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Abstract

Seven form-finding methods for tensegrity structures are reviewed and clas-

sified. The three kinematical methods include an analytical approach, a

non-linear optimisation, and a pseudo-dynamic iteration. The four statical

methods include an analytical method, the formulation of linear equations

of equilibrium in terms of force densities, an energy minimisation, and a

search for the equilibrium configurations of the struts of the structure con-

nected by cables whose lengths are to be determined, using a reduced set

of equilibrium equations. It is concluded that the kinematical methods

are best suited to obtaining only configuration details of structures that

are already essentially known, the force density method is best suited to

searching for new configurations, but affords no control over the lengths

of the elements of the structure. The reduced coordinates method offers a

greater control on elements lengths, but requires more extensive symbolic

manipulations.
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Nomenclature

a Side length of equilateral triangle

A Aij = ∂lj/∂qi

C Incidence matrix of free coordinates

Cf Incidence matrix of constrained coordinates

Cs Incidence matrix

d Dimension of space

d Displacement vector

ḋ Velocity vector

d̈ Acceleration vector

D Damping matrix

D Force density matrix

E(p) Energy form associated to ω

f External force

f External force vector

g Generalised coordinate

g Vector of generalised coordinates

H Height

h Stage overlap

K Stiffness matrix

l Length of element

M Number of cables

M Mass matrix

N Number of generalised coordinates

N Nullity of D

O Number of rigid elements

pi Nodal coordinates, [xi, yi, zi]
T

q Force density

Q diag(q)

R Radius

t Force in element

t Vector of element forces

v Number of polygon edges

x Vector of free x-coordinates

xf Vector of constrained x-coordinates
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xs Vector of x-coordinates

α Azimuth angle

δ Declination angle

δW Virtual work

θ Relative rotation

ω Stress (equivalent to q)

ω Vector of stresses (equivalent to q)

Ω Stress matrix (equivalent to D)

3



1 Introduction

New developments are currently taking place in the field of tensegrity structures, driven by a

growing interest in “smart” structures whose shape can be actively adjusted and controlled. Be-

cause of the lack of physical connections between compression members, the joints of a tensegrity

structure have a predictable, linear response over a wide range of different shapes, which can

be very attractive, e.g. for deployable structures [1,2]. Also, earlier interest in tensegrity as a

model for the structure of viruses [3] has recently extended to cellular [4] structures.

A key step in the design of tensegrity structures is the determination of their geometrical con-

figuration, known as form-finding. Early studies by Fuller [5,6], Snelson [7] and Emmerich into

the form of tensegrity structures used mainly regular, convex polyhedra as the basis for finding

new configurations. This purely geometric research resulted in a large number of configurations

which were later classified by Pugh [8] by identifying three pattern types: diamond, circuit and

zig-zag. A large number of different tensegrities, with detailed schemes and advice on how to to

build them can be found in Ref. [8].

However, physical models of these structures showed that the shape of the tensegrity corre-

sponding to a particular polyhedron is different from that of the polyhedron. This happens,

for example, both for the truncated tetrahedron, Fig. 1 and the expandable octahedron (icosa-

hedron), Fig. 2. Hence, the self-stressed shape of a tensegrity is not identical to that of the

polyhedron and, therefore, proper form-finding methods are needed to find the equilibrium con-

figuration of even the simplest tensegrity structure [9].

Form-finding methods for tensegrity structures have been investigated by many authors, and

recently by Connelly and Terrell [10], Vassart and Motro [11], and Sultan et al. [12]. Different

approaches have been proposed by these authors, but the various methods have not been previ-

ously linked. We classify the existing methods into two broad families, kinematical and statical

methods, and identify the advantages and limitations of each method. Closer scrutiny of the

seemingly different approaches in Refs [10-12] reveals many links, indeed Vassart and Motro’s

force density method can be linked directly to the more abstract energy approach by Connelly.

This paper reviews the current state of the art in form-finding methods for tensegrity struc-

tures. Each method is explained and illustrated by means of examples. The technique recently

developed by Vassart and Motro is found to be particularly suitable to find new tensegrity struc-

tures that meet a set of given, although general requirements. Several examples are shown of
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how to do this in practice.

The paper is laid out as follows. Section 2 introduces three kinematical methods, which deter-

mine the geometry of a given tensegrity structure by maximising the lengths of the struts while

keeping constant the given lengths of the cables. The three methods consist in (i) an analytical

approach, (ii) a non-linear optimisation method, and (iii) a pseudo-dynamic iterative method.

Section 3 introduces four statical methods, which determine the possible equilibrium configura-

tions of a tensegrity structure with given topology, i.e. a given number of nodes and connecting

elements between them. Methods (i) and (ii) establish linear nodal equations of equilibrium

in terms of so-called force densities and solve these equations for the nodal coordinates, either

analytically in method (i) or by setting up a force density matrix in mehtod (ii). Method (iii)

is based on an energy minimisation approach, which is shown to produce a matrix identical to

the force-density matrix, and introduces the concept of super-stable tensegrities. Method (iv)

searches for equilibrium configurations of a set of rigid bodies, i.e. the struts of the tensegrity

structure, connected by cables whose lengths are to be determined. A reduced set of equilibrium

equations for the struts are determined by virtual work, making use of symmetry conditions,

and are then solved in symbolic form. Section 4 shows examples of form-finding analyses done

by means of the second static method. Section 5 compares the methods presented and concludes

the paper.

