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Synopsis
The paper describes the method of calculation of the
buckling load of beams on flexible bearings due to the
beam’s self-weight. Methods are given that allow cal-
culation of the bearing stiffness needed to prevent
instability, as well as the additional curvature and
additional stresses due to the growth of initial imper-
fections at loads less than the critical load. Methods
of providing temporary support and of jacking beams
into position are also discussed.

Notation
A plan area of bearings
E Young’s modulus of concrete
ER Young’s modulus of unconfined rubber
fb ,fb1 ,fb2 are parameters used in determining rotational stiff-

ness of bearing 
Iy second moment of area about the beam section’s

minor axis
K rotational stiffness of bearings
k radius of gyration of plate in a laminated bearing
L length of beam
M moment about bearings
t thickness of rubber layer in laminated bearing 
u total lateral displacement due to beam’s weight
v lateral deflection measured in the minor-axis direc-

tion (which rotates with θ)
vav average lateral deflection
v0 initial lateral imperfection
w self-weight of beam/unit length
wcr critical self-weight of beam to cause buckling/unit

length
X position of extreme fibre from minor axis
yb distance of bottom fibre of beam below centroid of

beam
z position along the beam
κms midspan curvature about minor axis
φ rotation of bearings
∆σ additional stress due to minor-axis buckling effects

Introduction
In recent years, precast concrete beams have been produced
for bridges with significantly higher spans than in the past.
In the UK, the longest standard beams available are
designed for spans of 40m, but in Canada, for example, spans
of up to 55m can be erected using standard sections, and
larger beams can be designed if transport is not a problem.
To minimise weight for transportation, these beams have
only residual flanges, which leads to a low minor-axis stiff-
ness. Such beams are susceptible to lateral–torsional buck-
ling failures when simply supported1,2 or a lateral toppling
mechanism when hanging from crane cables3. There have,
also, been problems on site4,5 with beams toppling sideways
when placed on (temporary) bearings with insufficient later-

al restraint. These, and other unreported problems on site,
led the authors to study the general problem of beam insta-
bility which is exacerbated by additional flexibility allowed
by rubber bearings; this work addresses that problem.

The paper determines the relationship between the self-
weight at which the beam would become unstable and the
rotational stiffness of the support. It also shows how the
effects of initial imperfections in the beam will produce
minor-axis curvature, and hence additional stresses that
could, in limiting cases, cause cracking of the beam, and
hence a possibly catastrophic failure due to loss of stiffness.

The paper also draws together the information needed to
determine the rotational stiffness of laminated rubber bear-
ings (which are not normally quoted in bearing catalogues)
and discusses methods for temporary supports and jacking of
beams. Some worked examples are also given.

It is not expected that the theory given here will limit the
design of the beams themselves (provided due account has
been taken of the buckling criteria given elsewhere), but it
may control the choice of bearing or temporary support con-
dition.

Bridge bearings are normally designed to allow rotation in
the bridge’s working state. They must allow rotation about
the bridge’s horizontal bending axis (i.e. parallel to the face of
the abutment) and must allow movement due to thermal
effects. Bending about an axis normal to the face of the abut-
ment (i.e. along the line of beam in the case of a square bridge)
is not a design condition, since in the permanent condition,
when multiple beams are joined by a top slab, no rotation
about that axis can occur. However, in the temporary condi-
tion, things are different. Each beam sits on its own bearings
at each end, and these bearings must provide rotational
restraint about an axis normal to the abutment. In certain
cases (as, for example, when the beam is being moved from
temporary supports to permanent bearings), all the restraint
may have to be provided by the bearing at one end only.

If the beam is supported on bearings that have some flex-
ibility about this normal axis, the beam can rotate about the
bearings. Part of the beam’s weight is then acting about the
beam’s minor axis, which can then cause further sideways
deflection. In the limit, this deflection can cause buckling.

