
PHYSICAL REVIEW E 104, 055108 (2021)

Stabilizing viscous extensional flows using reinforcement learning

Marco Vona and Eric Lauga *

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom

(Received 29 July 2021; accepted 26 October 2021; published 29 November 2021; corrected 30 November 2021)

The four-roll mill, wherein four identical cylinders undergo rotation of identical magnitude but alternate signs,
was originally proposed by G. I. Taylor to create local extensional flows and study their ability to deform small
liquid drops. Since an extensional flow has an unstable eigendirection, a drop located at the flow stagnation point
will have a tendency to escape. This unstable dynamics can, however, be stabilized using, e.g., a modulation of
the rotation rates of the cylinders. Here we use reinforcement learning, a branch of machine learning devoted
to the optimal selection of actions based on cumulative rewards, in order to devise a stabilization algorithm
for the four-roll mill flow. The flow is modelled as the linear superposition of four two-dimensional rotlets
and the drop is treated as a rigid spherical particle smaller than all other length scales in the problem. Unlike
previous attempts to devise control, we take a probabilistic approach whereby speed adjustments are drawn
from a probability density function whose shape is improved over time via a form of gradient ascent know as
actor-critic method. With enough training, our algorithm is able to precisely control the drop and keep it close
to the stagnation point for as long as needed. We explore the impact of the physical and learning parameters on
the effectiveness of the control and demonstrate the robustness of the algorithm against thermal noise. We finally
show that reinforcement learning can provide a control algorithm effective for all initial positions and that can
be adapted to limit the magnitude of the flow extension near the position of the drop.

DOI: 10.1103/PhysRevE.104.055108

I. INTRODUCTION

In his landmark 1934 paper, and one of his most cited
works, G. I. Taylor proposed a device to study drop deforma-
tion and breakup in a two-dimensional flow [1]. Now called
the four-roll mill [2], the apparatus used electrical motors to
rotate four identical cylinders immersed in a viscous fluid.
Spinning all cylinders at the same speed (in magnitude), with
adjacent cylinders rotating in opposite directions, led to an
approximately extensional flow with a stagnation point at the
center. Taylor aimed to study how the extension rate of the
flow deformed the drop, when this was placed and kept stable
at the stagnation point.

The stagnation point at the center of an extensional flow
is a saddle. The unstable nature of the stagnation point made
the drop in Taylor’s experiment difficult to control, and the
speed had to be varied in real time to compensate for the drop
moving off in the wrong direction [1]. Over 50 years later, a
more systematic method to stabilize the motion of the drop
was proposed by Bentley and Leal [3]. Using a camera to
measure the drift of the drop and computer activated stepping
motors to adjust the revolution rates, they modulated the rota-
tion speeds of the cylinders using a simple feedback model
where the position of the stagnation point was the control
variable.

This newly discovered control scheme allowed further
advances in our understanding of capillary flows [4], in par-
ticular the deformation of drops in shear flows [5]. In more

*e.lauga@damtp.cam.ac.uk

recent work, microfluidic devices have been used to control
the deformation of small drops [6,7]. In particular, microflu-
idic implementations of the four-roll mill [8,9] and of related
Stokes traps [10–12] have led to pioneering techniques for
trapping and manipulating on small scales.

It is a simple mathematical exercise to show that an exten-
sion flow is unstable. Approximating the small drop by a point
particle, its trajectory in the steady flow field u(x) is solution
to ẋ = u(x). If the center of the apparatus is used as the origin
of the coordinate system 0, then we have u(0) = 0 by sym-
metry and can therefore approximate ẋ ≈ ∇u(0) · x near the
origin. The extensional flow is irrotational and, since the flow
is incompressible, the tensor ∇u is symmetric and traceless.
Therefore, it has real eigenvalues of identical magnitude but
opposite sign, λ > 0 and −λ < 0. The center of the extension
flow is thus a saddle point, with basin of attraction parallel
to the unidirectional compression and instability in all other
directions (see streamlines in Fig. 1).

In this paper, we aim to design a different type of algorithm
to drive the drop back when it drifts in the unstable direction.
The natural way to correct the trajectory is to adjust the angu-
lar rotation rates of the cylinders, but to do so deterministically
requires a control model describing the response of the drop
to changes in the flow field and for that control scheme to
be implemented in real time. This was the rationale for the
algorithm proposed in Ref. [13] using the position of the
stagnation point as the control variable. In this paper, instead
of a physics-based control scheme we devise a stabilization
algorithm using the framework of reinforcement learning [14].

Reinforcement learning is a branch of machine learning
that allows a software agent to behave optimally in a given

2470-0045/2021/104(5)/055108(16) 055108-1 ©2021 American Physical Society

https://orcid.org/0000-0001-6497-5868
https://orcid.org/0000-0002-8916-2545
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.055108&domain=pdf&date_stamp=2021-11-30
https://doi.org/10.1103/PhysRevE.104.055108

MARCO VONA AND ERIC LAUGA PHYSICAL REVIEW E 104, 055108 (2021)

Ω11 Ω12

Ω22Ω21

x

y

2a

2L

FIG. 1. Schematic representation of the four-roll mill setup
where four rotating cylinders of radius a and located on a square of
side length 2L create an extensional flow near the center of the (x, y)
coordinate system. The angular velocities of the cylinders are de-
noted by �i j , with i, j = 1, 2. The goal of our reinforcement learning
algorithm is to stabilize the motion of viscous drops inside a small
square area shown schematically in gray, following the experiments
in Ref. [3] (not to scale). The streamlines shown are from the model
flow from Eq. (2) in the case where the angular velocities follow the
symmetric values from Eq. (3).

environment (state space) via observation of environmental
feedback. In essence, the agent explores the environment by
taking actions (which can be anything from moves in chess
to steering in a self-driving car) and receiving positive or
negative feedback accordingly. Feedback comes in the form
of rewards, which, when suitably added together, make up the
return associated with the overall performance. The goal of
reinforcement learning is, in general, to learn how to maxi-
mize this return by improving the agent’s behavior [14]. The
learning algorithms designed to achieve this vary significantly
depending on the nature of the state space (e.g., continuous
or discrete, finite or infinite) and on the agent’s knowledge
of the effect of actions. When only finitely many actions are
available, finding the best behavior is often entirely algorith-
mic. If, however, there is a continuum of states and actions,
exploration is typically harder and local improvements to the
behavior have to be found via gradient methods.

Reinforcement learning has found countless applications in
recent years, with significant impact already in fluid dynamics
[15,16]. For applications in flow physics at high Reynolds
number, reinforcement learning has been used for bulk flow
control [17,18], the control of free surfaces [19] and liquid
films [20], shape optimization [21], turbulence modeling [22],
and sensor placement [23]. Biological and bioinspired appli-
cations at high Reynolds numbers include control and energy
optimization in fish swimming [24–26], gliding and perching
[27], and locomotion in potential flows [28]. A landmark
study even demonstrated how to exploit reinforcement learn-

ing in experimental conditions for turbulent drag reduction
in flow past bluff bodies [29]. Applications in the absence
of inertia have been motivated by biological problems in
navigation and locomotion and include optimal navigation
and escape of self-propelled swimmers [30–32], learning to
swim [33,34], and to perform chemotaxis [35] or even active
cloaking [36]. Reinforcement learning was also incorporated
in experiments using artificial microswimmers navigating in
noisy environments [37].

In our study, we show how to use the framework of re-
inforcement learning to successfully control the position of
a drop in a model of the four-roll mill setup. The flow is
modelled as the linear superposition of four two-dimensional
rotlets and the drop treated as a rigid spherical particle smaller
than all other length scales in the problem. Our state space is a
small neighborhood of the unstable equilibrium in the result-
ing two-dimensional extension flow, and our actions consist
of varying the speed of the cylinders at each time step. We
reward actions depending on whether the speed adjustment
moves us toward the origin during the time step. Since this is a
low-Reynolds-number setup, we can assume that the flow and
the drop both respond instantaneously to speed modulation,
so that the outcome of an action depends only on the drop’s
current position and not on its current speed or acceleration.
The chosen learning algorithm is a classic actor-critic method
based on gradient ascent. Actions are determined by a set of
parameters that are varied, at every time step, in the direction
of an estimate of the gradient of performance with respect to
these parameters.

After introducing the flow model in Sec. II, we give a quick
overview of reinforcement learning in Sec. III along with a de-
scription of our algorithm. The various physical and learning
parameters are summarized in Sec. IV. We then demonstrate
in Sec. V that, with the right choice of parameters, our algo-
rithm is effective at stabilizing the drop from any initial drift.
Next, in Sec. VI, we explore the impact of the various physical
and learning parameters on the effectiveness of the algorithm.
Finally, in Sec. VII we address the robustness of the algorithm
against thermal noise, its ability to provide a global policy
for all initial positions, and how to modify the algorithm to
enable control of the magnitude of the flow extension near the
position of the drop.