2 Kinematical Methods

The characteristic of these methods is that the lengths of the cables are kept constant while the

strut lengths are increased until a maximum is reached. Alternatively, the strut lengths may be

kept constant while the cable lengths are decreased until they reach a minimum. This approach

mimics the way in which tensegrity structures are built in practice, without explicitly requiring

that the cables be put in a state of pre-tension.

2.1 Analytical Solutions

Consider a simple structure consisting of cables arranged along the edges of a regular prism, plus

a number of struts connecting the v vertices of the bottom polygon to corresponding vertices

of the upper polygon. Depending on the value of v and the offset between vertices connected

by a strut, there is a special rotation angle θ between the top and bottom polygons for which a
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tensegrity structure is obtained.

A compact description of the geometry of this problem, taking advantage of its symmetry,

was introduced by Connelly and Terrell [10], as follows. Figure 3 shows the elements connected

to one of the nodes of the bottom polygon. In the starting configuration the lateral cable, 1 2,

is vertical and the angle between the ends of the strut is 2πj/v where j is an integer smaller

than v.

The coordinates of nodes 1–5 are:

p1 = [R, 0, 0] ,

p2 = [R cos θ, R sin θ, H] ,

p3 =
[
R cos

(
θ +

2πj
v

)
, R sin

(
θ +

2πj
v

)
, H

]
,

p4 =
[
R cos

(
2π
v

)
, − R sin

(
2π
v

)
, 0
]
,

p5 =
[
R cos

(
2π
v

)
, R sin

(
2π
v

)
, 0
]
.

The kinematic form-finding proceeds as follows, by considering the square of the lengths of

the lateral cable, 1 2, and strut, 1 3,

l2c = 2R2(1 − cos θ) +H2, (1)

l2s = 2R2
[
1 − cos

(
θ +

2πj
v

)]
+H2, (2)

where the subscripts c and s denote cable and strut, respectively.

Equation (2) can be rewritten as:

l2s = 4R2 sin
(
θ +

πj

v

)
sin

πj

v
+ l2c . (3)

For a given cable length lc the length of the strut ls is maximised for

θ = π

(
1
2

− j

v

)
(4)

The simplicity of the kinematical method for structures with v-fold symmetry is mirrored

by the static method, see Section 3.1, but for other, non-symmetric, cases the present formu-

lation becomes infeasible due to the large number of variables required to describe a general

configuration.
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2.2 Non-Linear Programming

This general method, proposed by Pellegrino [13], turns the form-finding of any tensegrity struc-

ture into a constrained minimisation problem. Starting from a system for which the element

connectivity and nodal coordinates are known, one or more struts are elongated, maintaining

fixed length ratios, until a configuration is reached in which their length is maximised. The

general constrained minimisation problem has the form:

Minimise f(x, y, z)

subject to gi(x, y, z) = 0 for i = 1, . . . , n
(5)

where the objective function f(x, y, z) is, for example, the negative length of one of the struts.

Pellegrino [13] applied this method to two tensegrities: the triangular prism and the truncated

tetrahedron.

The triangular tensegrity prism, Fig. 10, has nine cables of length lc = 1 and three struts.

One of the base triangles is fixed, hence three of its six nodes are fixed in space. The constrained

minimisation problem has the form:

Minimise − l2s1

subject to




l2c1 − 1 = 0

l2c2 − 1 = 0
...

l2c6 − 1 = 0

l2s2 − l2s1 = 0

l2s3 − l2s1 = 0

(6)

where c1, c2, ..., c6 denote the six remaining cables and s1, s2 and s3 the struts. This problem

can be solved, for example, using the constrained optimisation routine fmincon in Matlab [14].

The final length of the struts is 1.468, compared to the theoretical value of
√
1 + 2/

√
3 ≈ 1.4679

obtained from Eqns. (3)–(4).

Similarly, in the case of the truncated tetrahedron, Fig. 1, there are six struts and 18 cables.

The objective function to be minimised, equal to the negative length of one of the struts, has

to satisfy 20 constraint equations, 15 on the cable lengths plus 5 on the struts. The final length

of the struts is 2.2507. Note that the strut length obtained from a purely geometric analysis of

the truncated tetrahedron is
√
5 ≈ 2.236, hence the slight warping of the hexagonal faces leads

to an increase of the strut lengths by 0.7%.
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An advantage of the non-linear programming approach is that it makes use of general purpose,

standard software. However, the number of constraint equations increases with the number of el-

ements and so this approach is not feasible for larger systems. Also, although different geometric

configurations of structures with the same topology can be found by specifying different relation-

ships between the lengths of the struts, there is no direct way of controlling the corresponding

variation in the state of prestress.

