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Abstract

We derive a sphere-packing error exponent for mismatched decoding over discrete memoryless channels. We find a lower
bound to the probability of error of mismatched decoding that decays exponentially for coding rates smaller than a new upper
bound to the mismatch capacity. For rates higher than the new upper bound, the error probability is shown to be bounded away
from zero. The new upper bound is shown to improve over previous upper bounds to the mismatch capacity.

I. INTRODUCTION

Communication problems where the receiver needs to employ a suboptimal decoder are typically cast within the mismatched
decoding framework [1]. These situations arise when optimal maximum-likelihood decoding cannot be used: a) the channel
transition is unknown and imperfectly estimated or, b) when, for complexity reasons, the channel likelihood is too complex
to compute and an alternative decoding metric is needed. In addition, some important problems in information theory like the
zero-error or zero-undetected error capacities can be cast as instances of mismatched decoding [2].

Finding a single-letter expression for the mismatch capacity remains an open problem. A number of single-letter lower
bounds have been derived in the literature [2]–[5] (see also [1] for a recent survey, including multiuser coding achievable
rates). Instead, up until recently, not much progress had been made on upper bounds. Balakirsky [6] claimed that for binary-
input discrete memoryless channels (DMC), the mismatch capacity coincided with the lower bound in [3], [4]. Reference
[7] provided a counterexample to this converse invalidating its claim. In [8], we proposed a single-letter upper bound to the
mismatch capacity based on transforming the channel in such a way that errors on the transformed channel with high probability
imply a mismatched-decoding error in the original channel. Reference [9] derived a new single-letter upper bound based on a
multicast approach that improves over [8] in zero-error problems and remains valid for continuous channels.

In this paper, we derive a sphere-packing upper bound to the error exponent that yields a new upper bound on the mismatch
capacity. The new bound improves over known bounds, subsumes that in [8], and provides significant gains.

II. PRELIMINARIES

We consider reliable communication over a DMC W defined over input and output alphabets X = {1, 2, . . . , J} and
Y = {1, 2, . . . ,K}. We denote the channel transition probability by W (k|j). A codebook Cn is defined as a set of M
sequences Cn =

{
x1, . . . ,xM

}
, where xm =

(
x1,m, . . . , xn,m

)
∈ Xn, for m ∈ {1, . . . ,M}. A message m ∈ {1, . . . ,M}

is chosen equiprobably and xm is sent over the channel. The channel produces a noisy observation y = (y1, . . . , yn) ∈ Yn
according to Wn(y|x) =

∏n
i=1W (yi|xi).

Upon observing y ∈ Yn the decoder produces an estimate of the transmitted message m̂ ∈ {1, . . . ,M}. The average
and maximal error probabilities are respectively defined as Pe(Cn) = P[m̂ 6= m] and Pe,max(Cn) = maxm∈{1,...,M} P[m̂ 6=
m|m is sent]. The decoder that minimizes the error probability is the maximum-likelihood (ML) decoder, that produces the
message estimate m̂ according to

m̂ = arg max
m∈{1,...,M}

Wn
(
y|xm

)
. (1)

Rate R > 0 is achievable if for any ε > 0 there exists a sequence of length-n codebooks {Cn}∞n=1 such that |Cn| ≥ 2n(R−ε),
and lim infn→∞ Pe(Cn) = 0. The capacity of W , denoted by C(W ), is defined as the largest achievable rate.

In situations with channel uncertainty, it is not possible to use ML decoding and instead, the decoder produces the message
estimate m̂ as

m̂ = arg max
m∈{1,...,M}

qn
(
xm,y

)
, (2)

where qn
(
x,y

)
=
∑n
i=1 q

(
xi, yi

)
and q : X × Y → R is the decoding metric. We refer to this decoder as q-decoder. When

q(x, y) = logW (y|x), the decoder is ML, otherwise, the decoder is said to be mismatched [1]–[5]. The average and maximal
error probabilities of codebook Cn under q-decoding are respectively denoted by P qe (Cn,W ) and P qe,max(Cn,W ). The mismatch
capacity Cq(W ) is defined as supremum of all achievable rates with q-decoding.

