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Abstract. Two key ideas stand out as crucial to understand-
ing atmosphere-ocean dynamics, and the dynamics of other
planets including the gas giants. The first key idea is the
invertibility principle for potential vorticity (PV). Without
it, one can hardly give a coherent account of even so im-
portant and elementary a process as Rossby-wave propaga-
tion, going beyond the simplest textbook cases. Still less
can one fully understand nonlinear processes like the self-
sharpening or narrowing of jets – the once-mysterious “neg-
ative viscosity” phenomenon. The second key idea, also cru-
cial to understanding jets, might be summarized in the phrase
“there is no such thing as turbulence without waves”, mean-
ing Rossby waves especially. Without this idea one cannot
begin to make sense of, for instance, momentum budgets
and eddy momentum transports in complex large-scale flows.
Like the invertibility principle the idea has long been recog-
nized, or at least adumbrated. However, it is worth articu-
lating explicitly if only because it can be forgotten when, in
the usual way, we speak of “turbulence” and “turbulence the-
ory” as if they were autonomous concepts. In many cases
of interest, such as the well-studied terrestrial stratosphere,
reality is more accurately described as a highly inhomoge-
neous “wave-turbulence jigsaw puzzle” in which wavelike
and turbulent regions fit together and crucially affect each
other’s evolution. This modifies, for instance, formulae for
the Rhines scale interpreted as indicating the comparable im-
portance of wavelike and turbulent dynamics. Also, weakly
inhomogeneous turbulence theory is altogether inapplicable.
For instance there is no scale separation. Eddy scales are not
much smaller than the sizes of the individual turbulent re-
gions in the jigsaw. Here I review some recent progress in
clarifying these ideas and their implications.
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1 Introduction

This paper is dedicated to the memory of Rupert Ford, my
brilliant ex-student who died tragically in diabetic coma at
the Nice EGS Assembly of March 2001. Rupert was ap-
proaching the peak of his powers, an international research
star whose sudden death was a terrible loss to science. He’ll
be remembered not only for his warm humanity and for his
generosity and engagement with colleagues, not least at EGS
Assemblies, but also for his passion to understand things.

Here I mean fully understand, in the deepest scientific
sense aimed at and powerfully communicated by the likes
of Einstein, Prandtl, Lighthill, Feynman, and my own the-
sis supervisor Francis Bretherton and his supervisor, the leg-
endary Sir Geoffrey Ingram Taylor. James Gleick’s book on
Feynman (Gleick, 1992) brilliantly conveys what such under-
standing involves. I have tried in my own way to say it in my
writings on “lucidity principles”, as well as in Rupert’s obit-
uary (McIntyre, 2001). Understanding in this sense involves
seeing things from as many angles as possible and finding
insightful thought experiments – playing with the system or
parts of it to see what happens, like a child playing with elas-
tic bands or Lego or Meccano – and in particular keeping
words, logic, pictures, mechanistic feelings, mathematical
symbols and equations tied together into a coherent and self-
consistent whole.1

Along with such understanding goes a sense of what’s ro-
bust. Rupert and I always felt that a theoretician’s job is not
only to study the special cases described by idealized models,
using whatever mathemematical ingenuity it takes, but also

1In Gleick’s book see especiallyThe Aura, around p. 131, andA
half-assedly thought-out pictorial semi-vision thing, around p. 245.
(I disagree, though, that quantum theory forces us to abandon the
usual assumption of a single outside reality, the basis of all science,
p. 243. Rather, it forces us to be meticulous in distinguishing be-
tween reality on the one hand, and our models of reality on the
other, thus clarifying what we know about reality and, indeed, what
we canknow about reality – websearch “coherent account” “think-
ing probabilistically”.)
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to try to discern what’s robust about a given model – that
is, which of its qualitative features are likely to be shared
with more realistic and complicated models and with reality
itself. An elementary illustration is the Rossby-wave propa-
gation mechanism, central to practically everything about the
dynamics of the atmosphere-ocean system.

It is one thing to derive the Rossby-wave dispersion re-
lation in idealized cases where the mathematics is easy, in
the manner of most textbooks. It is quite another to under-
stand why the propagation mechanism works equally well in
the more realistic and complicated cases for which no simple
mathematical solutions are available.

Common to all these cases, idealized and realistic, is the
peculiar quasi-elasticity of potential-vorticity (PV) contours
and, for instance, the role of that quasi-elasticity, along with
shear, in the dynamics of what are now called eddy-transport
barriers – helping to explain the robustness of strong jets
and vortices like those on Jupiter and the other gas giants,
and the tendency for the eddy transport of material tracers
to be inhibited across prograde jet cores or vortex edges
even when the Eulerian velocity field involves aperiodic,
large-amplitude disturbances, going beyond the purely kine-
matic, Kolmogorov-Arnol’d-Moser theory of barrier forma-
tion (e.g., Haynes et al., 2007; Rypina et al., 2007; Beron-
Vera et al., 2008).

A full understanding of such phenomena can scarcely be
arrived at without the conscious or unconscious use of the
PV “invertibility principle” or something equivalent (e.g.,
Hoskins et al., 1985 & refs). It is an essential component
of the conceptual “Lego set” one needs.

PV invertibility says that, to sufficient approximation, the
flow is balanced such that all the other fields can be derived
diagnostically from the PV field, that is, derived at each in-
stant of time independently of what goes on at earlier or
later times. In other words, there is such a thing as a di-
agnostic “PV inversion operator”. This is a nonlocal, time-
independent function whose input is the PV field at a given
instant, and whose output consists of the other fields at that
instant, such as the velocity and buoyancy fields.