2.3 Dynamic Relaxation

The method of dynamic relaxation, that had already been successfully used for membrane and

cable net structures [15,16], was put forward by Motro [17] and Belkacem [18] as a general

form-finding method for tensegrity structures.

For a structure in a given initial configuration and subject to given external forces the equilib-

rium of configuration can be computed by integrating the following fictitious dynamic equations

Md̈+Dḋ+Kd = f (7)

where K is a stiffness matrix, M a mass matrix, D a damping matrix, f the vector of external

forces, and d̈, ḋ and d the vectors of acceleration, velocity and displacement from the initial

configuration, respectively. Both M and D are taken to be diagonal, for simplicity, and the

velocities and displacements are initially set to zero.

There are several ways of carrying out a form-finding analysis, for example by prescribing for

each element of the structure a constitutive relationship of the type

t = t0 + ke (8)

where t is the axial force and e the extension —measured from the initial configuration— of

the element; t0 is the desired prestress and k a fictitious, small axial stiffness. In any current

configuration of the structure, nodal equations of equilibrium are used to compute out-of-balance

forces from which the current acceleration can be obtained through Eq. (7). The resulting system

of uncoupled equilibrium equations can then be integrated using a centred finite difference

scheme.

The coefficients of the damping matrix are usually given all the same value, chosen such as to

maximise the speed of convergence to the equilibrium configuration. Alternatively, a technique

called kinetic damping can be used, whereby the undamped motion of the structure is traced.
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When a local peak in the total kinetic energy of the structure is detected, all velocity components

are set to zero. The process is then repeated, starting from the current configuration, until the

peak kinetic energy becomes sufficiently small [16].

Motro [17] applied the dynamic relaxation method to the form-finding of the triangular

tensegrity prism. The lengths of the cables were held constant while the struts were gradu-

ally elongated, until a state of pre-stress was set up in the structure. This analysis converged to

ls/lc = 1.468.

Belkacem [18] analysed the triangular and square tensegrity prisms, and also the expandable

octahedron. The results for the tensegrity prisms were compared with the theoretical values

obtained from Eq. (3) and those for the expandable octahedron to the results of a statical

method. The relative errors in the nodal coordinates were 0.2%, 4%, and 2% respectively. For

the tensegrity prisms errors in the rotation angle θ of 1% and 8%, respectively, were obtained.

An analysis of the truncated tetrahedron [19] gave a ratio ls/lc slightly greater than 2.24 and

close to the value determined by Pellegrino [13].

Motro et al. [20] later concluded that the dynamic relaxation method has good convergence

properties for structures with only a few nodes but is not effective when the number of nodes

increases. Also, the method becomes rather cumbersome if several different ratios between strut

lengths and cable lengths are desired, which restricts its applicability to less regular structural

forms. However, the same restriction applies to kinematical methods in general.

3 Statical Methods

The general characteristic of these methods is that a relationship is set up between equilibrium

configurations of a structure with given topology and the forces in its members. This relationship

is then analysed by various methods.

3.1 Analytical Solutions

Kenner [21] used node equilibrium and symmetry arguments to find the configuration of the

expandable octahedron, Fig. 2, whose six identical struts are divided into three pairs and the

distance between the struts in each pair is exactly half the strut length. Other, more complex,

spherical tensegrities with polyhedral geometries, i.e. the cuboctahedron and the icosidodecahe-
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dron, were also analysed using the same approach.

Recently, Connelly and Terrell [10] have used an equilibrium approach to find the prestress

stable form of rotationally symmetric tensegrities. To set up a system of linear equilibrium

equations, they used force density,1 i.e. force divided by length, as variable for each element.

Denoting by qij the force density in element ij —note that q1,4 = q1,5 due to symmetry— the

equilibrium of node 1 in the z- and y-direction can be written as

q1,2H + q1,3H = 0 (9)

and

q1,2R sin θ + q1,3R sin
(
θ +

2πj
v

)
= 0, (10)

respectively. Equations (9) and (10) give

q1,2

[
sin θ − sin

(
θ +

2πj
v

)]
= 0. (11)

The only solution of Eq. (11) for which all of the cables are in tension is [10]

θ = π

(
1
2

− j

v

)
. (12)

The values of θ for tensegrity modules with v going from 3 to 6 are given in Table 1. Note that

Eq. (12) is identical to Eq. (4), as expected.

3.2 Force Density Method

The force density method for cable structures, first proposed by Linkwitz and Schek in 1971

[22,23], uses a simple mathematical trick to transform the non-linear equilibrium equations of

the nodes into a set of linear equations. For example, the equilibrium equation in the x-direction

for node i is

∑
j

tij
lij

(xi − xj) = fix (13)

Although this may appear to be a linear equation in the nodal coordinates, it is actually non-

linear because the lengths lij in the denominator are also functions of the coordinates. These

equations can be linearised by introducing for each element the force density

qij = tij/lij (14)

1Also called tension coefficient, see Ref. [24].
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whose value needs to be known at the start of the form-finding process.