Theory
Consider a beam supported at its ends on bearings that have
rotated through an angle φ, as shown in Fig 1. The beam’s
own weight will act in part in the minor-axis direction, which
will cause the beam to deflect in that direction. In accordance
with the observations associated with the hanging beam
problem3, it will be assumed that the beam rotates as a rigid
body with no variation in twist along the length of the beam,
although minor-axis flexibility is permitted. This is valid for
the relatively high torsional stiffness of concrete sections, but
may not be valid for open steel sections, which tend to be
much thinner. The analysis is thus lateral bucking theory
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through the initial buckling increment, so sinφ = φ and cosφ
= 1. Thus,

(wL)cr
2 L3

+ (wL)cryb - 2K = 0 ....(7)120EIy

This is a quadratic in (wL)cr, from which the critical load
can be obtained. This critical load is the self-weight that
would cause buckling of a perfect beam. Thus, the ratio wcr/w
is the safety margin for the beam against toppling caused by
rotation of the supports.

Two special cases are worthy of note. If the beam is rigid,
the quadratic term is zero, so 

(wL)cr = 2K
yb ....(8)

while, if the beam is very flexible, the linear term can be
ignored, so

(wL)cr = √ (240EIyK) ....(9)
L3

In practice, eqn (7) will be used to check the stiffness of the
bearing as described below.

It should also be noted that any lateral misplacement of
the beam upon a bearing could lead to toppling, as shown by
Mast6.

Behaviour of beams with imperfections
The analysis so far has considered perfect beams, but real
beams have imperfections. These initial imperfections can
be magnified by second-order effects, and it is the curva-
tures associated with these deflections that can lead to
cracking of the concrete in tension. This, in turn, can lead to
a greatly reduced minor-axis stiffness, which might then
lead to sudden collapse. Some knowledge of the way these
imperfections can grow is thus of major importance; this
can be provided by making use of the Southwell construc-
tion.

Southwell plot
Southwell7 gave a method by which the buckling load and the
value of the initial imperfection of a strut could be deter-
mined from measurements of the way the lateral deflections
vary at loads below the critical load. The method was intend-
ed as an experimental tool to determine the buckling load of
a perfect structure when imperfections are present, but the
method can be reversed to predict the deflections of an
imperfect structure. If the buckling load is known, and the
magnitude of the initial imperfection can be assumed (or lim-
ited in a specification), the lateral deflection can be found
from

v =
vo

1-
w ....(10)

wcr

The rotation of the beam φ can then be found by assuming
that the additional deflection, v - v0, must be induced by the
lateral component of the beam’s self-weight, so:

v-vo = 
5wL4sinφ

....(11)
384EIy

The minor-axis curvature of the beam at midspan can
then be found simply by considering the component of the
midspan bending moment acting about the minor axis.

κms =
wsinφL2

....(12)
8EIy

Eqns (10), (11) and (12) can be combined to give a direct
relationship between the load and the curvature
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associated with rotation.
Of particular concern here is the additional lateral deflec-

tion caused by the rotation φ due to the beam’s self-weight
w/unit length. It will be assumed that the bearing offers neg-
ligible resistance to rotation about a vertical axis, so, for the
purposes of lateral deflection, it acts as a simple support.The
lateral deflected shape of a simply supported beam under a
uniformly distributed load wsinφ is

v = wsinφ [ z4
- Lz3

+ L3z ] ....(1)
EIy 24 12 24

where 
z is the distance from one end 
L is the span of the beam 
EIy is the minor-axis flexural stiffness of the beam 

This deflection can be integrated over the length of the beam
to give the average displacement.

vav = wsinφL ....(2)
120EIy

The lateral displacement (u) of the resultant of the beam’s
weight is made up of a component due to the rotation about
the base, plus the component of this lateral deflection. Hence:

u = ybsinφ+ wsinφL4

cosφ ....(3)
120EIy

where yb is the height of the centroid above the soffit.
This lateral deflection will cause a corresponding moment

about the bearings of

M = wLu ....(4)

On the assumption that the beam is supported by a bear-
ing at each end, each of which has a rotational stiffness of K:

M = 2φK ....(5)

Thus, the beam can topple sideways by rotation of the bear-
ing if

wL [ yb sinφ+ wsinφL4

cosφ ] = 2φK ....(6)
120EIy

Without any loss of generality, φ can be taken to be small

Fig 1. 
Rotation of beam on
bearings



κms =
48vo ( 1 )5L2 wcr -1 ....(13)

w

The value of v0 used in this equation should be the sum of the
initial lack of straightness of the beam as manufactured, plus
the misplacement of the beam on the bearings. Both values
will have to be assumed at the time of design, but reasonable
values can be taken for both.