In the case of the Rossby-wave mechanism, for instance,
PV invertibility gives us a way of saying that the sideways
undulation of PV contours instantlyimpliesa velocity field
across the contours that’s a quarter wavelength out of phase
with the undulatory displacement field. This in turn implies,
in a perfectly definite way, the familiar one-way phase prop-
agation and all its far-reaching consequences stemming from
the single time derivative in the evolution equation for PV. It
is crucial that the velocity field is linked, diagnostically, to
the displacement field and the implied pattern of PV anoma-
lies, in such a way as to keep the displacement and velocity
fields phase-locked a quarter-wavelength apart as the undu-
lations propagate.

More generally, as stated in Ford et al. (2000), PV invert-
ibility and the associated ideas of balanced flow and slow
quasimanifold allow one “to treat the central difficulty of

fluid dynamics, the advective nonlinearity, with maximum
possible simplicity by representing it solely in terms of the
advection of potential vorticity and near-surface potential
temperature.” Moreover the ideas “make explicit and keep
conceptually separate” the “prognostic versus diagnostic,
advective versus nonadvective, and local versus nonlocal”
aspects of the dynamics.

The nonlocal aspects are made explicit through the idea
of PV inversion. They are made explicit in such a way as
to evade the limitations and inaccuracies of highly idealized
models such as quasigeostrophic theory. We can therefore
use the qualitative insights from such idealized models in the
knowledge that those insights will be robust and will carry
over to more sophisticated models in which the PV is eval-
uated from its most accurate (Rossby or Ertel) formula, and
inverted and advected as accurately as possible.

None of this seems to be brought out with complete lucid-
ity in the textbooks I’ve seen. In fairness, however, there
were until recently some unresolved technical difficulties
with the most accurate known PV inversion operators.

Those difficulties, which I believe were first fully spelt out
in Mohebalhojeh (2002), were finally overcome – as I first re-
ported at EGU 2006 – with the discovery of a family of “hy-
perbalance equations” (Mohebalhojeh and McIntyre, 2007a,
b, hereafter MM07a, b). The corresponding PV inversion
operators are free of the difficulties in question.

Section5 below presents and briefly discusses the simplest
member of the family. Before that, Sects.2–4 recall a few
points about the nonlinear jet problem and the “Rhines ef-
fect”, supplementing the more extensive review in Dritschel
and McIntyre (2008, hereafter DM08, in theJ. Atmos. Sci.
Special Collection onJets and Annular Structures in Geo-
physical Fluids). In conclusion, Sect.6 suggests a need for
forced geophysical turbulence experiments to consider mo-
mentum or impulse injection, as well as energy injection.
There is a concomitant need to consider more explicitly the
radiation-stress field due to Rossby waves and other wave
types.2 Examples where that need is especially conspicuous
include the giant planets’ equatorial prograde jets.

2The term “radiation stress” is used here as in DM08 to mean
wave-induced momentum transport regardless of wave type, as is
standard in the language of physics. In atmosphere-ocean dynam-
ics the most important wave types, for this purpose, are Rossby and
gravity waves and their equatorial hybrids, not acoustic or electro-
magnetic waves. The importance of radiation stresses illustrates
one of the grand themes of physics, the dynamical organization of
fluctuations with systematic mean effects. Any wave propagation
mechanism will tend to organize the fluctuating fields, no matter
how chaotic they may seem, in the sense of inducing systematic
correlations among the components of those fields. The correlations
are shaped by the waves’ polarization relations and usually give rise
to systematic, long-range momentum transports. For completness it
is useful to include under the “radiation stress” heading the stresses
due to wave diffraction; indeed, for instance with planetary-scale
Rossby waves, the distinction can sometimes be somewhat blurred.
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2 The sharp-jet attractor

The word “turbulence” tends to make us forget how sim-
ple, robust, and easy to understand is the once-mysterious
antifrictional self-sharpening of prograde jets – what used
to be called “negative viscosity”. Such self-sharpening is a
large part of why narrow jets or jetstreams are so persistent,
and so ubiquitous, in the atmosphere and oceans. The self-
sharpening phenomenon is incomprehensible in terms of the
old pure-turbulence or eddy-viscosity (momentum-mixing)
paradigms. One reason is that those paradigms ignore the
crucial role of Rossby-wave dynamics, first recognized by
R. E. Dickinson (1969) and E. T. Eady (unpublished).

On a qualitative level, the self-sharpening phenomenon
is almost trivial to understand if one uses PV invertibility
and the idea that PV mixing – as distinct from momentum
mixing – is kinematically favoured on one or both flanks
of the jet but inhibited in the jet core, where not only flow
speeds but also PV gradients and Rossby-wave elasticity are
strongest. DM08 give a historical review that goes back to
the pioneering work of H. Jeffreys, V. P. Starr, N. A. Phillips,
O. M. Phillips, and Dickinson and Eady, and points to to-
day’s wealth of observational and modelling evidence for the
success of such understanding, helping us to make sense of
observed flows in the terrestrial and Jovian atmospheres and
in the terrestrial oceans.

The evidence is especially precise, plentiful, and well stud-
ied in the case of the terrestrial stratosphere because of its
bearing on the stratospheric ozone problem. To see a movie
of the real stratosphere doing its jet-sharpening on a grand
scale, from the work of Riese et al. (2002), websearch “gy-
roscopic pump in action”. Note the near-perfect mixing over
a vast area on the equatorward flank of the polar-night jet.
Beyond the DM08 review, this qualitative picture of jet self-
sharpening through the interplay of waves and turbulence has
been put into a more quantitative form, retaining its sim-
plicity and comprehensibility, in the beautiful recent work
of Esler (2008).