For a structure with b elements and n nodes the equilibrium equations in the x-direction can

be written as

CT
s QCsxs = fx, (15)

where Cs is the incidence matrix, see below, Q a diagonal matrix containing the force densities,

xs a column vector of x-coordinates, and fx a column vector of external nodal forces in the

x-direction. Equations identical to (15) can be written also in term of the y- and z coordinates.

The incidence matrix Cs, of size b × n, describes the connectivity of the structure; if an

element connects nodes i and j, then the corresponding row of Cs has +1 in column i and −1

in column j. If the coordinates of some of the nodes are given, e.g. these nodes are attached to

a foundation, Cs can be partitioned as

Cs = [C Cf ] , (16)

where the restrained nodes have been put at the end of the numbering sequence. Equation (15)

can now be written as

CTQCx = fx − CTQCfxf , (17)

where x and xf are the column vectors of unknown and given x-coordinates, respectively. Equa-

tion (17), together with analogous equations for the y- and z-directions, can be solved to find

the nodal coordinates. Usually, the external loads are zero during form-finding.

In a structure consisting of cables only all tension coefficients are positive, i.e. qij > 0, and

hence CTQC is positive definite and, thus, invertible. Therefore, there is always a unique

solution to the form-finding problem. The same approach can be extended to the form-finding

of membrane structures by converting the stresses in the membrane into forces in a virtual cable

net [25,26].

A similar formulation can be applied to the form-finding of tensegrity structures, but as these

structures are self-stressed, usually there are no foundation nodes as well as no external loads.

Hence, Eq. (15) becomes

Dxs = 0, (18)

where D = CT
s QCs and analogous equations hold in the y- and z-directions.
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The force density matrix D can be written directly [11], without going through Cs and Q,

following the scheme

Dij =




−qij if i �= j,∑
k �=i qik if i = j,

0 if i and j are not connected.

(19)

Note that the matrix D is always square and singular, with a nullity of at least 1 since the

row and column sums are zero, by Eq. (19). Unlike the matrix CTQC for a cable net attached

to foundation nodes, which is positive definite see page 120 of Ref. [22], the D matrix for a

tensegrity is semi-definite and, due to the presence of compression elements, with qij < 0,

several complications can arise during form-finding. A practical procedure for finding a set of

force densities that yield a matrix D with the required rank was given by Vassart [27]. Further

details will be given in Section 4.

3.3 Energy Method

In the following, some key main findings of Connelly [28] will be summarised using as far as

possible the original terminology.

A configuration of n ordered points in d-dimensional space is denoted by

p = [p1, p2, ..., pn]
T . (20)

A tensegrity framework G(p) is the graph on p where each edge is designated as either a cable,

a strut or a bar; cables cannot increase in length, struts cannot decrease in length and bars

cannot change length. A stress state ω for G(p) is a self-stress if the following condition holds

at each node i:

∑
j

ωij (pj − pi) = 0, (21)

where ωij ≥ 0 for cables, ωij ≤ 0 for struts, and no condition is stipulated for the bars. Compar-

ing Eq. (21) with the equilibrium equations for the same node written in terms of force densities,

it is obvious that the stresses ωij are identical to the force densities qij .

Satisfying the above equilibrium condition is a necessary but not sufficient condition for the

tensegrity framework to be in a stable equilibrium configuration. A basic principle in the analysis

of the stability of structures is that the total potential energy functional should be at a local
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minimum for a given configuration to be stable. In analogy with the total potential energy,

ref. [29] defines the following energy form associated with the stress ω:

E(p) =
1
2

∑
ij

ωij‖pj − pi‖2. (22)

The idea is that when the end points of an element are displaced, energy builds up as a function

of the square of the extension. The function in Eq. (22) is set up to have an absolute minimum

corresponding to the rest length of the element [28]. All members are assumed to behave as

linear elastic springs. The cables, which take only tension, have a rest length of zero while the

struts, which take only compression, have an infinite rest length.

Let

p =




x

y

z


 (23)

be a column vector, of length dn, containing the x-coordinates of p, followed by the y-coordinates,

etc. Then, Eq. (22) can be written as the quadratic form:

E(p) =
1
2
pT




Ω
. . .

Ω


p, (24)

where the elements of Ω are given by

Ωij =




−ωij if i �= j,∑
k �=i ωik if i = j,

0 if there is no connection between i and j.

(25)

Note that Ω is identical to D, hence the above formulation provides a deeper insight into the

characteristics of the force density method and how it can be used to find stable equilibrium

configurations of tensegrity structures. The link between the force density method and energy

minimisation was first pointed out in Section 2 of Ref. [30] and later in Section 4 of Ref. [22].