II. FLOW MODEL AND TRAJECTORIES

A. Flow

As a prototypical device generating an extension flow, we
consider a simple model for a two-dimensional four-roll mill.
The flow is generated by four identical cylinders centered at
the corners of a square of side length 2L. All lengths are
nondimensionalized by L so that the centers of the cylinders
are located at (±1,±1) in a (x, y) Cartesian coordinate system
(see Fig. 1). Motivated by application in microfluidics, we as-
sume that the rotation rates of the cylinders are small enough
that all inertial effects in the fluid can be neglected. We further
assume that the cylinders are sufficiently long and far away
from each other that we can approximate the flow created by
each cylinder as a two-dimensional rotlet [38,39], i.e., by the
exact solution for the two-dimensional Stokes flow outside an

055108-2

STABILIZING VISCOUS EXTENSIONAL FLOWS USING … PHYSICAL REVIEW E 104, 055108 (2021)

isolated cylinder in an infinite fluid. The flow induced by each
cylinder at position x is hence given by

u(x) = a2�i jez × x − ci j

|x − ci j |2 , (1)

where a is the dimensionless radius of the cylinder and where
�i j and ci j are, respectively, the angular velocity and the loca-
tion of the center of the cylinder; note that �i j > 0 indicates
anticlockwise rotation (see Fig. 1). In the limit where a � 1,
we may approximate the flow near the center of the device as
a linear superposition of the four flows from each cylinder, so
that for |x| small,

u(x) = a2
∑
i, j

�i jez × x − ci j

|x − ci j |2 . (2)

Note that this two-dimensional flow is irrotational.
As in Taylor’s original, the case where

�11 = −�12 = −�21 = �22, (3)

leads to a purely extensional flow near the origin, since the
off-diagonal entries of the velocity gradient ∇u are 0 by sym-
metry. Our reinforcement learning algorithm will then modify
the individual angular velocities �i j independently in order to
correct trajectories (see Sec. VI), so Eq. (3) holds only before
speed control is applied.

B. Drop motion

We model the viscous drop, transported by the flow and for
which we want to achieve stable motion, as a rigid spherical
particle of radius r (we thus assume that the drop is very
rigid and the capillary number small enough to not deform
it significantly). Its center, located at x(t), evolves in time
according to Faxén’s law [39],

dx
dt

=
(

1 + r2

6
∇2

)
u(x), (4)

where the flow u is given by Eq. (1). Note that for this
choice of flow the Faxén term ∝ ∇2u is identically zero
because the flow is both incompressible and irrotational and
thus ∇2u = ∇(∇ · u) − ∇ × (∇ × u) = 0. In the absence of
noise, we integrate Eq. (4) numerically with the Runge-Kutta
RK4 method. In Sec. VII A we also incorporate thermal noise
(i.e., Brownian motion) as relevant to the dynamics of small
drops.

III. REINFORCEMENT LEARNING ALGORITHM

A. Fundamentals of reinforcement learning

We begin by introducing some terminology that underpins
the rest of the work; the reader is referred to the classical book
by Sutton and Barto for a detailed treatment [14]. In reinforce-
ment learning, agents take actions that depend on their current
state and get rewarded accordingly. The mathematical basis is
that of Markov decision processes [40], which consist of the
following:

(1) A state space S to be explored, with realization s.
(2) An action space A (or As, since it may vary between

states), with realization a, which comprises the moves avail-
able at each state.

(3) A probability density function (or mass function if S is
countable) P(s′|s, a) : S × S × A → R, which determines the
probability of transitioning from state s to state s′ after taking
action a. This probability never changes during the process.

(4) A reward function R(s′, s, a) : S × S × A → R, which
gives the reward earned after transitioning from s to s′ through
action a.

The actions are drawn from a probability density function
(p.d.f.) (or mass function, if the action sets As are countable)
π (a|s) : A × S → R known as the policy. This is the function
that determines behavior. Exploration takes place in discrete
time steps. At time step t , the agent lands in state st and takes
action at , which takes it to state st+1 according to the distribu-
tion P. The probability of landing in a given state is a function
of the current state and the choice of action, so transitions
have the Markov property. If the probability distribution P or
the reward function R are not known to the agent, then this is
referred to as model-free reinforcement learning.

Since we want the agent to behave in a specific way, we
introduce a notion of return Gt from time step t + 1 onwards,
given that we are starting from state st = s at time t . We define
Gt = ∑∞

k=1 γ k−1Rt+k , where Rt is the reward earned at time
t and γ ∈ [0, 1] is known as discount factor. Multiplication
by γ k−1 ensures convergence if rewards are well behaved and
captures the uncertainty associated with long-term rewards.

From Gt we can define the state value function vπ (s) =
Eπ [Gt |st = s], which is the expected return starting from state
s and following π (we thus use E to denote expected values in
what follows). Our goal is to find (or at least to approximate)
the policy π∗ which maximizes vπ , i.e., the choice of actions
leading to maximum return.

B. Choice of Markov decision process

We now describe the simplest version of the algorithm
used in this study, with some improvements summarized in
Sec. III I. In the specific viscous flow problem considered
here, we wish to learn how to modify the motion of the cylin-
ders in order to maneuver the drop toward the origin from a
fixed starting point x0. In other words, given the default angu-
lar velocities in Eq. (3), an initial position x0 for the drop and
a sequence of time steps t0, t1, t2, . . . , we want to learn how to
change the angular velocity vector � = [�11,�12,�21,�22]
at each step so as to bring the drop as close to the origin as
possible. We will discuss how to extend this strategy to all
initial positions later in the paper.

We start by assuming that, at each time step, the angular
velocity vector � changes instantaneously and that the drop’s
position can be computed exactly and with no delay. To make
speed adjustments without the use of reinforcement learning,
we would need to know how a given change in angular ve-
locity affects the trajectory before changing the speed, which
is computationally unfeasible. Using reinforcement learning,
in contrast, we can limit ourselves to observing how the drop
reacts to a speed change in a given position and learn through
trial and error.

We can now formulate the problem in terms of a Markov
decision process, following points 1–4 in Sec. III A:

(1) We choose the state space S to be a square of di-
mensionless side length 0.1 centered at the origin (shown

055108-3

MARCO VONA AND ERIC LAUGA PHYSICAL REVIEW E 104, 055108 (2021)

schematically in Fig. 1). The drop starts somewhere inside this
square and needs to reach the origin while moving inside this
square. If the drop ever leaves this region during a run, then
we terminate execution because the drop has wandered too far.
The exact size of the region can be changed depending on the
accuracy needed, and it will come into play when we try to
find a general strategy that does not work just for x0.

(2) The action space associated with state s consists of
all allowed changes to � in that particular state. Since we
are going to use a gradient ascent method to determine the
optimal changes, it is important to keep the action space as
small as possible. If, for example, we allowed ourselves to
act on all four cylinders at every time step our policy would
become a function of position and range over all speed ad-
justments. Such complexity would be hard to approximate,
especially with a probabilistic gradient method. Instead, with
our algorithm, we only act on one cylinder at a time, thereby
reducing the dimension of A to 1. We split the plane into four
quadrants (one per cylinder) and whenever the drop is located
in a specific quadrant we only allow the cylinder ahead of it
in the clockwise direction to modify its rotation speed [this
is illustrated graphically in the insets of Figs. 2(b) and 2(c)].
An action consists of changing the angular velocity for that
specific cylinder, �i j , to some other value in a prescribed
interval [�i j − w,�i j + w], where w > 0 gives the size of
the “wiggle” room and is chosen in advance for all cylinders
(see below for more details). At the end of the time step,
we instantaneously reset the velocity of this cylinder, so that
the effect of the subsequent action only depends on the final
position of the drop. Since we have no inertia, transitions obey
the Markov property.

(3) With regard to the probability density function P, in the
absence of thermal noise each position xt+1 is a deterministic
function of xt and of the action at and is independent of xτ

and aτ for all τ < t . So we can write xt+1 = F (xt , at) for
some F , and hence the probability density function is a delta
function, i.e., P(x′

t+1|xt , at) = δ[x′
t+1 − F (xt , at)]. Note that

if we knew F exactly, then we would also know how actions
affect the trajectory, so the problem would be trivially solved.
The reason why some sort of control algorithm is needed
is precisely that F cannot be easily determined. It is worth
mentioning that, had we included inertia in the problem, we
would have needed to add the drop’s velocity and acceler-
ation to the state space in order for P to be well defined;
this increase in dimensionality would have made the problem
harder.

(4) For the rewards, we need to favor actions that move
the particle closer to the origin and punish ones that bring it
further away from it. We thus choose to reward each speed
adjustments in relation to the drop’s subsequent displacement
vector. Our choice of reward function is given by

R(xt+1, xt , at) = exp

{
−p

[
1 + (xt+1 − xt) · (xt)

||xt+1 − xt || · ||xt ||
]}

, (5)

where p > 0 is a dimensionless parameter designed to tune
the peakedness of the function inside the exponential; we
explore below how the performance depends on the value of
p (the value p = 1 will be chosen for most results). To aid
intuition, note that the reward function can also be written
as R = exp{−p[1 − cos θt]}, where θt is the angle that the

displacement vector makes with the inward radial vector −xt .
The reward is thus maximal when θt = 0 (inward radial mo-
tion) and minimal when θt = π (outward radial motion). We
found it important that our reward function evaluate actions
on a continuous scale. If, for example, we were to assign a
value of 1 to moves that point us within some angle of the
right direction and 0 to everything else, the algorithm would
regard all bad moves as equally undesirable and have difficulty
learning. An exponential dependence was chosen over other
options, such as a piecewise linear function, in order to reduce
the number of free parameters.

C. Choice of algorithm

For our reinforcement learning algorithm, we choose a
classic actor-critic method based on gradient ascent [14]. The
“actor” refers to the policy, which encodes behavior, while the
“critic” refers to the value function, which measures expected
returns. We introduce parametric approximations of both the
policy and the state value function, and then, at each time
step, vary the parameters in the direction of an estimate of
the gradient of performance with respect to the parameters.

D. Actor part of algorithm

We wish to determine the optimal policy for this problem,
i.e., the p.d.f. π (a|x) that maximizes vπ (x0) for some fixed x0.
We introduce a parametric policy of the form π̂ (a|x;C), where
C is some array that characterizes the policy, and we then
use gradient ascent on C to find a local optimum for vπ̂ (x0)
(in all that follows, when we use a subscript π̂ in the value
functions, it will always indicate implicitly a dependence on
C). In other words, if we define J (C) = vπ̂ (x0), then we will
seek to optimize for C by iterating Ct+1 = Ct + αt∇J (C)|Ct .
This will allow us to improve the policy at every time step
(so-called online learning). This is referred to as the “actor”
part of the algorithm, because the policy generates behavior.