Central to all this is the robustness and wide applicability
of a remarkably simple jet model, the well known shallow-
water “contour-dynamics jet” or “equivalent barotropic thin
jet” that results from inverting a simple PV discontinuity or
idealized front, i.e. a jet with perfectly-mixed PV on both
flanks and a delta-function PV gradient in its core. In its
simplest, quasigeostrophicf -plane description, the inversion
gives the sharply-peaked velocity profile

ū(y) = U exp
(
−LD

−1
|y|
)

with U =
1
2LD1q (1)

whereLD is the Rossby deformation length,1q the jump in
quasigeostrophic PV, andy the transverse distance relative
to the front or jet core. More accurate inversions all give a
qualitatively similar structure. FiniteLD is a natural assump-
tion for planetary atmospheres lacking rigid lids, and oceans
in which the significant eddy dynamics is associated with in-
ternal or baroclinicLD values.

Why should (1) be a robust model of real jets? The reason
is that the Rossby waves propagating on the concentrated PV
gradient at the jet core always have phase speedsc in the
range(0, U). Therefore there are always critical lines in the
jet flanks. It is a standard class exercise to verify this. The
linearized quasigeostrophic PV equation is

q ′
t + ūq ′

x + q̄yψ
′
x = 0 (2a)

( ψ ′
= L−1q ′

; L := ∂2
x + ∂2

y − LD
−2

; q̄y = −Lū ) (2b)

with x along the jet, the overbars denoting averages along the
jet. For wavenumberk along the jet and disturbance stream-
functionψ ′

∝ ψ̂(y) exp{ik(x − ct)} one finds

c = U
{
1 −

(
1 + L 2

D k
2
)−1/2}

≈
1
2UL

2
D k

2 when k�LD
−1

(3)
along with ψ̂(y) = exp

{
−(LD

−2
+ k2)1/2|y|

}
, describing

the undulations of the jet. A similar long-wave asymptotics
in which c→0 through positive values, likek2 ask→0, with
ψ̂(y) ∝ ū(y)+O(k2), holds for arbitrary isolated-jet pro-
files with ū(y)→0 as|y|→∞ (Simmons, 1974). Moreover,
this qualitative asymptotic behaviour is sufficiently robust to
survive generalization to large-amplitude undulations, and to
dynamical descriptions more accurate than quasigeostrophic
(e.g., Nycander et al., 1993 & refs).

The presence of critical lines means that, whenever the
jet is disturbed, its undulations – more precisely, the undu-
lations of the material and PV contours marking the jet core
– will automatically be accompanied by irreversible mixing
or rearrangement of material particles in the flanks of the jet
to either side. The mixing arises from the existence of hy-
perbolic points in the co-moving Kelvin-cat’s-eye flow pat-
terns in the jet flanks. It exemplifies the most important kind
of Rossby-wave breaking (e.g., McIntyre and Palmer, 1985;
Polvani and Plumb, 1992), whose dynamical significance for
the wave-turbulence interplay was originally illuminated, as
is well known, by the Stewartson-Warn-Warn (SWW) the-
ory of nonlinear Rossby-wave critical layers or idealized surf
zones (Stewartson, 1978; Warn and Warn, 1978; Killworth
and McIntyre, 1985; Haynes, 1989).

When amplitudes increase to realistic values, with side-
ways slopes of order unity or more, the surf zones in the jet
flanks expand to widths of orderLD or more, as is well illus-
trated in the gyroscopic-pumping movie and in a vast reper-
toire of numerical experiments (e.g., Held and Phillips, 1987;
Polvani and Plumb, 1992; Esler, 2008). One consequence is
that there is no turbulent scale separation. Surf-zone eddy or
nominal cat’s-eye scales transverse to the jet are no smaller
than the jet scale itself,LD.

So the jet, when disturbed in almost any natural way, has a
strong tendency to mix the PV in its flanks and thus to keep
itself sharp, even if not quite as sharp as in the idealization
(1). If for any reason the PV gradient in the jet core were
to be smeared out over widths of orderLD or more, so that
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the jet became significantly broader, as dictated by PV in-
version, then mixing in the jet flanks would reverse that pro-
cess by expelling PV contours from the flanks and pushing
them back into a narrowing core region. Inversion then says
that the velocity profile must go back toward (1). The jet
self-sharpening process is fundamentally similar to the pro-
cess called vortex-edge erosion or stripping (e.g., Juckes and
McIntyre, 1987; Legras et al., 2001 & refs).

These considerations go far toward explaining the ten-
dency toward strong spatial inhomogeneity observed in tur-
bulent flows in the real atmosphere and oceans and in the
outer layers of the gas giants such as Jupiter. Once jets
are established, they tend to maintain themselves as just de-
scribed. And in a thought experiment in which one starts with
no jets, i.e. with statistical homogeneity in space, the posi-
tive feedback from the “PV Phillips effect” (O. M. Phillips,
1972; DM08; Haynes et al., 2007) predisposes the flow to
develop spatial inhomogeneities and therefore incipient jets.
Sideways PV mixing in a given region or zone weakens its
Rossby quasi-elasticity and thereby – radiation stresses per-
mitting (Sect.6 below) – facilitates further mixing there.
This is in partial analogy to the weakening of gravity-wave
elasticity by vertical mixing in a given layer within a den-
sity-stratified fluid, the original “Phillips effect” leading to
spontaneous “density layering”. However, in the Rossby-
wave case the shear effects from the jets reinforce the pos-
itive feedback.

In dynamical-systems terms we may say heuristically that
the system tends to be attracted toward a “PV staircase”, for
which PV inversion dictates sharp prograde and broad ret-
rograde jets. Evidence for such a tendency includes, for
instance, the above-cited numerical experiments on sharp-
ening and stripping, and the work of Marcus (1993), Cho
and Polvani (1996), Peltier and Stuhne (2002), Humphreys
and Marcus (2007), Scott and Polvani (2007), DM08, and
for large LD – rigid or nearly-rigid lids – the laboratory
experiments of Sommeria et al. (1989, 1991) and Read et
al. (2007) and the numerical experiments of Marcus and
Lee (1998), Danilov and Gurarie (2004), and Danilov and
Gryanik (2004).