A necessary condition for the tensegrity framework to be prestress stable in the configuration

p is that the quadratic form E(p) has a local minimum at p. The positive definiteness of E(p)

is directly related to that of Ω but expecting positive definiteness is unrealistic, because —as

already noted above for D— the nullspace of Ω contains at least the non-trivial vector [1, ..., 1]T.
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The strongest type of prestress stability, named super stability by Connelly [31], requires

prestress stability with the additional condition that Ω is positive semi-definite with maximal

rank. The maximal rank of Ω for a structure in d-dimensional space that does not in fact lie in

a subspace of smaller dimension, see the examples in Section 4.1, is n − d − 1. Hence, to design

a super stable tensegrity framework one has to find a set of force densities such that the nullity

N of Ω is d+ 1.

For example, consider the two-dimensional (d = 2) tensegrity structure in Fig. 4 where the

outside edges are cables and the diagonals are struts. A stress equal to 1 in the cables and −1

in the struts is a self-stress for this structure. The stress, i.e. force density, matrix is [29]:

Ω =




1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1



, (26)

which is positive semi-definite with nullity 3. Hence, the tensegrity structure in Fig. 4 is super

stable [31].

Connelly and Back [32] have analysed tensegrity structures with different types of symmetry

using this method. Their initial assumption was that there is a symmetric state of self-stress

with a force density of 1 in each cable and −ωs in each strut. A further assumption was that

there are two types of cables but only one type of strut, arranged such that satisfying equilibrium

at only one node of the structure implies, by symmetry, that it is satisfied also at all other nodes.

The force density in the strut is chosen such that the structure is super stable [31,32].

A complete catalogue of all the tensegrity structures that are possible for each symmetry group

has been produced, using group theory. Although some of the systems in the catalogue have

struts that go through each other, and therefore are of limited practical interest, the catalogue

contains many solutions that were previously unknown.

3.4 Reduced Coordinates

This method was introduced by Sultan et al. [12]. Consider a tensegrity structure whose b

elements consist of M cables and O struts. The struts are considered as a set of bilateral

constraints acting on the cable structure. Hence, a set of independent, generalised coordinates
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g = [g1, g2, . . . , gN ]T is defined, which define the position and orientation of these struts.2

Consider a state of self-stress for the structure and let tj be the axial force in a generic cable

element j; the cable forces t = [t1, t2, . . . , tM ]T are in equilibrium with appropriate forces in the

struts and zero external loads. A set of equilibrium equations relating the forces in the cables,

but without showing explicitly the forces in the struts, can be obtained from virtual work.

Consider a virtual displacement δg of the structure that involves no extension of the struts.

The change of length of cable j is

δlj =
N∑

i=1

∂lj
∂gi

δgi. (27)

Considering all cables, Eq. (27) gives

δl = ATδg, (28)

where the elements of the N × M matrix A are

Aij =
∂lj
∂gi

. (29)

Because the extensions of the struts are zero, the virtual work in the struts is also zero and so

the total internal work, from the cables only, is

tTδl = (At)Tδg (30)

For the structure to be in equilibrium, this must be zero for any virtual displacement δg. This

gives the following reduced equilibrium equations

At = 0. (31)

For this equation to have a nontrivial solution it is required that

rankA < M (32)

where only solutions that are entirely positive are of interest, i.e.

tj > 0 for j = 1, 2, . . . ,M (33)

General analytical conditions that govern the form of a tensegrity structure of given topology

can be obtained by analysing Eqs (32) and (33).
2If d = 2 three generalised coordinates are required for each strut, hence N = 3 × O; if d = 3 then N = 5 × O.
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Sultan [33] applied this method to a tensegrity tower of which Fig. 6 shows a simple, two-stage

example. The same structure had been previously considered by Snelson [7], see Fig. 7. The

tower consists of three struts per stage, held in place by three sets of cables —saddle, vertical,

and diagonal— between two rigid triangular plates at the top and bottom; in Fig. 6 note the

definition of the overlap h. Having shown that a structure in which the rigid plates have been

replaced by cables has the same equilibrium configuration as the original structure, but involves

a smaller number of unknown cable forces, Sultan analysed this simpler problem.

The first step in the form-finding process is to identify a set of generalised coordinates which

describe the configuration of this structure. The 18 coordinates chosen by Sultan [33] for the

two stage tower were

• for each strut, the azimuth angle αj , i.e. the angle between the vertical plane containing

the strut and the x-z plane, and the colatitude δj , i.e. the angle between the strut and the

z-axis, and

• three translation and three rotation parameters defining the position and orientation of

the rigid plate at the top with respect to the bottom one.