The method of types [10, Ch. 2] will be used extensively in this paper. We recall some of the basic definitions and
introduce some notation. The type of a sequence x = (x1, x2, . . . , xn) ∈ Xn is a column vector representing its empirical
distribution, i.e., p̂x(j) = 1

n

∑n
i=1 1{xi = j}. The set of all types of Xn is denoted by Pn(X ). For pX ∈ Pn(X ), the type

class T (pX) is set of all sequences in Xn with type pX , T (pX) = {x ∈ Xn | p̂x = pX}. The joint type of sequences
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x = (x1, x2, . . . , xn) ∈ Xn and y = (y1, y2, . . . , yn) ∈ Yn is defined as a matrix representing their empirical distribution
p̂xy(j, k) = 1

n

∑n
i=1 1{xi = j, yi = k}. The conditional type of y given x is the matrix

p̂y|x(k|j) =

{
p̂xy(j,k)

p̂x(j) p̂x(j) > 0
1
|Y| otherwise.

(3)

The set of all conditional types on Yn given Xn is denoted by Pn(Y|X ). For pY |X ∈ Pn(Y|X ) and sequence x ∈ T (pX),
the conditional type class Tx(pY |X) is defined as Tx(pY |X) = {y ∈ Yn | p̂y|x = pY |X}.

Similarly, we can define the joint type of x,y, ŷ, as the empirical distribution of the triplet. For j ∈ X and k1, k2 ∈ Y ,

p̂xyŷ(j, k1, k2) =
1

n

n∑
i=1

1{xi = j, yi = k1, ŷi = k2}. (4)

We define the joint conditional type of y, ŷ given x ∈ T (pX) as

p̂yŷ|x(k1, k2|j) =

{
p̂xyŷ(j,k1,k2)

p̂x(j) p̂x(j) > 0
1
|Y|1{k1 = k2} otherwise.

(5)

The set of all joint conditional types is denoted by Pn(YŶ|X ). Additionally, for pY Ŷ |X ∈ Pn(YŶ|X ) we define:

Tyx(pY Ŷ |X) = {ŷ ∈ Yn | p̂yŷ|x = pY Ŷ |X}. (6)

The mutual information and conditional relative entropy are respectively defined as

I(PX , PY |X) , E
[

log
PY |X(Y |X)∑

x′ PX(x′)PY |X(Y |x′)

]
, (7)

D(PY ′|X‖PY |X |PX) ,
∑
x∈X

PX(x) ·D(PY ′|X=x‖PY |X=x). (8)

Definition 1: Let Cn = {x1,x2, . . . ,xM} be a codebook and W be a channel. The type-conflict error probability is defined
as

Pmax
tce (Cn,W )

∆
= max
m∈{1,...,M}

P
[
∪m̄6=m {p̂y|xm = p̂y|xm̄}|xm sent

]
(9)

where the probability is over Wn(y|xm).
Definition 2: Let Cn = {x1,x2, . . . ,xM} be a codebook and W be a channel. Then, for ε ≥ 0, we define

P qe,max(Cn,W, ε)
∆
= max
m∈{1,...,M}

P
[
∪m̄ 6=m {qn(xm̄,y) ≥ qn(xm,y) + ε}|xm sent

]
(10)

where the probability is over Wn(y|xm), and P qe,max(Cn,W ) = P qe,max(Cn,W, ε = 0).
Then, P qe,max(Cn,W, ε) is a generalization of the probability of error of codebook Cn under mismatch decoding, as it allows

for some margin ε.
Similarly to [8], the main idea of this paper is to relate the type-conflict error performance of a given codebook over an

auxiliary channel V with the q-decoding performance of the same code over channel W . The main reason for studying type-
conflict errors is that an equation of the form p̂y|x2

= p̂y|x1
provides more information about the properties of the error than

an ML error, where we simply have a likelihood inequality. In addition, it can be shown that for rates R > C(V ), then the
probability of type-conflict errors tends to one exponentially.