3 The Rhines effect revisited

The naturally strong spatial inhomogeneity of such PV-
staircase flows, and in particular the lack of scale separation,
have implications for turbulence theories (e.g., Baumert et
al., 2005). One is led to question the privileging of Fourier
analysis and power spectra as the chief way of describing
these flows – especially power spectra, which throw away
all phase information and thus hide coherent structures such
as sharp jets (Armi and Flament, 1985). In particular, given
that Rossby waves are important, Fourier analysis is a nat-
ural tool only when the Rossby waves behave as superposi-
tions of plane waves, i.e., when they behave as if propagating

on a uniform PV gradient. If, however, the PV contours are
really bunched up into the prograde jet cores, then the pro-
grade jets become waveguides and the Rossby-wave disper-
sion relation is much better approximated by (3). This differs
from the plane-wave dispersion relation and implies different
scalings and power law dependences. The differences come
about precisely because of the spatial inhomogeneity of the
PV gradient.

The term “Rhines effect” is sometimes used to mean that
Rossby-wave dynamics and turbulent dynamics are simulta-
neously important at some length scaleLRh, the Rhines scale.
In PV-staircase flows, dominated as they are by the Rossby
elasticity of sharp jets like (1), the standard, plane-wave-
based estimates ofLRh are irrelevant. The more accurate
dispersion relation (3) is, by contrast, closely relevant. And
precisely because (3) implies Rossby-wave phase speedsc
in the same range as the jet’s flow speedsū(y), and because
this relationship is robust even for large-amplitude undula-
tions of the jet, the wave dynamics and turbulent mixing are
indeed simultaneously important and, moreover, closely in-
terdependent in the manner already explained. One might
say that waves and turbulence are in a tight symbiosis, and
that it is therefore a case of the Rhines effect.

This is no surprise in view of the fundamentally similar
symbiosis in the SWW critical-layer problem. In the sharp-
jet problem, in which the scaleLD characterizes both the pro-
grade jet width and the wave-turbulence symbiosis,LRh in
the above sense must clearly be equated withLD.

In power-spectral terms one can imagine starting with a
statistically homogeneous turbulent flow exhibiting the stan-
dard upscale energy cascade. In cases like those considered
here, where the system is attracted toward a PV staircase,
one can reasonably say that the upscale energy cascade has
thereby been arrested or at least slowed down. And if in the
usual wayLRh is defined as the lengthscale associated with
the dynamics of such arrest or slowdown, then one would
again have to define it simply asLD. Arguably, however,
it might be more useful to defineLRh=LRh(U):=(U/β)

1/2

whereU is some chosen velocity scale, and whereβ de-
notes the background PV gradient, theq̄y of the initial, sta-
tistically homogeneous state. With the choice (1) for U we

then have yet another scale, max
(
LRh, LRh

2/LD

)
, for the

jet spacing or PV staircase step size or retrograde jet width
(DM08, Sect. 6) – even though this, too, is sometimes called
the Rhines scale.

4 Straight and meandering jets

Scott and Polvani (2007) have presented an interesting
forced-dissipative shallow-water model study of Jupiter’s
jets, in which it is clear from PV maps (their Fig. 9b, c)
that the jets meander strongly in high latitudes whereLD val-
ues are smallest. The real planet’s high-latitude jets meander
much less, so may correspond to a model either with larger
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LD or, perhaps more likely, with weaker forcing and weaker
dissipation. In low latitudes the jets have less room to mean-
der, having a spacing not much greater than the localLD by
the usual estimates, and indeed are strikingly straight in the
model just as they are on the real planet.

The high-latitude meandering in the model resembles that
of the principal jets in the terrestrial oceans such as the Gulf
Stream, Agulhas and Kuroshio currents (e.g., Niiler et al.,
2003), and of the jets in the Antarctic Circumpolar Current
(e.g., Hughes, 1996), for all of which the effectiveLD values
are small enough for the jets to behave as if isolated, thus
having plenty of room to meander.

Having plenty of room is not enough by itself, of course.
Also relevant are topographic forcing and the long-wave
asymptotics of Eq. (3) and its generalizations. The cor-
responding group velocity along the jet is asymptotically
3
2UL

2
D k

2, tending to zero with respect to the jet surround-
ings. So an isolated jet viewed on large scales�LD has a
flaccidity related to this low group velocity and to the short
rangeO(LD) of the PV inversion operator,L−1 in Eq. (2b).
The jet is almost like an elastic thread under zero tension,
or a tube made of some material that’s hard to cut but easy
to bend and stretch. It is a coherent structure that hangs to-
gether strongly while being easy to push sideways, to form
a large-amplitude undulation or river-like meander that has
little influence either upstream or downstream.

Indeed, so large can such meanders become that their side-
ways slopes can go through infinite and then negative val-
ues, forming loops that close on themselves and reconnect,
billabong-like, to spawn “Gulf Stream rings”, that is, vor-
tices with cores significantly larger thanLD. Similarly large
vortices are much in evidence at high latitudes in Scott and
Polvani’s (2007) Fig. 9c, for whichLD at the pole is 1% of
Jupiter’s radius, about 3 times smaller than values thought to
be realistic. The more realistic Fig. 9b shows meanders but
fewer vortices.

The nonlinear solutions shown in Nycander et al. (1993),
for the idealized sharp jet, have a very similar looping be-
haviour; and they show that the smallness of the group veloc-
ity for small wavenumberk�LD

−1, hence the flaccidity of
isolated jets viewed on large scales, is another property that
survives generalization to large-amplitude meanders. For
larger values ofk∼LD

−1, (3) implies that the jets are, by
contrast, relatively stiff, helping to account for the extreme
straightness of Jupiter’s low-latitude prograde jets.

