OF PAPER
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