We proceed by introducing a few definitions. Recall the definition of maximal set from [8]. Consider the set

Sq(k1, k2)
∆
=
{
j ∈ X |j = arg max

j′∈X
q(j′, k2)− q(j′, k1)

}
. (11)

A joint conditional distribution PY Ŷ |X is said to be maximal if for all (j, k1, k2) ∈ X × Y × Y ,

PY Ŷ |X(k1, k2|j) = 0 if j /∈ Sq(k1, k2). (12)
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The set of maximal joint conditional distributions was defined to be Mmax(q). In this work, for a given distribution PX1 , we
define the set of maximal joint conditional distributions Mmax(q, PX1) as the set of all joint conditional distributions PY Ŷ |X1

such that

min
PX2|X1Ŷ

:

X2−X1Ŷ−Y
PŶ X2

=PŶ X1

E[q(X2, Y )] ≥ E[q(X1, Y )] (13)

where the notation X2 −X1Ŷ − Y denotes that X2, (X1Ŷ ) and Y form a Markov chain. In addition, define Mδ
max(q, PX1

)
as the set of all distributions satisfying

min
PX2|X1Ŷ

:

X2−X1,Ŷ−Y
PŶ X2

=PŶ X1

E[q(X2, Y )] ≥ E[q(X1, Y )] + δ (14)

so that Mδ
max(q, PX1

) is an approximation of Mmax(q, PX1
). For types, M̂max and M̂δ

max are similarly defined.
We close this section by showing that thatMmax(q) ⊂Mmax(q, PX1) for any input distribution PX1 . Assume that PY Ŷ |X1

∈
Mmax(q). Then from [8, Lemma 3] we have for any X2 such that PŶ X1

= PŶ X2

E[q(X2, Y )] ≥ E[q(X1, Y )] (15)

Therefore PY Ŷ |X1
satisfies (13) and as a result PY Ŷ |X1

∈Mmax(q, PX1
). This enlarged set of maximal distributions enables

a better upper bound on the mismatch capacity.

III. SPHERE-PACKING EXPONENT

In this section, we derive a sphere-packing exponent for mismatched decoding using the method developed in [8].
Theorem 1: Consider a fixed composition codebook Cn with length n, rate R and composition pX . The error probability of
Cn with q-decoding over channel W satisfies

− 1

n
logP qe (Cn,W ) ≤ Eqsp(pX , R+ ζn)− δn, (16)

where

Eqsp(PX , R) = min
PY ′Ŷ |X∈Mmax(q,PX)

I(PX ,PŶ |X)≤R

D(PY ′|X‖PY |X |PX) (17)

and

ζn = (JK − 1)
log(n+ 1)

n
+

log 2

n
(18)

δn =
(
(JK − 1) + (J2K − 1)

) log(n+ 1)

n
+

log 2

n
. (19)

The derivation of the above exponent follows similar footsteps as that in Gallager’s lecture notes on fixed composition codes
[11]. The proof is based on three lemmas. The first lemma, shows a lower bound to the type-conflict error probability of
code Cn over an auxiliary channel. The second lemma shows that if the outputs of W and those of the auxiliary channel and
connected by an appropriately constructed graph, then a type-conflict error in the auxiliary channel yields a q-decoding error
in W . The third lemma shows that if the joint conditional distribution that defines W and the auxiliary channels is maximal
according to (13), then, the error probability of the q-decoder over channel W is lower-bounded by the type-conflict error
probability over the auxiliary channel.

Lemma 1: Assume codebook Cn consists of M codewords of composition pX used over a DMC PŶ |X . Assume that noise
composition pŶ |X1

is such that M |Tx(pŶ |X1
)| ≥ 2|T (pŶ )|. Then, there exists a joint type pŶ X1X2

such that pŶ X1
= pŶ X2

and

P
[
∃x2 ∈ Cn\{x1} s.t. p̂ŷx1x2

= pŶ X1X2
|x1

]
≥ 1

2(n+ 1)J2K−1
P
[
Tx1

(pŶ |X1
)|x1

]
(20)

where the probabilities are computed w.r.t. n uses of channel PŶ |X .
Proof: From Gallager’s lecture notes on fixed composition codes [11, Lemma 4] we have there exist a codeword x1 ∈ Cn

such that

P
[
∃x2 ∈ Cn \ {x1} s.t. p̂ŷx1

= p̂ŷx2
= pŶ X1

|x1

]
≥ 1

2
P
[
Tx1

(pŶ |X1
)|x1

]
(21)
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where the probabilities are computed w.r.t. n uses of channel PŶ |X . This implies that, assuming x1 ∈ Cn was transmitted,
for at least half of the ŷ ∈ Tx1