5 The hyperbalance equations

So how far can we push the concepts of balance and PV
invertibility? And what does it take to do accurate PV in-
version in a completely consistent way? As the foregoing
illustrates, along with countless other examples, it is diffi-
cult to imagine a more fundamental pair of questions about
atmosphere-ocean dynamics (e.g., Hoskins et al., 1985). The

simplest context in which the question is nontrivial is that of
the shallow-water equations. I still remember my astonish-
ment in the 1980s at seeing, in that context, just how accu-
rate inversion can be – how nearly complete is the dynamical
information contained in the PV field – in parameter condi-
tions far outside those in which balance and invertibility are
justifiable through formal asymptotics. For instance, local
Froude and Rossby numbers could be pushed to somewhere
near unity. Thus, flow speeds could be of the same order,
numerically, as local gravity-wave speeds. This discovery
emerged from the thesis work of Warwick Norton, a research
student working with me at the time (Norton, 1988; see also
McIntyre and Norton, 1990, 2000).

There followed a rather slow and tortuous history of efforts
to make sense of the discovery and to better understand the
properties of accurate PV inversion and balanced evolution,
with partial success. The accuracy has something to do with
the relative smallness ofLD under the more extreme parame-
ter conditions, making jets thin and flaccid and PV inversion
a short-range operation. The flaccidity seems to persist as
Froude and Rossby numbers increase toward unity. Since
it’s relative to the jet surroundings that the long-wave group
velocity is low, the Galilean-invariance conundrum discussed
in Sect. 7 of McIntyre and Norton (2000) also becomes eas-
ier to understand. The most accurate balance conditions are
pivoted around∂/∂t , as in Eqs.(10) below, rather than around
the material time derivative. And∂/∂t measures the un-
steadiness of the meander shapes, for which the timescales
tend to be longer than for the river-like flowthrough the
meanders.

Another line of attack, in which Rupert Ford led the way,
was to try to understand a related phenomenon, the weak-
ness of spontaneous imbalance, the spontaneous-adjustment
emission of inertia-gravity waves by unsteady vortical mo-
tions. Again, thin-jet flaccidity helps to explain why such
wave emission is even weaker than hinted at by the classi-
cal Lighthill-type theories. Rupert’s last publication in this
area was posthumous (Ford et al., 2002). But I don’t think
anyone has fully penetrated any of these problems, as yet,
despite efforts going back to the 1996 Isaac Newton Institute
Programme on theMathematics of Atmosphere and Ocean
Dynamicsand more recently at the 2006 Seattle workshop
on Spontaneous Imbalance, now the topic of anotherJ. At-
mos. Sci. Special Collection to which I contributed.

There has, however, been one significant recent advance in
our understanding of accurate PV inversion operators, which
I first reported at EGU 2006 and will now sketch briefly. In
the course of all these efforts another colleague, Ali Mohe-
balhojeh, noticed that, despite their prodigious success, all
the accurate PV operators then known have an inconsistency
built into them, underlying the technical difficulties flagged
in Sect.1 (Mohebalhojeh, 2002). For more about the tortuous
history, the interested reader can websearch on the phrases
“discovered to my embarrassment” and “non-Hamiltonian
velocity splitting”. To cut a long story short, the upshot was
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the discovery of a new class of highly accurate PV inversion
operators and associated balanced models that are free of all
such difficulties (MM07a,b). “Velocity splitting” refers to
the fact that, implicitly, all the older accurate balanced mod-
els have two velocity fields, one to advect mass and the other
to advect and evaluate the PV. The difference was tiny, well
hidden within numerical truncation errors, but – unlike the
different kind of velocity splitting found in Hamiltonian bal-
anced models (McIntyre and Roulstone, 2002) – it precluded
an exactly-consistent PV inversion operation.

The new balanced models were given the generic name
“hyperbalance equations” because they can be viewed as
natural generalizations, to arbitrary formal accuracy, of the
Bolin-Charney “balance equations” which, as is well known,
are accurate to only two orders in the Froude and Rossby
numbers. Even in their simplest versions, the hyperbalance
equations are highly implicit. Moreover, they are integro-
differential equations involving variational or functional dif-
ferentiation. That could be why they were not discovered
long ago. MM07a defines them for continuously stratified as
well as for shallow-water systems.

The formally simplest member of the class, which applies
tof -plane shallow water with no bottom topography, may be
stated as follows. The single prognostic equation is

∂Q

∂t
= −u · ∇Q , (4)

material invariance of PV, whereQ is the exact PV. For the
shallow-water system the velocity field isu=(u, v), a func-
tion of horizontal positionx=(x, y) as well as of timet , and
∇:=(∂x, ∂y), while the exact PV is defined by

Q :=
f + ζ

H + h
(5)

(Rossby, 1936). Heref is the constant Coriolis parameter,
ζ the relative vorticity,H the area-mean layer depth andh
the variable free-surface departure fromH, such thatH+h >

0. It will be convenient to defineLD as exactly(gH)1/2/f
whereg is the gravitational acceleration, even thoughh need
not be small in any sense. Denoting the divergence byδ, we
use a Helmholtz decomposition

u = uζ + uδ where uζ := ẑ × ∇∇
−2ζ and uδ := ∇∇

−2δ

(6)
with suitable boundary conditions; hereẑ ×∇ :=(−∂y, ∂x).