Eqn (13) shows the importance of the term w/wcr. If this
term approaches unity, the denominator tends to zero and
the curvature becomes very large.

It is expected that fairly conservative factors of safety would
be applied to the ratio w/wcr since, at the design stage, there
is no knowledge of the imperfections that will occur on site.

The curvature can be used to determine the stress distri-
bution across the beam; at a distance X from the beam’s
minor axis the change in the concrete stress ∆σ can be found
from:

∆σ = EκmsX ....(14)

This stress must be superposed on the major-axis stress
distribution, allowing the stress at two critical points to be
found, as shown in Fig 2. These critical points will normally
be at the corners of the section and will give the largest ten-
sile and compressive stresses.

In practice, additional compressive stresses are unlikely to
be a problem, but additional tensile stresses must be com-
pared with the precompression to ensure that cracking does
not occur. Cracking would lead to a reduction in minor-axis
stiffness EIy, which, in turn, would lead to a reduction in the
buckling load wcr from eqn (7) and an increase in the curva-
ture from eqn (13).

Examples
The M10 is the largest beam in the M series8. It is designed
to have a maximum length of 29.5m.

The SY series of beams is the largest standard series of
precast beams currently manufactured in the UK9. They are
narrower, deeper, longer and heavier than the M series
beams and, on each count, can be expected to be more sus-
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ceptible to stability problems. The maximum recommended
length for these beams is 40m.

The initial imperfections are taken to be span/1000 for the
lack of straightness of the beams themselves and 10mm for
the misplacement of the beam on the bearing. These are typ-
ical of the values that can be obtained by good quality control
and careful workmanship; higher values might be expected
with less care.

Table 1 shows the rotational stiffness required from bear-
ings needed to provide a factor of 10 reserve of strength
against rotation of the beam on its supports. Such a high fac-
tor of safety might seem excessive at first sight, but it is jus-
tified by the additional stresses that are caused by the addi-
tional midspan curvature given by eqn (13); such stresses are
not normally taken into account at the design stage, and it is
relatively cheap to avoid them by choice of a suitable bearing.
The rotational stiffness required varies from 2650kNm/rad
for the M10 beam to 28 000kNm/rad for the 40m-long SY6
beam.At these stiffnesses, the additional stresses induced by
the imperfections is negligible, but, if the reserve factor
against toppling is reduced, these additional stresses can
become significant.

Fig 3 shows the contrasting effects of choosing different
values for w/wcr for a SY6 beam at a span of 40m.At low val-
ues, a stiff bearing is required but the stresses induced by
growth of the imperfections are low and can probably be
ignored. However, if wcr is chosen to be only slightly higher
than the self-weight of the beam, a lower stiffness bearing is
required, but the loss of precompression can become quite
high. The choice of appropriate value is up to the designer.

Rotational stiffness of laminated rubber bearings
The rotational stiffness of bearings used here has dimen-
sions of moment/rotation, and not force/rotation, which is the
value quoted in many bearing catalogues. This latter value
relates to the rotation of the bearing caused by a transverse
force. In general, values of K are not quoted by manufactur-
ers. Information is available in the specialist literature10,11,
but this is sometimes difficult to obtain. For convenience, the
information below is taken from Gent & Meinicke11.

Consider a section through a thin sheet of rubber, of
unstressed thickness t, constrained between two rigid plates
(Fig 4).A moment is applied to the top surface, as shown, and
causes a rotation φ. The rotational stiffness for this layer is

TABLE 1: Rotational stiffness
Variable Units M-10 SY-6

(29m long) (40m long)
Required stiffness K kNm/rad 2644 27957
of bearings
Additional stress ∆σ MPa 0.50 0.43

Fig 2. 
Summation of
stresses due to
bending about both
axes

Fig 3. 
Effect of changing
factor of safety on

required bearing
stiffness and the

induced minor-axis
stresses

Fig 4. 
Rotation of

restrained layer of
rubber
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given by M/ϕ.