(pŶ |X1
) we can find a codeword x2 6= x1 such that p̂ŷ|x1

= p̂ŷ|x2
. We now construct a joint

type Observe that there are at most (n+ 1)J
2K−1 joint types p̂ŷx1x2

. Consider an arbitrary joint type p̃Ŷ X1X2
and define the

subset

Ex1
(p̃Ŷ X1X2

,pŶ X1
)

=
{
ŷ ∈ Tx1(pŶ |X1

) | ∃x2 ∈ Cn \ {x1},
p̂ŷx1x2

= p̃Ŷ X1X2
, p̃Ŷ X1

= p̃Ŷ X2
= pŶ X1

}
. (22)

In words, the set Ex1
(p̃Ŷ X1X2

,pŶ X1
) is the set of outputs ŷ ∈ Tx1

(pŶ |X1
) such that the joint type of y,x1,x2 is equal

to p̃Ŷ X1X2
and the Ŷ X1 and Ŷ X2 marginal types are equal to the given pŶ X1

. We now define the joint type p?
Ŷ X1X2

that
satisfies the following

p?
Ŷ X1X2

= arg max
p̃Ŷ X1X2

∈Pn(Y×X 2)

|Ex1
(p̃Ŷ X1X2

,pŶ X1
)|, (23)

i.e., the joint type p̃Ŷ X1X2
that induces the largest subset Ex1(p̃Ŷ X1X2

,pŶ X1
) for any given pŶ X1

. Out of all joint types
p̃Ŷ X1X2

, p?
Ŷ X1X2

is the one that contains the maximum number of outputs ŷ that yield a type-conflict error.
Observe that the left hand side of (21) can be bounded as

P
[
∃x2 ∈ Cn \ {x1} s.t. p̂ŷx1

= p̂ŷx2
= pŶ X1

|x1

]
=

∑
p̃Ŷ X1X2

∈Pn(Y×X 2)

P[Ex1
(p̃Ŷ X1X2

,pŶ X1
)|x1] (24)

≤ (n+ 1)J
2K−1P[Ex1

(p?
Ŷ X1X2

,pŶ X1
)] (25)

and thus, from (21), we get

P
[
∃x2 ∈Cn \ {x1} s.t. p̂ŷx1x2

= p?
Ŷ X1X2

]
≥ 1

2(n+ 1)J2K−1
P
[
Tx1(pŶ |X1

)|x1

]
(26)

which completes the proof. The joint type p?
Ŷ X1X2

is the type pŶ X1X2
whose existence is stated in the lemma.

Observe that the above statement implies that

|Ex1
(p?
Ŷ X1X2

,pŶ X1
)|

|Tx1
(pŶ |X1

)|
=

P
[
Ex1

(p?
Ŷ X1X2

,pŶ X1
)
]

P
[
Tx1(pŶ |X1

)|x1

] (27)

≥ 1

2(n+ 1)J2K−1
(28)

where (27) is true because all elements of Tx1
(pŶ |X1

) are equiprobable when x1 is sent.
Similarly to [8], we construct a bipartite graph Gx1

(pY ′Ŷ |X1
) in the following way (see [8] for details). Vertices of this

graph consists of elements of Tx1
(pY ′|X1

) and Tx1
(pŶ |X1

). Moreover, y′ ∈ Tx1
(pY ′|X1

) and ŷ ∈ Tx1
(pŶ |X1

) are connected
if p̂y′ŷx1

= pY ′Ŷ X1
.

Lemma 2: Consider a conditional joint type pY ′Ŷ |X ∈ M̂max(q,pX), for some composition pX , and construct a graph
Gx1(pY ′Ŷ |X1

) between the type classes Tx1(pŶ |X1
) and Tx1(pY ′|X1

) as described above. If y′ ∈ Tx1(pY ′|X1
) is connected

to ŷ ∈ Tx1
(pŶ |X1

) in graph Gx1
(pY ′Ŷ |X1

), then, for every x2 such that

p̂y′ŷx1x2
= p̂y′|ŷx1

p̂ŷx1x2
, (29)

p̂ŷx2
= p̂ŷx1

(30)

we have a q-decoding error

qn(x2,y
′) ≥ qn(x1,y

′). (31)