In order that the single velocity fieldu shall exactly advect
mass, as well as exactly advecting and evaluating the PV, the
divergence fieldδ must satisfy the implicit elliptic equation

Lδ =
1

LD
2
∇·

(
uζ
f

)
− ∇

2
∇·

(
uh
H

)
+

aR
aQ

�(u ·∇Q) (7)

whereL denotes∇2
− LD

−2, the same modified Helmholtz
operator as in Eq. (2b). For a detailed derivation and mo-
tivation the reader may consult MM07a. In the last term,
R is a nonlocal function of theQ field to be defined shortly,

anda denotes variational differentiation with respect to that
nonlocal dependence. The last term is crucial to eliminating
the inconsistency found by Mohebalhojeh. This was proved
in MM07a. See Sect. 3 therein, and the end of Sect. 4 therein.
The symbol� denotes the unweighted inner product over the
physical domain, defined such that the small variationaR(x)
in R induced by an arbitrary small variationaQ(x) is given
by

aR(x) =
aR
aQ

� aQ :=

∫ ∫ aR{x ; Q(·)}

aQ(x′)
aQ(x′) dx′dy′

(8)
where the integral is taken over the physical domain.

In order to defineR itself we need to introduce a set of
auxiliary variables, to be denoted byδ(n)a , ζ (n)a , and h(n)a .
They can be regarded as diagnostic estimates of the time
derivatives∂ nδ/∂tn, ∂ nζ/∂tn, and∂ nh/∂tn. Being purely
diagnostic quantities, they are not to be confused with true
time derivatives. With the sole exception of (4) the equations
are strictly diagnostic. In order to have a balanced model in
the standard sense, it is crucial that (4) be the only prognostic
equation in the system.

Allowing at least some of the diagnostic estimates to differ
from the true time derivatives – even if only by tiny amounts
– is also crucial both to attaining high accuracy and to elim-
inating the inconsistency found by Mohebalhojeh. In par-
ticular δ(1)a means a diagnostic estimate of∂δ/∂t , andδ(0)a a
diagnostic estimate ofδ itself; and it is crucial that the corre-
sponding values be allowed to differ slightly.3 By contrast, in
this simplest version of the hyperbalance equations we can,
and do, consistently takeζ (0)a =ζ and h(0)a =h.

We may now defineR by

R =
−1

f 2LD
2

{
δ(1)a + ∇·

(
u(0)a ·∇u(0)a

)}
(9)

where, for some integerM defining the formal order of ac-
curacy,

δ(n)a = f ζ (n−1)
a − g∇2h(n−1)

a − ∇ · (u · ∇u)(n−1)
a

(n = 1, . . . , M+1) (10a)

ζ (n)a = −f δ(n−1)
a − ∇ · (uζ )(n−1)

a (n = 1, . . . ,M) (10b)

h(n)a = −Hδ(n−1)
a − ∇ · (uh)(n−1)

a (n = 1, . . . ,M) (10c)

u(n)a = u(n)aζ + u(n)aδ (n = 0, . . . ,M) (10d)

3A squared norm such asε2
: =

∫∫
(δ
(0)
a −δ)2dxdy can be re-

garded as an autonomous measure of the inaccuracy of the balanced
model and, therefore, of the corresponding PV inversion. As in
Sect. 7 of McIntyre and Norton (2000), minimization of quanti-
ties like ε over reference frames can be used to make the system
Galilean invariant; and it is becoming apparent that the favoured
reference frames are those in which the jets are most river-like, i.e.,
in which the meander shapes are closest to stationary.
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with4

u(n)aζ = ẑ×∇∇
−2ζ (n)a and u(n)aδ = ∇∇

−2δ(n)a (11)

and

δ(M)a = δ(M+1)
a = 0 . (12)

The notation( )(n)a outside a product is defined to mean the
Leibniz formula for thenth time derivative of the product
with the diagnostic estimates substituted. The last two equa-
tions (12) serve to close the system, for given formal accu-
racyM, as counting the variables will verify. Other such
closures or truncations are possible. Examples are the trun-
cations first explored in Mohebalhojeh and Dritschel (2001)
and summarized in MM07a. The nonlocal functional depen-
dence ofR on theQ field is defined by (9)–(12), for arbitrary
M, together with (5) and ζ (0)a =ζ , h(0)a =h.

Equations (10a), (10b) and (10c) can be recognized as
diagnostic estimates of the exact shallow-water divergence,
vorticity and mass-conservation equations and their time
derivatives. As already emphasized, the distinction between
time derivatives∂n/∂tn and their diagnostic estimates is cru-
cial throughout. The only prognostic equation in the system
is (4), with its single time derivative. The remaining equa-
tions can be regarded as defining an accurate PV inversion
operator, delivering theu andh fields diagnostically when
theQ field is given.

This completes the definition of the hyperbalance equa-
tions, which in this simplest case are just the equations above,
(4)–(12) with ζ (0)a =ζ and h(0)a =h. Numerical integration
of this system is of course not trivial. One method is de-
scribed in MM07b. It was used there in a careful investi-
gation of the actual numerical accuracy, as judged against
primitive-equation evolution. The “fuzziness of the slow
quasimanifold” (e.g., Warn 1997; Ford et al., 2000 & refs)
precludes convergence to perfect accuracy; and, not sur-
prisingly, the accuracy behaves quasi-asymptotically. It im-
proves at first, asM increases from low values, then de-
teriorates. At the fairly high Froude and Rossby numbers
considered in MM07b, the deterioration begins atM val-
ues around 3 or 4. For lower Froude and Rossby numbers,
the quasimanifold is thinner and the deterioration begins at
higherM values.

The hyperbalance equations represent what had long
seemed to me an unattainable prize, a class of non-
Hamiltonian PV-conserving balanced models competitive
with all known balanced models in terms of accuracy while
also, unlike its predecessors, exactly conserving not only
mass but also, by implication, all the non-Hamiltonian
Casimirs including the potential enstrophy. The competi-
tive accuracy found in MM07b surprised me, and I think
would have surprised Rupert also. I for one had long

4In MM07b there is a typographical error,(n−1) for (n) in
Eq. (2.3d), the counterpart of (10d)–(11) above. The error occurs
just after the first equals sign.

thought that the suppression, in balanced models, of the lo-
cal mass rearrangement involved in spontaneous-adjustment
emission would imply a tradeoff between accuracy and ve-
locity splitting.