Computing the gradient ∇J may appear difficult a priori
but can be achieved using a powerful result known as the
policy gradient theorem, proven in Ref. [14] for countable
action spaces. This theorem states that at time t the gradient is
equal to

∇J (Ct) = Eπ̂ [Aπ̂ (xt , at)∇C log π̂ (at |xt ;C)|Ct], (6)

where

Aπ̂ (xt , at) = Qπ̂ (xt , at) − vπ̂ (xt) (7)

is known as the advantage function and we have introduced

Qπ̂ (xt , at) = Eπ̂ [Gt |xt , at], (8)

which is the action-state value function.
The result in Eq. (6) suggests a practical way to implement

an algorithm to determine the parameters of the optimal pol-
icy. Specifically, we drop the expectation and, after drawing
at from the current policy (more on this below), iterate on the
parameters of the policy as

Ct+1 = Ct + αt Aπ̂ (xt , at)∇C log π̂ (at |xt ;C)|Ct (9)

at each time step. Note that this leads to an unbiased estimate
of the policy gradient because the expected value of the update
is the true value of the gradient.

055108-4

STABILIZING VISCOUS EXTENSIONAL FLOWS USING … PHYSICAL REVIEW E 104, 055108 (2021)

E. Parametric policy

We now need to write down an expression for π̂ , i.e., our
guess for the true optimal policy. Since we have a logarithm
in Eq. (6), it is convenient to write π̂ in the form

π̂ (a|x;C) = 1

K
exp[f (x, a;C)], (10)

where x = (x, y) and where

K (x;C) =
∫

A
exp[f (x, a;C)]da. (11)

For fixed (x,C), this ensures that π̂ (a|x,C) is a p.d.f. for a.
Here f can be any convenient function, and in what follows
we take it to be a polynomial in the parameters. Specifically,
we take C to be an n × m × p array and set

f (x, a;C) =
∑
i, j,k

Ci jkxi−1y j−1ak−1. (12)

As noted before, this can only work if the action space is not
too large. If, for example, we could act on multiple cylinders
simultaneously, we would need a more complex Ansatz for f
as well as a higher-dimensional array C, which would make
gradient ascent harder. Then, at time step t , the score function
∇C log π̂ (at |xt ;C)|Ct becomes a n × m × p array T t such that

Tt,i jk = xi−1
t y j−1

t ak−1
t − 1

K

{∫
A
∇C exp[f (xt , a;C)]da

}
t,i jk

= xi−1
t y j−1

t

{
ak−1

t − 1

K

∫
A

exp[f (xt , a;Ct)]a
k−1da

}

= xi−1
t y j−1

t

(
ak−1

t − Eπ̂ [ak−1|xt]
)
. (13)

In practice, we generate a second action ãt at time t and take

Tt,i jk = xi−1
t y j−1

t

(
ak−1

t − ãk−1
t

)
, (14)

where we use the subscript t to indicate that this is its value
at time step t . Then our algorithmic update for C in Eq. (9)
becomes

Ct+1 = Ct + αt Aπ̂ (xt , at)T t . (15)

Note that other choices for f are of course possible, a trun-
cated Fourier series being the obvious one, but we found
that Eq. (12) was computationally faster. Note also that Rt +
γ vπ̂ (xt+1) − vπ̂ (xt) is an unbiased estimate of the advantage
function Aπ̂ , since

Eπ̂ [Rt + γ vπ̂ (xt+1)|xt , at] − vπ̂ (xt)

= Qπ̂ (xt , at) − vπ̂ (xt) = Aπ̂ (xt , at). (16)

Therefore we can replace Aπ̂ in Eq. (15) and iterate

Ct+1 = Ct + αt [Rt + γ vπ̂ (xt+1) − vπ̂ (xt)]T t . (17)

F. Critic part of algorithm

The second, or “critic,” part of the algorithm deals with
the approximation of the value function. To make use of
Eq. (17), we replace the state value function for our policy
vπ̂ with another parametric approximation v̂π̂ (x; D), where D
is once again an array. The goal is then to determine D which
minimizes the distance H (D) = Eπ̂ [(vπ̂ − v̂π̂)2]. This can be

done numerically by using gradient descent with the update
rule

Dt+1 = Dt − 1
2βt∇H (D)|Dt , (18)

where βt > 0. Assuming that we can take the gradient inside
the expectation, we have

− 1
2∇H (D)|Dt = Eπ̂ [(vπ̂ − v̂π̂)∇Dv̂π̂ (xt ; D)|Dt]. (19)

After replacing the expectation with the corresponding unbi-
ased estimate, we then obtain the gradient algorithmic update
rule

Dt+1 = Dt + βt (vπ̂ − v̂π̂)∇Dv̂π̂ (xt ; D)|Dt . (20)

Finally, since vπ̂ (xt) = Rt + γ vπ̂ (xt+1), we can use the
approximation vπ̂ (xt) = Rt + γ v̂π̂ (xt+1; Dt) to get the final
form of the update rule as

Dt+1 = Dt + βtδt∇Dv̂π̂ (xt ; D)|Dt , (21)

where

δt = Rt + γ v̂π̂ (xt+1; Dt) − v̂π̂ (xt ; Dt). (22)

Similarly to Eq. (12), we take D to be an r × s array and

v̂π̂ (xt , D) =
∑
i, j

Di jx
i−1
t y j−1

t . (23)

Then ∇Dv̂π̂ (xt ; D)|Dt = Qt with Qt,i j = xi−1
t y j−1

t , and the up-
date becomes

Dt+1 = Dt + βtδt Qt . (24)

To ensure convergence, it is customary to make αt and βt

decay geometrically, which we do here by setting αt = αγ t

and βt = βγ t , where α and β are constants and where γ is
the discount factor [14].

G. Summary of algorithm

To summarize, the algorithm we implement works as fol-
lows:

(1) Choose the step size constants α and β;
(2) Initialize the arrays C0 and D0 to 0 and choose the drop

position x0 at t = 0.
(3) At time step t , draw a random action from π̂ (at |xt ;Ct)

and record the corresponding reward Rt and next state xt+1.
(4) Update the two parameters as

Ct+1 = Ct + αγ tδt T t , (25a)

Dt+1 = Dt + βγ tδt Qt , (25b)

where δt = Rt + γ v̂π̂ (xt+1; Dt) − v̂π̂ (xt ; Dt).
(5) Repeat until convergence.

H. Sampling from π̂

The final problem we need to address is how to sample
from Eq. (10), i.e., randomly chose an action from the ap-
proximate policy, without knowing the normalising function
K (x,C). For this we can use a technique know as rejection
sampling. Say we want to sample from a p.d.f. p(x) on I ⊆ R
but we only know Ap(x) for an unknown A > 0. We then
consider a second (known) p.d.f. q(x) on I and we take B > 0

055108-5

MARCO VONA AND ERIC LAUGA PHYSICAL REVIEW E 104, 055108 (2021)

so that Bq(x) � Ap(x) for all x in I . We generate X ∼ q and
compute

α = Ap(X)

Bq(X)
. (26)

Then we generate Y ∼ U ([0, 1]) and if Y � α we accept X ,
otherwise we reject it. Then, conditional on being accepted,
we have X ∼ p. A proof of this algorithm is given in the
Appendix.

In our case we can take q to be the uniform distribution; to
generate A it then suffices to find an upper bound for 1

K exp(f),
which is straightforward if we have a bound on each of x,
y, a. The only drawback of this method is that if α is very
small it may take a long time to find an acceptable a. To
get around this, we generate at ∈ [−L, L] and then take the
speed adjustment to be wat/L, where w > 0 is the wiggle
room size and L is the half-width of the state space. By taking
at = O(L), we can easily find a reasonably small upper bound
for f , which helps to keep α relatively large.

I. Time delays and noise

Two aspects were finally added to the algorithm in order
to make it physically realistic. First, we dropped the math-
ematical assumption that the cylidnders can change speed
instantaneously. Instead, we assumed that the computer takes
a time tlag to determine the position of the drop, accelerates
the cylinder over a time t1 and resets the velocity to its initial
value over a time t2. All these delays are included in the same
time step. In all cases, we assume that cylinders speed up
or slow down with constant angular acceleration. Second, we
allowed the drop to no longer follow a deterministic trajectory
by adding thermal noise, as explained in Sec. II B. This allows
us to test the application of the algorithm to setups on small
length scales.

IV. PHYSICAL AND REINFORCEMENT
LEARNING PARAMETERS

A. Episodes and batches

In order to estimate the best policy for a given starting point
x0, we would need to apply the actor-critic method outlined
above to an infinitely long sequence of states starting from
x0. In practice, however, this sequence has to terminate, so
it is customary to instead run a number of episodes (i.e.,
sequences of states) of fixed length tmax from x0 and to apply
the actor-critic algorithm to every state transition as usual. In
each new episode, we then use the latest estimates of C and D
as parameters.

A straightforward way to assess the speed at which learn-
ing is done is to group episodes into batches (typically of 100)
and examine the effectiveness of the values of C and D given
by the learning process at the end of each batch. To do this, we
use the values of C and D so obtained to run a separate series
of 100 episodes starting from x0 during which no learning
occurs. We then compute the average final distance to origin,
|x f |, as a proxy for the effectiveness of the control algorithm
in bringing the drop back to the origin. Note that if we were
estimating the policy for a real-world experiment, we would
stop running batches as soon as |x f | becomes suitably small,
and then use the resulting values of the parameters as our
practical control algorithm.