K= M = fbAk2ER ....(15)
φ t

where 
A is the plan area of the rubber sheet 
k is the radius of gyration of the plate
ER is the Young’s modulus of the rubber as measured

in an unconfined sample 
The effect of the constraint caused by the steel layers

(which are effectively rigid by comparison with the rubber) is
allowed for by the factor fb, which is the ratio of the apparent
value of Young’s modulus of the constrained sheet to ER. It is
the sum of two components

fb = fb1 + fb2 ....(16)

which depend on the shape of the bearing. Formulae for the
values of fb1 and fb2 are given in Table 2.

The stiffness of a bearing with n layers is simply 1/n times
the stiffness of a single layer. Applying this method to bear-
ings taken from a manufacturer’s catalogue, and taking ER

for rubber as 2.4N/mm2, gives values for K ranging from
26kNm/rad for a 100mm square bearing with three layers,
up to 853 000kNm/rad for a 900mm square bearing with
only one layer. It is thus clear that the required values for
typical beams, as given in Table 1, are in the same range as
the values of stiffness quoted here. Thus, the bearing rota-
tional stiffness should be checked or specified at the design
stage.

Jacking systems
Beams are often placed on temporary supports by crane and
then lifted onto their permanent bearings by means of jacks.
One common arrangement consists of placing two jacks
under the outer edges of the bottom flange which can then
bridge the permanent bearing. Both jacks are then connected
to a single handpump, as shown in Fig 5. It must be empha-
sised that this arrangement does not provide any rotational
restraint, and indeed, if the beam rotates, the system can
cause toppling, since the hydraulic system ensures that both
jacks exert the same force, whereas, if the beam’s centroid is

displaced at all, equilibrium would make the forces different.
In effect, such a system acts as a pin with negative stiff-

ness, and it can be stable only if the whole of the rotational
restraint is provided by the support at the far end of the
beam. This then requires a rotational stiffness much higher
than that calculated from eqn (7).

Placing non-return valves into the hydraulic system in Fig
5 does not solve the problem. Once the beam starts to tilt, the
jack on the lower side effectively becomes fixed, and all the
flow is directed into the jack on the higher side, which thus
extends, increasing the tilt. Having separate pumps for the
two sides solves the problem, but the system then becomes
much harder to control.

Temporary supports
The principles outlined earlier also apply to temporary sup-
port arrangements, where conventional bearings are not nor-
mally used, and it should also be noted that several of the
recent beam failures4,5 have related to beams toppling off sup-
ports during installation.

Conclusions
Long, precast concrete beams can be susceptible to lateral
instability during erection, if insufficient restraint is provided
against lateral rotation. Imperfections, both in the beam itself
and in its placement on bearings, can lead to minor-axis cur-
vatures in the beam and in a reduction of the precompression.

The required stiffness of the permanent bearings can be
calculated easily, and should be specified at the time of design.
However, because of the highly complex interaction of beam
imperfection, bearing misalignment, and buckling mode, it is
probably desirable that a large reserve of rotational stiffness
is provided by the bearing. Care should also be taken to place
the beam centrally upon the bearing.

The problems of lack of rotational restraint apply equally
to temporary support conditions. If slender beams are to be
placed on temporary supports, they should be propped
against lateral rotation until the permanent bracing arrange-
ments are in place. Care should be exercised that the tempo-
rary supports are level.The use of waste timber as temporary
packing should be forbidden.
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TABLE 2: fb1 and fb2 formulae
Cross-section fb1 fb2

Circle, radius r 1 r 2

6t 2

Ellipse, semi-axes 2a2b2

a & b, bent about 3t 2(a2 + 3b2)
the 2b axis

Square, side 2a 1 0.0464(2a)2

t 2

Rectangle, sides 2a
& 2b, bent about axis 
parallel to 2b side

2 (ab + t 2)4 - 2
3 3 (a2

+ b2 + 2t 2)4

2 (ab + t 2)4 - 2
3 3 (a2

+ b2 + 2t 2)4

6(2a)2

π4t 2
1
j 4 [1-

tanh(jπb)]a

(jπb)a

∞
∑
j=1

Fig 5. 
Lack of equilibrium

in jacking system