It is still possible that MM07b does not represent the last
word on this issue. There, the investigation of numerical ac-
curacy was restricted to the shallow-water system. So it re-
mains possible that a tradeoff will be found for two-layer and
multi-layer models, in which the path of one jet can cross that
of another in a different layer.

The hyperbalance PV inversion operator defined by (5)–
(12) gives results qualitatively like all the familiar quasigeo-
strophic results, such as (1), but incomparably more accurate.
Like its accurate predecessors it is a weakly nonlinear opera-
tor. The corresponding balanced dynamics still involves only
a single time derivative acting on a single scalar field – (4)
and its generalizations expressing departures from material
invariance of PV – with everything else determined diagnos-
tically. So it has the same far-reaching consequences. These
include jet self-sharpening and the one-way phase propaga-
tion of Rossby waves, quite unlike the two-way propagation
of classical waves, for which the time derivatives always oc-
cur in pairs.

6 Concluding remarks: the Taylor identity

What should be meant by disturbing a jet “in almost any
natural way”? The fluid flows under consideration are all
characterized by the approximate material invariance of PV,
Eq. (4) with an appropriate definition ofQ. It would seem
reasonable, therefore, to class as unnatural any turbulence
experiment with artificial forcing that interferes too strongly
with PV evolution. Phenomena like PV mixing, jet self-
sharpening, and PV staircase formation are unlikely to be
well represented in experiments that strongly violate Eq. (4),
especially if they violate it in an unnatural or unphysical way.
Of course real flows like that on Jupiter, and in the terrestrial
atmosphere and oceans, must also violate (4). However, we
may safely assume that they violate it not only in a natural
way but also much less strongly than in some turbulence ex-
periments.

Thinking about how to disturb a jet naturally is another
way to appreciate the basic point that, in the real fluid flows in
question, there is no such thing as turbulence without waves.
The most obvious natural way to disturb a jet without violat-
ing (4) is to send in Rossby waves from somewhere else. If
the jet profile is already sharp enough to make it a Rossby
waveguide in the horizontal, then for real, baroclinic jets the
most natural thing is to send in the waves from above or be-
low. What often happens, in reality, is that the waves prop-
agate or diffract up the jet axis from below, as with ocean
jets that feel the bottom topography (Hughes, 1996 & refs).
Other wave sources may serve equally well. One example is
low-level baroclinic instability, when nonlinearly saturating
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or occluding (Thorncroft et al., 1993 & refs). In the case
of Jupiter, Richard Wood and I are currently exploring the
idea that the excitation from below comes directly from large
eddies in the thermally-convecting layers beneath the outer-
most stratified layers, acting somewhat like time-dependent
bottom topography.

The requirement for waves to be involved, and therefore
radiation stresses, is underlined by the simple fact that, in
jet-sharpening or other PV-mixing scenarios, or indeed in al-
most any thought experiment in which a zonally averaged
PV distribution is changed somehow, PV inversion dictates
that the angular momentum distribution must change. It must
change in a perfectly definite way, with net change gener-
ally nonzero. DM08 gives specific examples. In the sim-
plest PV-mixing scenarios – simple surf-zone or staircase-
step formation starting from a uniform background PV gra-
dient – the net angular-momentum change is robustly neg-
ative or retrograde, as is easy to show (DM08, Eq. (7.2)).
The negative sign is part of the chirality arising from the
single time derivative in (4) as with the one-way, retrograde
phase propagation of the Rossby waves themselves. Thus jet
self-sharpening by Rossby-wave breaking entails decelerat-
ing one or both jet flanks, as well as accelerating the core.5

And in general there must be a radiation-stress field that me-
diates the angular-momentum changes. Thus PV mixing is
something that in general needs to be “catalysed” by a suit-
able radiation-stress field, due for instance to momentum
transport by Rossby waves, a point further underlined by
the well-known Taylor identity, or Taylor-Bretherton iden-
tity, Eq. (13) below.

The terrestrial winter stratosphere illustrates all these
points in great detail. It efficiently mixes PV over vast areas,
mostly in the midlatitude Rossby-wave surf zone. The well-
observed stratospheric global-scale (Brewer-Dobson) circu-
lation is persistently poleward. It is poleward because of
the radiation stress. In a zonally averaged description, the
winter stratosphere feels a persistent retrograde force aris-
ing from the radiation-stress field of the breaking planetary-
scale Rossby waves coming up from below, mostly in zonal
wavenumbers 1 and 2. The abovementioned gyroscopic-
pumping movie shows a case of mostly wave 2. Not only is
the polar night jet being sharpened and re-sharpened through-
out the winter – by the efficient PV mixing catalysed by the
Rossby-wave radiation or diffraction stress exerted from be-
low – but, on average, around latitude circles intersecting the
surf zone, air is being pushed persistently westward. So, in

5The exceptional case of zero net angular-momentum change
is extensively analysed by Dunkerton and Scott (2008). That case
can be realized through artificial forcing having zero resultant ex-
ternal force. The simplest such forcing consists of fluctuating force
dipoles, producing vortex quadrupoles. It is sometimes discussed
under the heading “Welander’s massless goldfish” (P. B. Rhines,
personal communication). PV pair-production is involved, and
therefore PVunmixingas well as mixing.

the zonally-averaged dynamics, the strong Coriolis effects
try to turn the air poleward. This amounts to a mechani-
cal pumping action, pushing air poleward and then mostly
downward (Haynes et al., 1991) against infrared radiative re-
laxation. It is almost exactly the same thing as Ekman pump-
ing apart from the different origin of the retrograde force.
Both things can reasonably be described as cases of “gyro-
scopic pumping”, flagging the crucial role of the strong Cori-
olis force. There are well known consequences for the distri-
butions of ozone and other greenhouse gases.