B. Physical parameters

In order to run the algorithm we need to fix values for
the parameters describing the flow and the physical setup in
which the drops moves. In order to use a classical study as
benchmark, we take these physical parameters from Bentley
and Leal’s four-roll mill control study [3]. This leads to the
choices of parameters as follows (all dimensions below will
thus refer to their paper):

(1) Length scales are nondimensionalized by half the dis-
tance between the centers of the cylinders (6.35 cm) and
timescales by the angular velocities (which we take to be
� = ±0.125 s−1) from Ref. [3].

(2) The radius a of the cylinders was 5.08 cm in Ref. [3] so
the nondimensionalised cylinder radius is a = 0.8. Note that
in our theoretical approach for the flow in Eq. (2), we assumed
a � 1. The experiments in Ref. [3] are therefore at the limit
of what can be captured by the simple hydrodynamic theory,
which is however useful in what follows to demonstrate a
proof of concept of our control approach.

(3) The angular velocity vector � defined in Sec. III B and
satisfying Eq. (3) is now given by [−1, 1, 1,−1].

(4) For the initial position x0 of the drop, we start by taking
x0 = [−0.03, 0.02] to test the functionality of our algorithm,
and we then extend to different starting points in Sec. V.

(5) Four time parameters have to be set: the time step (dt),
the lag (tlag) and the delays (t1 and t2). In Ref. [3] the lag was
about 0.1 s, and the motors took roughly 0.05 s to modulate
speed. We will thus take nondimensionalized values tlag =
0.0125, t1 = t2 = 0.005, and dt = 0.025. Note that because
the algorithm is only rewarded for moving the drop in the right
direction, the exact values of the time parameters actually do
not matter, as long as they all get scaled by the same factor.
In other words, we still expect the algorithm to learn if we
replace the four timescales dt , tlag, t1, and t2 with λdt , λtlag,
λt1, and λt2 for some λ > 0. Reducing the time parameters
gives of course more control over the drop, since we adjust its
trajectory more frequently.

(6) We need to set the dimensionless rotation wiggle
rooms, i.e., the range of angular velocities we allow for the
cylinders. For simplicity these are same for all cylinders, set to
be ±0.7 unless specified otherwise; we will study how varying
this parameter affects performance in Sec. VI F.

The flow velocity is given by Eq. (2) and the trajectory
of the drop is obtained by integrating Eq. (4) with the speed
parameters during each step. For numerical integration, we
employed the fourth-order Runge-Kutta scheme RK4 with
step size dt/20.

C. Actor-critic parameters

The reinforcement learning algorithm outlined above con-
tains also a number of parameters:

(1) The side length of the state space, which we always
take to be 0.1 in dimensionless units (see Sec. III B).

(2) The discount factor γ , which appears in the state-value
function. Computationally, this comes into play in both the
policy and the state value function update (see Sec. III G). We
will study the impact of varying the value of γ in Sec. VI A.

(3) The peakedness p of the reward function in Eq. (5). We
will study the impact of varying p in Sec. VI B.

055108-6

STABILIZING VISCOUS EXTENSIONAL FLOWS USING … PHYSICAL REVIEW E 104, 055108 (2021)

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

-0.04 -0.03 -0.02 -0.01 0 0.01
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

(b) (c)

(a)

FIG. 2. Illustration of the learned policy for a drop starting at the dimensionless location x0 = [−0.03, 0.02] with the algorithmic choices
α = β = 10, γ = 0.95, p = 1, N = 4 and for rotation wiggle rooms of 70% of the default angular velocity of each cylinder. (a) Drop
undergoing a zigzag motion, first toward the x axis and then toward the origin. The blue portion (i.e. in (11) quadrant) of the trajectory
indicates when the control is done by changing the value of �12 (its value is plotted in (b), with rotating cylinder shown as inset) while in the
green curve (i.e. in (21) quadrant) the change is done by tuning the value of �11 (its value is shown in (c), with rotating cylinder shown as
inset).

(4) The step size constants α and β used in the update part
of the algorithm, Eq. (25). For simplicity, we assume α = β

and will study the impact of varying their values in Sec. VI C.
(5) The size of C and D. For simplicity, we take C to be

N × N and D to be N × N × N , and choosing the value of N
is discussed in Sec. VI D.

(6) The length tmax of each episode; this will be varied in
Sec. VI E.

In our exploration, we start by choosing the values of the
algorithm parameters randomly and then we vary them one
at a time to see how they affect accuracy and learning speed.
We use the mean final distance to the origin, |x f |, to monitor
the algorithm’s success in bringing back the drop to the center
of the flow. When we compute this quantity, all parameters
remain the same as in the training episodes, and C and D are
held fixed. When find a local optimum for one parameter, we
keep it fixed at that value in subsequent simulations, thereby
leading to a set of parameters which should optimize perfor-
mance, at least locally. This exploration of parameters will be
further discussed in Sec. VI.

V. ILLUSTRATION OF LEARNED POLICY

In this first section of results, we demonstrate the effec-
tiveness of reinforcement learning in stabilizing the motion of
the drop when lags and delays are included (but not thermal
noise). We first let the algorithm practice with a given starting
point and then simulate a trajectory to assess performance
(i.e., the practical control of the drop’s motion). We will il-
lustrate the details of the learning process in Sec. VI and the
robustness of the algorithm in Sec. VII. The codes used as part
of this study have also been posted on GitHub [41] where they
are freely available.

We assume here that all physical parameters are as in
Sec. IV B and take tmax = 40. The parameters of the reinforce-
ment learning algorithm, which will be examined in detail in
Sec. VI, are taken to be α = β = 10, γ = 0.95, p = 1, and
N = 4. We also set the rotation wiggle room to be 70% of the
default angular velocity.

We start the drop at the dimensionless location x0 =
[−0.03, 0.02], estimate C, D over 700 episodes and then use
the learned policy to plot the trajectory of the controlled drop

055108-7

MARCO VONA AND ERIC LAUGA PHYSICAL REVIEW E 104, 055108 (2021)

motion. In an experiment, one would use the algorithm to
estimate the policy and then apply the control policy until
the drop is sufficiently close to the origin, after which the
cylinder could resume spinning at their default velocities.
Results are shown in Fig. 2(a), with a movie of the motion
available in Supplemental Materials [42]. Since the drop starts
in the (11) quadrant (see Fig. 1), the motion is initially only
affected by �12, i.e., the rotation rate of the cylinder ahead
of it in the clockwise direction. We show in Fig. 2(b) and
Fig. 2(c) the time evolution of �12 and �11 in blue and green,
respectively. The use of the green and blue in the trajectory
from Fig. 2(a) highlights the parts of the trajectory where
each cylinder undergoes a change in its rotation speed [the
corresponding cylinder is indicated in the insets of Figs. 2(b)
and 2(c)]. The final distance from the origin was about 0.0010,
which is smaller that the nondimensionalized value of 0.0078
required in the experiments of Ref. [13].

The results in Fig. 2 suggest a simple physical interpreta-
tion of the policy. In the absence of control, the drop would
be advected toward x → −∞, y → 0 from its initial position
(see streamlines shown in Fig. 1). The policy obtained via
the reinforcement learning algorithm causes the angular speed
�12 to undergo bursts of small increases above its steady
value (typically 50% in magnitude); when �12 is increased,
the drop is seen to undergo a small diagonal displacement
toward the x axis, while when �12 = 1 the drop experiences a
small amount of free motion. By alternating between the two,
the drop is eventually able to reach the x axis. Note that the
sharp corners in some of the pathlines are a consequence of the
absence of inertia. After reaching the x axis, the drop crosses
into the (21) quadrant, where �11 (the only cylinder we can
now act on) undergoes similar small bursts in order to bring
the drop back to the x axis. The net result of the alternating
actions of �11 and �12 is a zigzag motion on both sides of the
x axis, which eventually brings the drop acceptably close to
the origin. Note that when taking the nondimensionalization
into account, the motion displayed in Fig. 2 would take about
8 s in the original experimental setup of Ref. [13].

We next illustrate how the algorithm performs from dif-
ferent starting points, as well as how trajectories change
depending on the initial position. We again take α = β =
10, N = 4, γ = 0.95, and p = 1 and choose the same time
parameters as before. We consider six different starting
points xk located in the four quadrants, specifically x1 =
[−0.03, 0.02], x2 = [−0.01, 0.03], x3 = [0.02, 0.02], x4 =
[0.03,−0.02], x5 = [0.01,−0.03], and x6 = [−0.02,−0.04].
The algorithm trains for each point separately, i.e., it computes
a different policy for each value of xk . For each starting point,
we allow the algorithm to practice on as many batches as
needed until |x f | drops below 0.0015. This never took more
than 7 batches, i.e., 700 episodes.

We show in Fig. 3 the trajectories resulting from the
learned policies (to reduce crowding, each trajectory termi-
nates as soon as the distance from the origin at the end of
a time step becomes smaller than 0.002). In each case, the
controlled motion of the drop is shown in thick solid, while
the thins lines correspond to the paths that the drop would
follow if it were not for speed control (these paths coincide
with the streamlines in Fig. 1). In all cases, we see that the
algorithm succeeds in bringing the drop back to the origin. All

1

2

3

4

5

6

y

0.05

0.05

x

FIG. 3. Illustration of different policies learned after starting
from six different locations: x1 = [−0.03, 0.02], x2 = [−0.01, 0.03],
x3 = [0.02, 0.02], x4 = [0.03, −0.02], x5 = [0.01, −0.03], and x6 =
[−0.02, −0.04]. The learning parameters are α = β = 10, N = 4,
γ = 0.95, and p = 1. In each case we use as many batches as re-
quired to get the final position of the drop below 0.0015. We plot the
resulting policy in thick solid lines, while the thin lines show what
the drop would do in the absence of speed control.

trajectories present small diagonal drifts caused by bursts of
increased rotation, separated by free motion along the stream-
lines. Computationally, points further away from the origin
required more training; for example, finding the trajectory
starting from x3 in Fig. 3 only required 200 training runs,
while the one starting from x4 took 700.