By using symbolic manipulation software, e.g. Maple or Mathematica, the length of each cable

can be expressed in terms of the 18 coordinates and then differentiated to obtain the 18 × 18

matrix A, in symbolic form. At this stage, the final shape of the structure is still unknown

and the existence of a prestressable configuration is dependent on finding a suitable set of strut

lengths. Sultan [33] reduced the number of independent generalised coordinates by considering

only symmetric configurations, with the same azimuth, α, and colatitude, δ, and by considering

a fixed position of the top plate. Then, by assuming a special symmetry in t, the problem could

be reduced even further, to 3 × 3 with the forces in the diagonal, saddle and vertical cables

remaining as the only unknowns. Finally, applying to this reduced matrix the condition for the

existence of non-trivial solutions, rank A= 2 equivalent to

detA = 0 (34)
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gave a quadratic equation that could be solved for the overlap h

h =




1

2 tan δ cos
(
α+

π

6

)
(√

a2

3
− 3l2 sin2 δ cos2

(
α+

π

6

)

− a√
3
+ l sin δ cos

(
α+

π

6

))
if α �= π

3
,

l cos δ
2

if α =
π

3
.

(35)

Here, a is the side length of the equilateral triangles at the top and bottom of the tower, and l

the length of the strut.

A particular, symmetric configuration in which all the nodes lie on the surface of a cylinder

is defined by the following relation between δ and α:

δ = arcsin
[
2a
l
√
3
sin
(
α+

π

3

)]
(36)

For towers with more than two stages A was still derived using symbolic software, but Eq. (34)

was then solved numerically. Sultan [33] successfully applied this form-finding method to towers

with up to nine stages.

4 Implementation of Force Density Method

The force density method has been outlined in Section 3.2. This section will deal with procedures

to actually find super-stable tensegrities, i.e. with positive definite matrix D with nullity N =

d + 1. Vassart and Motro [11] have listed three techniques for finding a set of force densities

that achieve the required nullity: (i) intuitive; (ii) iterative; and (iii) analytical.

Of these three techniques, the first is suitable for systems with only a few members, and will

be illustrated in Section 4.1; the second technique is based on a trial-and-error, or more refined

search for a set of force densities that yield the required nullity. The third technique is the

most effective; D is analysed in symbolic or semi-symbolic form, in the case of systems with a

large number of elements [11]. The following examples show how this is done in practice, for

structures of increasing complexity.

4.1 A Two-Dimensional Example

Consider the hexagonal tensegrity shown in Fig. 8. For it to be super stable, the nullity of D has

to be three, but it is interesting to consider also the cases N = 1, 2 to better understand why
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in Section 3.3 it was stated that one must look for sets of force densities that make rank D =

n − d − 1.

Case N = 1

Most sets of force densities yield a D matrix with nullity one. For example, the general set

q1 = [1, 2, 3, 4, 5, 6,−7,−8,−9]T gives

D1 =




0 −1 0 7 0 −6

−1 −5 −2 0 8 0

0 −2 −4 −3 0 9

7 0 −3 0 −4 0

0 8 0 −4 1 −5

−6 0 9 0 −5 2




(37)

The nullspace of D1 is spanned by [1, 1, 1, 1, 1, 1]T —see Ref. [34] for further details on how

to compute a basis for a nullspace— which, through Eq. (18) and the analogous equation

in the y-coordinates, gives the configuration x = [x1, . . . , x6]T = [α, α, α, α, α, α]T and y =

[y1, . . . , y6]T = [β, β, β, β, β, β]T. Here, α and β can take arbitrary values. Of course, this so-

lution corresponds to configurations of the structure where all nodes coincide and so the whole

structure is reduced to a single point, which is of little practical interest.

Case N = 2

Next, we choose uniform force densities in all cable elements and in two of the struts force

densities of half those in the cables; the force density in the third cable is arbitrary. For example,

for q2 = [2, 2, 2, 2, 2, 2,−1,−1,−3]T we obtain

D2 =




3 −2 0 1 0 −2

−2 3 −2 0 1 0

0 −2 1 −2 0 3

1 0 −2 3 −2 0

0 1 0 −2 3 −2

−2 0 3 0 −2 1




(38)

It can be readily verified that columns five and six are dependent, and hence that the nullspace

of D2 is spanned by [−1,−1, 0, 1, 1, 0]T and [2, 2, 1, 0, 0, 1]T. Hence, denoting by α, β the x-

coordinates of nodes 5, 6 respectively, and by γ, δ their y-coordinates, the configuration of the sys-

tem is described by x = [−α+ 2β,−α+ 2β, β, α, α, β]T and y = [−γ + 2δ,−γ + 2δ, δ, γ, γ, δ]T.

18



This configuration corresponds to all nodes lying on a straight line, as shown in Fig. 9(a), and

is again of little practical interest.

Case N = 3

Finally, we choose uniform force densities both in the cable elements and in the struts, in a ratio

of two to one. For example, q3 = [2, 2, 2, 2, 2, 2,−1,−1,−1]T gives

D3 =




3 −2 0 1 0 −2

−2 3 −2 0 1 0

0 −2 3 −2 0 1

1 0 −2 3 −2 0

0 1 0 −2 3 −2

−2 0 1 0 −2 3




(39)

Here, columns four, five and six are dependent, hence the nullspace of D3 is spanned by

[1, 2, 2, 1, 0, 0]T, [−2,−3,−2, 0, 1, 0]T, and [2, 2, 1, 0, 0, 1]T. Denoting by α, β, γ the free x-coordinates

of nodes 4,5,6, respectively, and δ, ε, ζ their y-coordinates, the system configuration is given by

x = [α − 2β + 2γ, 2α − 3β + 2γ, 2α − 2β + γ, α, β, γ]T and y = [δ − 2ε + 2ζ, 2δ − 3ε + 2ζ, 2δ −
2ε+ ζ, δ, ε, ζ]T.