To the extent that quasigeostrophic descriptions are qual-
itatively relevant, and zonally-averaged thought experiments
useful, the symbiosis between wavelike and turbulent dy-
namics is beautifully summarized by the well-known Tay-
lor or Taylor-Bretherton identity (Taylor, 1915; Bretherton,
1966), which is valid for arbitrary disturbance amplitude and
therefore applicable to turbulence as well as to waves:

v′q ′ =
1

ρ0

(
∂F

∂y
+
∂G

∂z

)
. (13)

It says that an eddy PV fluxv′q ′, such as that due to PV mix-
ing, is tied to the radiation-stress divergence. The radiation
stress is defined to quasigeostrophic accuracy as havingxy

andxz components

(F, G) := ρ0(z)

(
− u′v′,

f0 v′θ ′

N2

)
(14)

whereθ is the buoyancy acceleration,N(z) the vertical pro-
file of buoyancy frequency,f0 a constant nominal value
of the Coriolis parameter, andρ0(z) a background vertical
density profile∝ exp(−z/Hp) with Hp the pressure scale
height. The vertical componentG, crucial to the whole
picture sketched above, is what dynamical oceanographers
call the form stressacross an undulating stratification sur-
face (Bretherton 1969). For historical reasons(F,G) is also
called the Eliassen-Palm flux or effective momentum flux.
The sign convention in (14) makes flux directions correspond
to Rossby-wave group velocities, when applicable. The qua-
sigeostrophic disturbance streamfunction and PV satisfy

∂2ψ ′

∂x2
+
∂2ψ ′

∂y2
+

1

ρ0

∂

∂z

(
ρ0f

2
0

N2

∂ψ ′

∂z

)
= q ′ , (15)

from which (13) follows after a line or two of manipulation
using ( )x = 0 and {u′, v′, θ ′

} = {−ψ ′
y, ψ

′
x, f0ψ

′
z}. The

shallow-water counterpart of (13), with q ′ defined as in (2b),

v′q ′ = −
∂

∂y
u′v′ , (16)

holds regardless ofLD values. So (16) holds even when
LD→∞, the case originally considered by Taylor (1915) in
another context, here corresponding to an atmosphere with
an artificial rigid lid. If steady or time-dependent bottom
topography is introduced, then a form-stress termf0v′η′
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must be added on the right, whereη(x, y, t) is topographic
height expressed as a fraction of mean layer depth.

Artificial forces do not break (13) and (16). Nor do they
break the PV invertibility principle, here expressed by (15)
with suitable boundary conditions, unless the artificial forces
are so strong as to interfere with balance. It is the rest of
the picture that changes. In experiments that strongly vio-
late Eq. (4) the PV flux, v′q ′, becomes powerless to bring
about the kinds of rearrangements of the PV field that we
call stirring and mixing. An extreme case would be an arti-
ficial forcing, or for that matter an artificial dissipation, that
systematically accelerates fluid elements retrogradely or pro-
gradely. With such artifices one can generate any jet structure
one pleases. The implication is that, in turbulence experi-
ments with artificial forces, it would be useful to pay atten-
tion to momentum or impulse injection as well as to energy
injection.

Alongside an awareness of the radiation-stress field these
considerations impinge on whether we can claim to under-
stand, for instance, the superrotation of equatorial plane-
tary atmospheres such as Jupiter’s. Experience with our
own terrestrial equatorial superrotation, the stratospheric
quasi-biennial oscillation in its prograde or eastward phase
(e.g., Baldwin et al., 2001 & refs), calls attention to the
radiation-stress fields of several hybrid wave types in ad-
dition to those of Rossby and gravity waves. Plumb and
Ferrari (2005), Eqs. (22)–(27), go beyond the limitations of
quasigeostrophic theory to present some pertinent general-
izations of the Taylor identity.

Acknowledgements.I am indebted to Uwe Harlander for his kind
encouragement to produce this paper and for invitations to EGU
symposia, and to Walter Robinson and the other organizers of the
2006 AGU Chapman Conference onJets and Annular Structures
in Geophysical Fluids, held in January 2006 at Savannah, Georgia.
The resulting conversations and emails taught me much about
the current state of knowledge in the atmosphere-ocean dynamics
and geophysical turbulence communities. Shafer Smith, Andy
Thompson, Richard Wood and two anonymous referees helped
me to clarify the manuscript. Over a longer timespan John Allen,
David Dritschel, Boris Galperin, Peter Haynes, Ali Mohebalhojeh,
Warwick Norton, Tim Palmer, Peter Rhines, Ian Roulstone, Ted
Shepherd, and the late Peter Killworth – another brilliant, generous,
and much-loved colleague – all made important contributions
to my understanding of these topics, as did Rupert Ford, who
took such joy in what Richard Feynman called the pleasure of
finding things out, and who inspired me and so many of my
colleagues during his brief but brilliant career. Colleagues may
like to be reminded that the UK Royal Meteorological Society
administers a Rupert Ford Memorial Fund to assist young scientists.

Edited by: U. Harlander
Reviewed by: two anonymous referees

References

Armi, L. and Flament, P.: Cautionary remarks on the spectral inter-
pretation of turbulent flows, J. Geophys. Res., 90(C6), 11 779–
11 782, 1985.

Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes,
P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I.,
Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt,
C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation,
Revs. Geophys., 39, 179–229, 2001.

Baumert, H. Z., Simpson, J. H, and Sündermann, J. (Eds.): Marine
Turbulence: Theories, Observations, and Models, Cambridge,
University Press, 2005.

Beron-Vera, F. J., Brown, M. G., Olascoaga, M. J., Rypina, I. I.,
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