We close by emphasizing that, in all cases illustrated in
Fig. 3, the policy is different for each starting point; in Sec. VII
we investigate whether it is possible to find a global policy that
is effective for all starting points.

VI. LEARNING PROCESS AND PARAMETERS

The previous section demonstrated the effectiveness of Re-
inforcement Learning in controlling the motion of the drop.
We now investigate how accuracy and learning speed depend
on the various parameters used by the algorithm. Then we
examine in Sec. VII how the algorithm deals with noise and
with finding a global policy. As explained in Sec. IV, learning
is assessed by running a fixed number of batches (nbatches) of
100 episodes and plotting the values of the average final dis-
tance |x f | in each batch. Since results are random, we quantify
the uncertainty in each learning curve |x f |i (1 � i � nbatches)
by generating it twice with the same parameters and returning
the average relative error

� = 1

nbatches

nbatches∑
i=1

∣∣|x f |(1)
i − |x f |(2)

i

∣∣
|x f |(1)

i

. (27)

055108-8

STABILIZING VISCOUS EXTENSIONAL FLOWS USING … PHYSICAL REVIEW E 104, 055108 (2021)

0 5 10 15 20
Batch Number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

FIG. 4. Average final distance of the drop from the stagnation
point, |x f |, as a function of the batch number for different values of
the discount factor, γ (see text for the values of the other parameters).

Since the setup is fourfold symmetric, we restrict our attention
to the case where the drop starts out in the second quadrant
(denoted by “11,” see Fig. 2).

A. Varying the discount factor γ

We start by setting p = 1, α = β = 5, N = 4, tmax = 40
and aim to find the value of the discount factor γ which causes
|x f | to decrease the fastest. We ignore the values γ = 0 and
γ = 1, since γ = 0 would result in a very shallow one-step
lookahead, and γ = 1 would not ensure γ tmax ≈ 0, while de-
cay is required in the updates of the actor-critic method. In
Fig. 4 we plot the average final distance |x f | as a function of
the batch number for different values of γ in the range (0,1).
Clearly performance improves steadily with γ , showing that
we can base our choice of actions on long-term predictions;
the larger the value of γ the more we penalize bad actions
far ahead in the future, since the kth reward gets discounted
by γ k−1. The average relative errors are small, indicating that
the variance within each learning curve is likely to be small.
Since it gave the best performance, we take γ = 0.95 in what
follows.

B. Varying the peakedness p of the reward function

To address the impact of the peakedness p of the reward
function, in Fig. 5 we plot the learning curves obtained by
running the algorithm with the values α = β = 5, N = 4,
tmax = 40, γ = 0.95, and different values of p. Small val-
ues of p, such as p = 0.01, do not adequately discriminate
between actions, while very large values (e.g., p = 10) hinder
exploration by treating all bad actions as equally undesirable,
and also take longer to run. The average relative errors are
again very small, which makes us confident that the displayed
curves are representative samples. Within a small window
from p = 0.5 to p = 1.5, the learning speed increases slightly,
but since results are all very similar we keep p = 1 in what
follows.

0 5 10 15
Batch Number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

FIG. 5. Average final distance of the drop from the stagnation
point, |x f |, as a function of the batch number for different values of
peakedness p of the reward function (see text for the values of the
other parameters).

C. Varying the gradient ascent parameters α and β

Even with the previous choices of parameters, it still takes
approximately 1000 episodes to reach a final accuracy of
|x f | = 0.005 (10 batches of 100 episodes, or more). Out of
all parameters, we found that the gradient ascent parameters α

and β have the biggest impact on learning speeds. When cho-
sen correctly, they can reduce the number of training episodes
to just a few hundred. To demonstrate this, we take tmax = 40,
N = 4, p = 1, γ = 0.95 and monitor the final average dis-
tance |x f | for various values of α = β; the resulting learning
curves are shown in Fig. 6. Performance increases steadily
with α = β. The values α = β = 10 lead to a steep learning
curve, dropping below 0.01 after only three iterations. The
only real constraint on these parameters is that they can-
not be arbitrarily large, because for γ = 0.95 the actor-critic

0 5 10 15
Batch Number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

FIG. 6. Average final distance of the drop from the origin, |x f |,
as a function of the batch number for different values of the gra-
dient ascent parameters α = β (see text for the values of the other
parameters).

055108-9

MARCO VONA AND ERIC LAUGA PHYSICAL REVIEW E 104, 055108 (2021)

0 2 4 6 8 10
Batch Number

0

0.01

0.02

0.03

0.04

0.05

0.06

FIG. 7. Average final distance of the drop from the origin, |x f |,
as a function of the batch number for different values of the array
size N (see text for the values of the other parameters).

algorithm may give very large entries for C and D, making
it hard to find a suitable B for the rejection sampling part
(Sec. III H). Furthermore, the final gradient ascent update in
each episode has size O(γ tmaxα). If we want this to be reason-
ably small for tmax = 40 and γ = 0.95, e.g., less than 1, we
should take α � 8. As in the previous simulations, the relative
errors are seen to be very small. We therefore settle on the
values α = β = 10 in what follows.

D. Varying the size N of policy and value function arrays

We next examine the impact of the size N of the policy
and value function arrays C and D. To see how this parameter
affects the final accuracy and the learning speed, we choose 5
different values of N and run 10 batches for each value (the
other parameters are kept at tmax = 40, p = 1 and α = β =
10, γ = 0.95). The learning curves are displayed in Fig. 7. We
see that the choice N = 1 performs poorly since π̂ becomes
a uniform distribution; the remaining values give very similar
results, with small relative errors �, so we keep N = 4 in what
follows.

E. Varying the step size dt and the length of episodes tmax

The accuracy of the algorithm depends strongly on the step
size dt , with larger values leading to a poorer accuracy. Fur-
thermore, for large values of dt , learning may still occur but
the learning curve is no longer steadily decreasing with batch
number because bad actions can take the drop further away
from the target. Through extensive simulations, we found
empirically that dt should be chosen so that the particle can
never move by a distance larger than the desired final accuracy
during a time step. In their original paper, Bentley and Leal
state that a dimensionless final distance of 0.0078 is enough
for their experiments [13], and since |x f | was consistently
below this threshold in the previous sections, our chosen dt
is sufficiently small.

The length of the episodes tmax is also an important pa-
rameter. To investigate how it affects performance, we fix the

0 2 4 6 8 10
Batch Number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

FIG. 8. Average final distance of the drop from the stagnation
point, |x f |, as a function of the batch number for different values
of the length of episodes tmax (see text for the values of the other
parameters).

values N = 4, α = β = 10, γ = 0.95, and p = 1 and monitor
how the learning speed depends on tmax when it is equal
to 40, 50, 80, 100. For each value, we run 10 batches of
episodes of tmax steps each, until we reach a total of 40 000
steps. This way, all batches consist of 4000 time steps and
we can compare learning speed batch by batch. The sizes of
our batches are thus, respectively, 100, 80, 50, and 40. The
resulting learning curves are shown in Fig. 8. The learning
curve seems to get steeper as tmax increases, signifying that
the algorithm takes longer to identify the optimal strategy. A
possible explanation for this result is as follows. Since γ is
very close to 1, there is very little discounting in the first few
time steps. Therefore, if tmax is large, the algorithm can afford
to pick suboptimal actions in the beginning because it has time
to recover. Conversely, if tmax is small the algorithm cannot
waste time on bad actions and needs to aim for the target from
the start. After the initial phase, the algorithm proved more
accurate for larger values of tmax, likely because the drop is
allowed to explore the environment for longer. All learning
curves consistently plateau around the |x f | = 0.001 mark and
relative errors are small. For the purpose of the experiments in
Ref. [13], performance is essentially the same in all four case,
so we keep tmax = 40, which had the smallest �.

F. Varying the rotation wiggle rooms

As a reminder, the wiggle room w is the half-width of the
window of (dimensionless) angular velocity within which the
cylinders are allowed to change their speeds. This is another
important parameter that affects learning speed. If the initial
position x0 is far from the origin, then large changes in the
fluid velocity, and therefore in the torques, may be needed to
prevent the drop from wandering out of the state space.

To illustrate this, Fig. 9 shows the learning curves obtained
from x0 (with α = β = 10, p = 1, γ = 0.95, tmax = 40,
N = 4) when the wiggle rooms are w = 0.5, 0.6, 0.7,
and 0.8. We see that errors are almost always negligible
and that even a small difference in the allowed rotations

055108-10

STABILIZING VISCOUS EXTENSIONAL FLOWS USING … PHYSICAL REVIEW E 104, 055108 (2021)

0 2 4 6 8 10
Batch Number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

FIG. 9. Average final distance of the drop from the origin, |x f |,
as a function of the batch number for four different rotation wiggle
rooms w (see text for the values of the other parameters).

significantly affects the learning speed; small wiggle rooms
mean that we need to be more precise with our choice of
actions, because we may not be able to recover from a bad
one.

From a practical standpoint, a small wiggle room might
be preferable to prevent high torques and accelerations of the
cylinders. However, a value that is too small prevents the algo-
rithm from stabilising the drop. In general, points further away
from the origin will require bigger leeways, and reducing
the wiggle rooms decreases learning performance. We keep
our wiggle rooms at w = 0.7, which gave good performance
while in general requiring less torque than w = 0.8.