The original solution in Fig. 8 is re-obtained for α = −1, β = −1/2, γ = 1/2, δ = 0,

ε = −√
3/2, ζ = −√

3/2. However, note that, despite the force densities q3 being symmetric,

this solution gives the configuration shown in Fig. 9(b), which has only two-fold symmetry, for

e.g. α = −1, β = −1/2, γ = 1, δ = 0, ε = −√
3/2, ζ = −1/2. The reason why it is possible

to find less symmetric or even asymmetric configurations for a given, symmetric state of force

densities is because the element lengths are not explicitly set in the force density formulation.

In concluding, it is noted that the particular q3 considered above was obtained after noticing

that in the configuration shown in Fig. 8 the force densities must have a particular distribution,

to satisfy nodal equilibrium. However, by carrying out a symbolic analysis of the force density

matrix other solutions were subsequently found. For example, an alternative choice is q4 =

[1, 2, 1, 2, 1, 2,−2/3,−2/3,−2/3]T, for which a particular configuration (with α, β, etc. as in the

original solution) is that shown in Fig. 9(c).
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4.2 Tensegrity Prisms

Consider the structure shown in Fig. 10. A set of force densities with 3-fold symmetry is

prescribed as follows. The force densities in the cables forming the bottom and top triangles are

qb and qt, respectively; they are ql in the lateral cables and qs in the struts. Assuming that the

top and bottom triangles lie in horizontal planes, vertical equilibrium gives qs = −ql, cf. Eq.

(9).

Hence, the D matrix can be set up in terms of only three force densities

D =




2qt −qt −qt −ql 0 ql

−qt 2qt −qt ql −ql 0

−qt −qt 2qt 0 ql −ql

−ql ql 0 2qb −qb −qb

0 −ql ql −qb 2qb −qb

ql 0 −ql −qb −qb 2qb




(40)

By Gaussian elimination D is reduced to the upper echelon form [34]

U =




ql 0 −ql −qb −qb 2qb

0 ql −ql qb −2qb qb

0 0 0 −q∗ 0 q∗

0 0 0 0 q∗ −q∗

0 0 0 0 0 0

0 0 0 0 0 0




(41)

where q∗ = (q2
l − 3qbqt)/ql. Since ql �= 0, rank D is either four, if q∗ �= 0, or two, if q∗ = 0. If

super stability is required, then we need N = 4, i.e. rank D = 2 and so q∗ = 0.

Any set of positive cable force densities that satisfies the condition

q2
l − 3qbqt = 0 (42)

will do but Vassart [27] presents two interesting cases: (i) qt = qb and (ii) qt = ql. In both cases,

the last four coordinates are “free”; denoting the free x-coordinates, for example, by α, β, γ, δ,

in case (i) the configuration of the structure is described by x = [α+(β+γ−2δ)/
√
3, α+(−β+

2γ − δ)/
√
3, α, β, γ, δ], similarly for y and z. In case (ii) the configuration of the structure is

described by x = [α+(β+γ−2δ)/3, α+(−β+2γ−δ)/3, α, β, γ, δ]. The rotationally symmetric

configurations, obtained by giving appropriate values to α, etc. are shown in Fig. 11.
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Obviously, changing the relation between qt and qb while keeping ql fixed, changes the relative

sizes of the top and bottom triangles. Again, many geometrically non-symmetric configurations

may be found by appropriate choices of the coordinates of the free nodes.

4.3 More Complex Systems

The earlier part of this section has shown applications of the force density method to the form-

finding of some relatively straightforward tensegrity structures; several symmetric configurations

that had already been found by other methods were thus re-obtained. Further applications of

the same method, to slightly more complex systems will be presented next.

Expandable octahedron

For the expandable octahedron there are only one type of cable and strut. Knowing that the

distance between parallel struts is half the length of the strut, equilibrium in the strut direction

yields qs = −3qc/2. An analysis of D gives two possible solutions for N = 4: qs = −3qc/2 and

qs = −2qc, but D is positive semi-definite only for the first one. In addition to the symmetric

configuration of Fig. 2, many asymmetric configurations can be found.

Truncated tetrahedron

An equilibrium configuration for the truncated tetrahedron was obtained in Section 2.2. For that

configuration, we have computed the Singular Value Decomposition of the equilibrium matrix

[35] and thus obtained the single state of self-stress of the structure. For an axial force of 1 in the

cable elements forming the triangular faces, there is a force of 1.3795 in the remaining cables,

and −1.5016 in the struts. Since the strut and cable lengths are 2.2507 and 1, respectively, the

corresponding force densities are 1, 1.3795 and −0.6672.