G. Variance

After running a batch, we used the resulting policy to
simulate 100 episodes in order to estimate the average final
distance |x f |. Let Xi be the final distance from the origin in
the ith episode. In order for the algorithm to be useful in
practice we need consistency, i.e., for max(Xi) to be as small
as possible. To test this, we run 10 batches with the parame-
ters N = 4, α = β = 10, γ = 0.95, p = 1, and tmax = 40. For
each batch, in Fig. 10 we plot |x f | along with the range of
the corresponding Xi. We can see that the algorithm is initially
rather inaccurate, but then slowly improves and becomes more
consistent. In batch 10, all episodes land within 0.0051 of
the origin, which is smaller than the (dimensionless) distance
required for the experiments of Ref. [13].

In order to better understand the distribution of Xi,
Fig. 11 shows the approximate cumulative distribution func-
tion (CDF) obtained in the last batch. The distribution is
clearly skewed toward x = 0, with only 3% of the Xi lying
in x > 0.002.

VII. ROBUSTNESS OF THE LEARNED POLICY
AND FURTHER CONTROL

So far we have established the effectiveness of our rein-
forcement learning algorithm in stabilising the drop trajectory

0 2 4 6 8 10
Batch Number

0

0.01

0.02

0.03

0.04

0.05

FIG. 10. Variance and improvement during learning: Average
final distance of the drop from the origin |x f | and range of distances
as a function of the batch number (see text for the values of the
learning parameters).

when the algorithm is trained against deterministic motion and
when the drop always starts at a fixed location in space. In
this section we relax these two assumptions. First we establish
that the policy learned in the absence of noise continues to
work even in the presence of thermal noise (Sec. VII A). We
next study the extent to which the policy learned from a given
starting point is effective when the drop starts from another lo-
cation (Sec. VII B). Finally, motivated by experiments where
the drop is stretched by the flow in a controlled way, we
propose a variant of the algorithm designed to control the ex-
tension rate of the flow at the location of the flow (Sec. VII C).

A. Noise

The dynamics of the drop so far followed Eq. (4) with
the model flow from Eq. (1) and it was therefore fully

0 0.001 0.002 0.003 0.004 0.005 0.006
0

0.2

0.4

0.6

0.8

1

FIG. 11. Cumulative distribution function (CDF) of the distance
of the drop from the origin after 1000 episodes (i.e., in batch 10; see
text for the values of the learning parameters).

055108-11

MARCO VONA AND ERIC LAUGA PHYSICAL REVIEW E 104, 055108 (2021)

deterministic. Motivated by experimental situations where the
drop is small enough to be impacted by thermal noise, we now
examine the performance of the deterministic reinforcement
learning algorithm in a noisy situation.

We incorporate thermal noise using a Langevin approach
[43]. In a dimensional setting, this is classically done by
adding a random term MF to Eq. (4) where M = (6πμr)−1 is
the mobility of the spherical drop in a fluid of viscosity μ and
F is a random force. We assume that F has zero mean value
(i.e., 〈Fi(t)〉 = 0, where we use 〈〉 to denote ensemble aver-
aging) and that it satisfies the fluctuation-dissipation theorem

〈Fi(t)Fj (t
′)〉 = 2kBT

M
δi jδ(t − t ′), (28)

where kB = 1.3806×10−23 J K−1 is Boltzmann’s constant and
T is the absolute temperature.

Moving to dimensionless variables, we used the half dis-
tance between the cylinders, L, as the characteristic length
scale and the inverse cylinder rotation speed, τ , as the charac-
teristic timescale (see Sec. IV B), so Eq. (28) allows to define
a typical magnitude for the random force, given by F0 =
(kBT/Mτ)1/2. Nondimensionalizing F by F0, the Langevin
approach consists then in adding a random term of the form
Pe−1/2F̃ to the dimensionless version of Eq. (4), where F̃ is a
dimensionless random force with 〈F̃i〉 = 0 and 〈F̃i(t)F̃j (t ′)〉 =
2δi jδ(t − t ′). Here Pe is the dimensionless Péclet number,
which compares the relative magnitude of advection by the
flow and Brownian diffusion

Pe ≡ L2

τkBT M
. (29)

We implement the Langevin approach numerically by adding
a random term (2�t/Pe)1/2�i at the end of each numerical
step, where �t is the step size used in the RK4 scheme and �i

(i = 1, 2) is drawn from a standard normal distribution.
Physically, the Péclet number in Eq. (29) can be recast as

a ratio between the radius of the drop r and a thermal length
scale
,

Pe = r

 ≡ τkBT

6πμL2
. (30)

With the dimensions from Sec. IV B, we have L =
6.35×10−2 m, τ = 8 s, and assuming the fluid to be water at
room temperature (T = 293 K, viscosity μ = 10−3 Pa s), we
obtain
 ≈ 4.3×10−16 m. In the original work from Ref. [3],
the typical drop has radius r ≈ 0.5 mm, which leads to Pe ≈
1.2×1012 in these experiments. This very large number clearly
indicates that thermal noise was not important in this original
work.

To test robustness, we applied the policy obtained via the
reinforcement learning algorithm from the previous sections
(i.e., under deterministic drop dynamics) to environments with
progressively smaller values of the Péclet number, which cor-
responds physically to shrinking the scale of the drop so that
thermal noise becomes progressively more important. The pa-
rameters of the algorithm are once again α = β = 10, N = 4,
γ = 0.95, p = 1, dt = 0.025, tlag = 0.0125, t1 = t2 = 0.005,
and tmax = 40; the wiggle rooms are set to w = 0.7. After

103 104 105 106 107 108 109 1010
0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y
(%

)

FIG. 12. Proportion of episodes landing within a dimensionless
distance 0.0078 of the origin for different values of the Péclet number
(Pe) using the algorithm trained in the absence of noise (see text for
the values of the learning parameters). The original experiments in
Ref. [3] had Pe ≈ 1.2×1012.

500 training runs, we let Pe take values Pe = 10k , 3 � k � 8,
and simulated 100 separate episodes in each case. Figure 12
shows the corresponding proportions of runs landing within
a distance 0.0078 of the origin. As expected, the accuracy
decreases when the Pe number becomes smaller, dropping
from a largest value of 0.97 when Pe = 1010 to 0.07 when
Pe = 103. The algorithm was more than 90% accurate for
Pe � 106, which is six orders of magnitude smaller than in
Bentley and Leal’s experiment (and thus would correspond
to nanometer-sized drops). It is worth mentioning that, even
though we did not do it in this work, noise could be included
in the training phase rather than added once the policy has
been found.

B. Global policy

So far the learned policy was always obtained for the same
fixed starting point x0. Can we, on the other hand, obtain a
policy that is optimal (or sufficiently close to optimal) for
all starting points? Intuitively, points in the state space that
are close together should have similar optimal policies, so if
the state space itself is sufficiently small such a global policy
should exist. Should this not be the case, we would have to
split the state space in smaller regions and to determine a
globally good policy in each region separately.

We investigate the existence of a global policy by esti-
mating the optimal policy π∗ from the dimensionless starting
position x0 = [−0.03, 0.02] and then running trajectories
from a number of other points in the state space. We use
the time and learning parameters dt = 0.025, tlag = 0.0125,
t1 = t2 = 0.005, γ = 0.95, p = 1, α = β = 10, N = 4, and
tmax = 40. After 500 training runs in a noiseless environment,
we construct a 25×25 rectangular lattice of evenly spaced
points in the state space [−0.05, 0.05]×[−0.05, 0.05] and run

055108-12

STABILIZING VISCOUS EXTENSIONAL FLOWS USING … PHYSICAL REVIEW E 104, 055108 (2021)

FIG. 13. Final distances from the origin for 625 trajectories
starting in the [−0.05, 0.05]×[−0.05, 0.05] space using the op-
timal policy π∗ obtained from the single dimensionless starting
position x0 = [−0.03, 0.02]. The time and learning parameters
dt =0.025, tlag =0.0125, t1 = t2 =0.005, γ =0.95, p=1, α=β =10,
N = 4, and tmax = 40.

a trajectory from each one of them using the policy obtained
for x0 (i.e., no further learning occurs during that process). We
then use the results to build a color map of the final distances,
i.e., a 25×25 matrix M where Mi j is colored according to the
final distance from the origin of a trajectory starting from the
corresponding location on the grid. We show the results for
all 625 trajectories in the absence of thermal noise in Fig. 13.
We can see that all unsuccessful starting points are clustered
around the edge of the state space on the sides where the flow
points away from the origin, suggesting that we can indeed
find a global policy by making the state space a bit smaller.
The algorithm was successful in 61.12% of cases, with an
average final distance of 0.0160 and a standard deviation
of 0.0213. The average final distance is heavily skewed by
the edge cases. In the region [−0.03, 0.03]×[−0.05, 0.05],
corresponding to the lighter strip in the middle, the aver-
age final distance was 0.0012 with a standard deviation of
7.7026×10−4 and a success rate of 100%. The largest fi-
nal distance in this region was 0.0075 and the smallest was
6.1237×10−5. To see how thermal noise affects this result,
we carry out the same simulations by incorporating noise as
in Sec. VII A in the case where Pe = 105, with results shown
in Fig. 14. The algorithm was now successful in 60.96% of
cases, with an average final distance of 0.0164 and a standard
deviation of 0.0209. Again, if we restrict the set of initial
states to those in [−0.03, 0.03]×[−0.05, 0.05], then these
figures improve significantly. Success rate jumps to 97.07%
and the average final distance becomes 0.0019 with a stan-
dard deviation of 0.0020. The largest final distance in this
region was 0.0153 and the smallest was 1.4041×10−4. In
summary, the overall performance was quite similar to the
noiseless case, except for a small decrease in accuracy and
consistency in the central region. This shows that the algo-
rithm is robust to noise even in the case of nanometer-sized
drops.

FIG. 14. Same as Fig. 13 in the case where thermal noise is
added to the drop trajectory with Pe = 105.

C. Extension rate control

Returning to the physical aspects of the experiment, Tay-
lor’s original study addressed how the properties of the flow
affected the shape of the drop [1]. When the drop is fixed at the
origin, its rate of deformation is dictated by the eigenvalues
of the velocity gradient tensor, ∇u(0). The flows considered
in this study are two-dimensional and irrotational so that ∇u
remains symmetric and traceless throughout. The velocity
gradient is thus characterized by a pair of eigenvalues λ0 > 0
(extension rate) and −λ0 < (compression). When we alter
the speeds of the cylinders with the control algorithm, we
inevitably change the eigenvalues of ∇u(x), where x is the
position of the drop, leading to a time-dependent eigenvalue
λ(t). Since this eigenvalue controls the deformation of the
drop, we wish to keep its magnitude as close as possible to
the extension rate λ0 which we aim to study while we control
the drop position.

Here we examine the case where the starting position is
x0 = [−0.03, 0.02], with the same parameters as above (i.e.,
dt = 0.025, tlag = 0.0125, dt = t1 = t2 = 0.005, γ = 0.95,
p = 1, α = β = 10, N = 4, and tmax = 40). We assume the
drop is subject to thermal noise with Pe = 105. After 500
training runs, we simulate a 40-step trajectory (in which no
learning occurs) during which we sample the extension rate
20 times per time step. In Fig. 15(a) we plot the variation of
the scaled extension rate, λ(t)/λ0, with time, where λ0 is the
value at the center of the uncontrolled apparatus (using the di-
mensionless parameters in the problem, we have λ0 = 1.28).
The extension rate is seen to undergo significant variations
during the controlled motion of the drop, with jumps that are
routinely ±15% about the desired value λ0. The norm of the
final state was 0.0056. To lower the variations on λ(t) and
keep it closer to its target value, we modified the algorithm as
follows. The idea is to note that if an angular velocity vector
� (i.e., the vector of all four cylinder rotations) induces an
extension rate λ at x, then by linearity the angular velocity
vector k� induces an extension rate kλ at the same point
(k ∈ R). We may then scale, at each time step, � with a
suitable scalar function s(t) so that the angular velocity vector

055108-13

MARCO VONA AND ERIC LAUGA PHYSICAL REVIEW E 104, 055108 (2021)

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
(a) (b)

FIG. 15. Ratio between the extension rate λ(t) and the reference value λ0 at the center of the uncontrolled apparatus. (a) Without scaling,
the extension rate routinely varies by 15% around λ0. (b) Using the piecewise linear scaling from Eq. (31), the fluctuations of the extension
rate near the drop are significantly reduced. The time and learning parameters are dt = 0.025, tlag = 0.0125, dt = t1 = t2 = 0.005, γ = 0.95,
p = 1, α = β = 10, N = 4, and tmax = 40 while the Péclet number is Pe = 105.

changes as s(t) · �(t), where �(t) corresponds to standard
speed modulation. Since the jumps in λ(t) are due to the rapid
changes in angular velocities, we choose s(t) to minimize the
impact of speed modulation. Specifically, at time step tk and
state xk we denote � = λ0/λ̂, where λ̂ is the extension rate at
xk resulting from unscaled speed modulation. Then we take a
piece-wise linear scaling

s(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, tk � t � tk + tlag,∣∣(� − 1) t−(tk+tlag)
δ

+ 1
∣∣, 0 � t − (tk + tlag) � δ,

� if tlag + δ � t − tk � dt − δ,∣∣(1 − �) t−(tk+dt)+δ

δ
+ �

∣∣, −δ � t − (tk + dt) � 0,

(31)
and choose δ = t1 = t2. To compensate for this scaling, we
also make the change dt → dt/�. In Fig. 15(b) we show the
evolution of the extension rate (scaled by λ0) in a trajectory
with the same parameters as before but with our scaling imple-
mented. A couple of large excursions remain, but performance
has noticeably improved relative to the original control algo-
rithm (left). The norm of the final state was 9.4389×10−4,
indicating that scaling does not affect accuracy. This proof-of-
principle result shows therefore that a scaling in the optimal
policy can be used to limit the extension rate in the flow.

VIII. DISCUSSION

In this paper we saw how reinforcement learning can be
applied to solve a classical control problem for fluid dynamics
at low Reynolds numbers. Our goal here was to modulate the
rotation speeds of a model of Taylor’s four-roll mill in order to
stabilize a drop positioned near the stagnation point, which is
known to be unstable. We implemented an actor-critic method
and found a probabilistic policy that worked well for all initial
positions.

In our approach, we proceeded by steps. We first derived
a basic version of the algorithm, and then added measure-
ment delays, thermal noise and extension rate control. The
algorithm was able to manoeuvre the drop effectively in all
cases and the accuracy achieved was below that required
in the experiments of Bentley and Leal [3], and therefore

satisfactory for most experimental implementations. Numeri-
cal results shown in Sec. VI also demonstrated that learning
is remarkably consistent, with minimal variance within the
learning curves in the majority of cases.

The good performance observed was, to a large extent,
due to our choice of actions rather than to the quality of the
approximation for the policy (π). Indeed, numerical results in
Fig. 7 show that a first-order approximation of the form π ≈
K exp(ax + by) is sufficient to get accurate results. In practice,
the learning process was often slower at the beginning, when
the algorithm had not yet gathered enough information to take
good actions. Then, once the general shape of the policy had
been identified, learning sped up significantly, until it slowly
tapered off as we approached the theoretical accuracy.

It is worth mentioning here that we attempted other imple-
mentations too, which were not successful. We initially tried
to discretize the state space, so that the drop would move in a
finite grid as opposed to a continuous environment, but it was
difficult to combine this with the Markov property and harder
to factor in thermal noise. We also used a truncated Fourier
series for the form of the function f , but this was computa-
tionally expensive and it artificially introduced discontinuities
as well as Gibbs’ phenomena.

Finally, we also experimented with the shape of the re-
ward function, seeking to penalise actions requiring very large
torques. Unfortunately, our attempted modifications in that
regard (such as subtracting some simple increasing function
of the torque from Rt) did not succeed. After extensive sim-
ulations, we concluded that torque reduction can be achieved
by either shrinking the sate space (so that smaller corrections
are needed) or reducing the default angular velocities.

There are many possible extensions to our work. One could
try an algorithm with higher sample efficiency (i.e., one which
makes better use of past experience), one that better balances
exploration and exploitation, or a different learning paradigm
altogether (i.e., a neural network). We may also implement
different approximations for the value function as well as
alternative rewards and sampling methods. It would also be
interesting to devise a model where time is continuous.

From a physical standpoint, it might be desirable to in-
clude inertia (both of the drop and the fluid) and include a

055108-14

STABILIZING VISCOUS EXTENSIONAL FLOWS USING … PHYSICAL REVIEW E 104, 055108 (2021)

nonzero response time to variations in �. We could also allow
ourselves to act on more than one cylinder at a time or to undo
an action by exploiting the time-reversibility of the viscous
flow. Another area for improvement is extension rate control,
since some jumps in Fig. 15 still remain. Finally, one could
devise a model where one only has incomplete knowledge of
the drop’s position.

ACKNOWLEDGMENT

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant Agreement
No. 682754).

Supplementary Material

We include in Supplemental Material [42] a movie of the
trajectory displayed in Fig. 2. In the movie, the histogram on
the left shows the current angular velocity of each cylinder, as
well as their average value. The diagram on the right shows the
motion of the drop inside the state space as well as the rotation
of each cylinder (note that the radii of both the drop and the
cylinders are not to scale) and the eigenvectors of ∇u at the
location of the drop (note that since the flow is irrotational,
these are also the eigenvectors of the rate-of-strain tensor).
For clarity, the cylinders are displayed on the corners of the
state space, rather than in their actual locations.

Matlab code

The code created in this work is freely available as a mat-
lab.m file on GitHub [41]. To estimate the optimal policy, the

user needs to initialize the parameters, add a section break
as indicated and run as many batches (outer “for” loops) as
needed. The parameter AverageDistance corresponds to the
average final distance for the current batch, and can be used
to assess performance. By commenting out lines 76–82 in the
code, the program can be used to simulate trajectories during
which no learning occurs.

APPENDIX: PROOF OF REJECTION
SAMPLING ALGORITHM

We need to show that the conditional distribution of X is p.
Let P be the cumulative distribution function of p and Q that
of q. Then by Bayes’s theorem

P (X � x|Y � α) = P (Y � α|X � x)Q(x)

P (Y � α)
, (A1)

P (Y � α|X � x) = P (Y � α, X � x)

Q(x)
, (A2)

=
∫ x P (Y � α|X = t)

Q(x)
q(t)dt, (A3)

= 1

Q(x)

∫ x Ap(t)

Bq(t)
q(t)dt, (A4)

= AP(x)

BQ(x)
. (A5)

Also

P (Y � α) =
∫

I

Ap(t)

Bq(t)
q(t)dt = A

B
. (A6)

Substituting, we see that P (X � x|Y � α) = P(x), so, condi-
tional on being accepted, X ∼ p.

[1] G. I. Taylor, The formation of emulsions in definable fields of
flow, Proc. R. Soc. A 146, 501 (1934).

[2] J. J. L. Higdon, The kinematics of the four-roll mill,
Phys. Fluids 5, 274 (1993).

[3] B. J. Bentley and L. G. Leal, An experimental investigation of
drop deformation and breakup in steady, two-dimensional linear
flows, J. Fluid Mech. 167, 241 (1986).

[4] J. Eggers, Nonlinear dynamics and breakup of free-surface
flows, Rev. Mod. Phys. 69, 865 (1997).