We have carried out an independent form-finding study of this structure, using the force

density method. Unlike all of the structures analysed so far, no general equilibrium statements

can be made, since the nodes lie in four different horizontal planes, see Fig. 1. Without any

relationships between the force densities, we considered a general state of self-stress characterised

by three different force density values: qt for cables forming the triangles, ql for the other cables,

and qs for the struts.

By setting ql = γqt, and after carrying out a Gaussian elimination on the matrix D, the
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condition for N = 4 was found to be

2 (1 + γ)
(
qs

qt

)2

+ [3 + 2γ (3 + γ)]
qs

qt
+ γ (3 + 2γ) = 0 (43)

To re-obtain the earlier results we set γ = 1.3795 and thus re-obtained qs/qt = −0.6672, but

also qs/qt = −2.5022. However, for the alternative solution qs/qt = −2.5022 the D matrix has

negative eigenvalues, and hence the corresponding configurations are unstable.

For different values of γ, e.g. γ = 1 as in Ref. [32], different configurations of the truncated

tetrahedron are obtained, with unequal cable lengths. However, if we had been interested in

a particular ratio between the lengths of the cables, it would have been difficult to find the

corresponding configuration with this method, as the particular values of the force densities

that have to be chosen in order to achieve the required lengths cannot be determined.

Therefore, it is concluded that the force density method is an excellent method for finding the

configuration of new tensegrities, but less than ideal for structures with some known, or desired

element lengths.

5 Discussion and Conclusions

Seven form-finding methods for tensegrity structures have been reviewed and classified into two

categories. The first category contains kinematical methods, which determine the configuration

of either maximal length of the struts or minimal length of the cable elements, while the length of

the other type of element is not allowed to vary. The second category contains statical methods,

which search for equilibrium configurations that permit the existence of a state of prestress in

the structure with certain required characteristics. Each category includes an analytical method,

suitable only for simple or very symmetric structures.

The two remaining kinematical methods have both been used successfully to determine config-

uration details, i.e. the nodal coordinates, of structures that were already essentially well known.

However, neither of the two can be applied to problems that are not completely defined, e.g. the

lengths of all the cables are not known in the formulation where the lengths of the struts are

maximised.

The three remaining statical methods are in fact only two, since the force-density method and

the energy method have been shown to be equivalent. The main strength of the force density

method is that it is well suited to situations where the lengths of the elements of the structure
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are not specified at the start. Thus, new configurations can be easily produced, but it is difficult

to control the variation in the lengths of the elements as the set of tension coefficients is varied.

The reduced coordinates method offers a greater control on the shape of the structure, but

involves more extensive symbolic manipulations.
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31. Connelly, R., Tensegrity structures: why are they stable?, in: M.F. Thorpe and P.M.

Duxbury, ed., Rigidity theory and applications, Plenum Press, New York, 1999, p. 47-54.

32. Connelly, R. and Back, A., Mathematics and tensegrity, American Scientist, 86 (2), 1998,

142-151.

33. Sultan, C., Modeling, design, and control of tensegrity structures with applications, Ph.D.

Dissertation, Purdue University, 1999.

34. Strang, G., Linear Algebra and its Applications, Third edition, Harcourt Brace Jovanovich

25



College, San Diego, 1988.

35. Pellegrino, S., Structural computations with the Singular Value Decomposition of the

equilibrium matrix, International Journal of Solids and Structures, 30 (21), 1993, 3025-3035.

26



Table 1: Values of θ for symmetric tensegrity prisms.

v
j

1 2 3 4 5

3 30◦ −30◦ — — —

4 45◦ 0◦ −45◦ — —

5 54◦ 18◦ −18◦ −54◦ —

6 60◦ 30◦ 0◦ −30◦ −60◦
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(a) Side view (b) Top view

Figure 1: Comparison of truncated tensegrity tetrahedron and the polyhedron from which it originates.

Note the distortion of the hexagonal faces. Hidden lines of the polyhedron shown dashed.

(a) Side view (b) Top view

Figure 2: Comparison of expandable octahedron and icosahedron. Hidden lines of the polyhedron shown

dashed.
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Figure 3: Elements meeting at node 1 of structure with v-fold symmetry, with radius R and height H.
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Figure 4: Snelson’s X-frame

(a) (b)

Figure 5: Symmetric tensegrities from Connelly and Back’s catalogue, see Ref. [32].
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Figure 6: Two stage tensegrity tower: (a) perspective view, (b) side view of central part, and (c) top

view.
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Figure 7: Three stage tensegrity tower, reproduced from Ref.[ 7].
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Figure 8: Two-dimensional hexagonal tensegrity.
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Figure 9: Configurations of two-dimensional hexagonal tensegrities.
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Figure 10: Tensegrity prism.
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(a) qt = qb, ql =
√

3qb, and

qs = −ql
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(b) qt = ql, qb = ql/3, and

qs = −ql

Figure 11: Top views of two different rotationally symmetric tensegrity prism.
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