[5] J. M. Rallison, The deformation of small viscous drops and
bubbles in shear flows, Annu. Rev. Fluid Mech. 16, 45
(1984).

[6] H. A. Stone, A. D. Stroock, and A. Ajdari, Engineering
flows in small devices: Microfluidics toward a lab-on-a-chip,
Annu. Rev. Fluid Mech. 36, 381 (2004).

[7] T. M. Squires and S. R. Quake, Microfluidics: Fluid physics at
the nanoliter scale, Rev. Mod. Phys. 77, 977 (2005).

[8] S. D. Hudson, F. R. Phelan Jr, M. D. Handler, J. T. Cabral, K. B.
Migler, and E. J. Amis, Microfluidic analog of the four-roll mill,
Appl. Phys. Lett. 85, 335 (2004).

[9] J. S. Lee, R. Dylla-Spears, N. P. Teclemariam, and S. J. Muller,
Microfluidic four-roll mill for all flow types, Appl. Phys. Lett.
90, 074103 (2007).

[10] M. Tanyeri, E. M. Johnson-Chavarria, and C. M. Schroeder,
Hydrodynamic trap for single particles and cells, Appl. Phys.
Lett. 96, 224101 (2010).

[11] M. Tanyeri, M. Ranka, N. Sittipolkul, and C. M. Schroeder, A
microfluidic-based hydrodynamic trap: Design and implemen-
tation, Lab Chip 11, 1786 (2011).

[12] A. Shenoy, C. V. Rao, and C. M. Schroeder, Stokes trap for
multiplexed particle manipulation and assembly using fluidics,
Proc. Natl. Acad. Sci. USA 113, 3976 (2016).

[13] B. J. Bentley and L. G. Leal, A computer-controlled four-roll
mill for investigations of particle and drop dynamics in two-
dimensional linear shear flows, J. Fluid Mech. 167, 219 (1986).

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (MIT Press, Cambridge, MA, 2018).

[15] M. P. Brenner, J. D. Eldredge, and J. B. Freund, Perspective
on machine learning for advancing fluid mechanics, Phys. Rev.
Fluids 4, 100501 (2019).

[16] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, Machine
learning for fluid mechanics, Annu. Rev. Fluid Mech. 52, 477
(2020).

[17] F. Guéniat, L. Mathelin, and M. Y. Hussaini, A statistical learn-
ing strategy for closed-loop control of fluid flows, Theor. Comp.
Fluid Dyn. 30, 497 (2016).

055108-15

https://doi.org/10.1098/rspa.1934.0169
https://doi.org/10.1063/1.858782
https://doi.org/10.1017/S0022112086002811
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1146/annurev.fl.16.010184.000401
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1063/1.1767594
https://doi.org/10.1063/1.2472528
https://doi.org/10.1063/1.3431664
https://doi.org/10.1039/c0lc00709a
https://doi.org/10.1073/pnas.1525162113
https://doi.org/10.1017/S002211208600280X
https://doi.org/10.1103/PhysRevFluids.4.100501
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1007/s00162-016-0392-y

MARCO VONA AND ERIC LAUGA PHYSICAL REVIEW E 104, 055108 (2021)

[18] J. Rabault, M. Kuchta, A. Jensen, U. Réglade, and N. Cerardi,
Artificial neural networks trained through deep reinforcement
learning discover control strategies for active flow control,
J. Fluid Mech. 865, 281 (2019).

[19] Y. Xie and X. Zhao, Sloshing suppression with active con-
trolled baffles through deep reinforcement learning–expert
demonstrations–behavior cloning process, Phys. Fluids 33,
017115 (2021).

[20] V. Belus, J. Rabault, J. Viquerat, Z. Che, E. Hachem, and
U. Reglade, Exploiting locality and translational invariance to
design effective deep reinforcement learning control of the 1-
dimensional unstable falling liquid film, AIP Adv. 9, 125014
(2019).

[21] J. Viquerat, J. Rabault, A. Kuhnle, H. Ghraieb, A. Larcher, and
E. Hachem, Direct shape optimization through deep reinforce-
ment learning, J. Comput. Phys. 428, 110080 (2021).

[22] G. Novati, H. L. de Laroussilhe, and P. Koumoutsakos, Au-
tomating turbulence modelling by multi-agent reinforcement
learning, Nat. Mach. Int. 3, 87 (2021).

[23] R. Paris, S. Beneddine, and J. Dandois, Robust flow control and
optimal sensor placement using deep reinforcement learning,
J. Fluid Mech. 913, A25 (2021).

[24] M. Gazzola, A. A. Tchieu, D. Alexeev, A. de Brauer, and P.
Koumoutsakos, Learning to school in the presence of hydrody-
namic interactions, J. Fluid Mech. 789, 726 (2016).

[25] G. Novati, S. Verma, D. Alexeev, D. Rossinelli, W. M. Van
Rees, and P. Koumoutsakos, Synchronisation through learning
for two self-propelled swimmers, Bioinsp. Biomim. 12, 036001
(2017).

[26] S. Verma, G. Novati, and P. Koumoutsakos, Efficient collective
swimming by harnessing vortices through deep reinforcement
learning, Proc. Natl. Acad. Sci. USA 115, 5849 (2018).

[27] G. Novati, L. Mahadevan, and P. Koumoutsakos, Controlled
gliding and perching through deep-reinforcement-learning,
Phys. Rev. Fluids 4, 093902 (2019).

[28] Y. Jiao, F. Ling, S. Heydari, E. Kanso, N. Heess, and J. Merel,
Learning to swim in potential flow, Phys. Rev. Fluids 6, 050505
(2021).

[29] D. Fan, L. Yang, Z. Wang, M. S. Triantafyllou, and G. E.
Karniadakis, Reinforcement learning for bluff body active flow
control in experiments and simulations, Proc. Natl. Acad. Sci.
USA 117, 26091 (2020).

[30] S. Colabrese, K. Gustavsson, A. Celani, and L. Biferale,
Flow Navigation by Smart Microswimmers via Reinforcement
Learning, Phys. Rev. Lett. 118, 158004 (2017).

[31] K. Gustavsson, L. Biferale, A. Celani, and S. Colabrese,
Finding efficient swimming strategies in a three-dimensional
chaotic flow by reinforcement learning, Eur. Phys. J. E 40, 1
(2017).

[32] S. Colabrese, K. Gustavsson, A. Celani, and L. Biferale, Smart
inertial particles, Phys. Rev. Fluids 3, 084301 (2018).

[33] A. C. H. Tsang, P. W. Tong, S. Nallan, and O. S. Pak, Self-
learning how to swim at low Reynolds number, Phys. Rev.
Fluids 5, 074101 (2020).

[34] Y. Liu, Z. Zou, A. C. H. Tsang, O. S. Pak, and Y-N Young,
Mechanical rotation at low reynolds number via reinforcement
learning, Phys. Fluids 33, 062007 (2021).

[35] B. Hartl, M. Hübl, G. Kahl, and A. Zöttl, Microswimmers
learning chemotaxis with genetic algorithms, Proc. Natl. Acad.
Sci. USA 118, e2019683118 (2021).

[36] M. Mirzakhanloo, S. Esmaeilzadeh, and M. Alam, Active
cloaking in stokes flows via reinforcement learning, J. Fluid
Mech. 903, A34 (2020).

[37] S. Muiños-Landin, A. Fischer, V. Holubec, and F. Cichos, Rein-
forcement learning with artificial microswimmers, Sci. Robot.
6, eabd9285 (2021).

[38] G. K. Batchelor, The stress system in a suspension of force-free
particles, J. Fluid Mech. 41, 545 (1970).

[39] S. Kim and J. S. Karrila, Microhydrodynamics: Principles and
Selected Applications (Butterworth-Heinemann, Boston, MA,
1991).

[40] R. Bellman, A markovian decision process, J. Math. Mech. 6,
679 (1957).

[41] https://github.com/marcovona99/four-roll-mill-rl.
[42] See Supplemental Materials at http://link.aps.org/supplemental/

10.1103/PhysRevE.104.055108 for a movie of the trajectory
displayed in Fig. 2.

[43] G. K. Batchelor, Developments in microhydrodynamics, in
Theoretical and Applied Mechanics, edited by W. T. Koiter
(North-Holland, Amsterdam, 1976), pp. 33–55.

Correction: Cross products in Eqs. (1) and (2) were erro-
neously removed during the production process and have been
restored.

055108-16

https://doi.org/10.1017/jfm.2019.62
https://doi.org/10.1063/5.0037334
https://doi.org/10.1063/1.5132378
https://doi.org/10.1016/j.jcp.2020.110080
https://doi.org/10.1038/s42256-020-00272-0
https://doi.org/10.1017/jfm.2020.1170
https://doi.org/10.1017/jfm.2015.686
https://doi.org/10.1088/1748-3190/aa6311
https://doi.org/10.1073/pnas.1800923115
https://doi.org/10.1103/PhysRevFluids.4.093902
https://doi.org/10.1103/PhysRevFluids.6.050505
https://doi.org/10.1073/pnas.2004939117
https://doi.org/10.1103/PhysRevLett.118.158004
https://doi.org/10.1140/epje/i2017-11602-9
https://doi.org/10.1103/PhysRevFluids.3.084301
https://doi.org/10.1103/PhysRevFluids.5.074101
https://doi.org/10.1063/5.0053563
https://doi.org/10.1073/pnas.2019683118
https://doi.org/10.1017/jfm.2020.665
https://doi.org/10.1126/scirobotics.abd9285
https://doi.org/10.1017/S0022112070000745
https://github.com/marcovona99/four-roll-mill-rl
http://link.aps.org/supplemental/10.1103/PhysRevE.104.055108