Proof: This is proven due to the fact that we know if p̂y′ŷx1x2
= pY ′Ŷ X1X2

we can write the metric difference as

qn(x2,y
′)− qn(x1,y

′) = E[q(X2, Y
′)− q(X1, Y

′)] (32)
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where the expectation is taken with respect to type pY ′Ŷ X1X2
. Since pY ′Ŷ |X1

∈ M̂max(q,pX), and from (29) and (30) we
have that pŶ X1

= pŶ X2
and pY ′Ŷ X1X2

= pY ′|Ŷ X1
pŶ X1X2

, i.e, X2 −X1Ŷ − Y ′ form a Markov chain, based on definition
of M̂max(q,pX1

) we have

E[q(X2, Y
′)− q(X1, Y

′)] ≥ 0 (33)

and thus, from (32), we get the desired result.
The next lemma relates the q-decoding error probability in channel PY ′|X with the type-conflict error probability in channel

PŶ |X by using the fact that in the conditions of the maximal set we have included that X2 −X1Ŷ − Y ′ is a Markov chain.
Lemma 3: Let pY ′Ŷ |X1

∈ M̂max(q,pX1
) and x1 ∈ T (pX1

), then

P qe (Cn,W ) ≥ 1

2(n+ 1)J2K−1
P[Tx1(pŶ |X1

)|x1] (34)

Where the probability of error is computed w.r.t channel W and the second probability is computed w.r.t the channel PŶ |X .
Proof: Consider the bipartite graph Gx1

(pY ′Ŷ |X1
) connecting elements of Tx1

(pY ′|X1
) and Tx1

(pŶ |X1
). As described

in [8], the graph is regular: for every y′ ∈ Tx1(pY ′|X1
) the number of ŷ ∈ Tx1(pŶ |X1

) such that p̂y′ŷx1
= pY ′Ŷ X1

is the
same; similarly, for every ŷ ∈ Tx1

(pŶ |X1
) the number of y′ ∈ Tx1

(pY ′|X1
) such that p̂y′ŷx1

= pY ′Ŷ X1
is the same. For any

B ⊂ Tx1(pŶ |X1
) we define Ψ(B) as

Ψ(B) = {y′ ∈ Tx1(pY ′|X1
) | y′ is connected to some

ŷ ∈ B in graph Gx(pY ′Ŷ |X1
)} (35)

As a result using the result stated in [8] we get that for any B ⊂ Tx1
(pŶ |X1

)

|Ψ(B)|
|Tx1

(pY ′|X1
)|
≥ |B|
|Tx1

(pŶ |X1
)|

(36)

Now we let B be the set of all ŷ ∈ Tx1(pŶ |X1
) such that there exist a type-conflict error with another codeword x2 such that

p̂ŷx1x2
= pŶ X1X2

, i.e.,
B = Ex1

(pŶ X1X2
,pŶ X1

). (37)

Therefore, from Lemma 2 we have for any y′ ∈ Ψ(B) there exists a codeword x2 6= x1 such that

qn(x2,y
′) ≥ qn(x1,y

′) (38)

and we bound the probability of error as follows

P qe (Cn,W )

= P[∃x2 ∈ Cn\{x1}, qn(x2,y
′) ≥ qn(x1,y

′)] (39)
≥ P[∃x2 ∈ Cn\{x1}, qn(x2,y

′) ≥ qn(x1,y
′),y′ ∈ Tx1

(pY ′|X1
)] (40)

≥ P[Tx1
(pY ′|X1

)|x1]

· P[∃x2 ∈ Cn\{x1}, qn(x2,y
′) ≥ qn(x1,y

′)|y′ ∈ Tx1
(pY ′|X1

)] (41)

= P[Tx1
(pY ′|X1

)|x1]·

·
|{y′ ∈ Tx1(pY ′|X1

) | ∃x2 ∈ Cn\{x1}, qn(x2,y
′) ≥ qn(x1,y

′)}|
|Tx1

(pY ′|X1
)|

(42)

≥ P[Tx1
(pY ′|X1

)|x1]

∣∣Ψ(Ex1
(pŶ X1X2

,pŶ X1
)
)∣∣

|Tx1
(pY ′|X1

)|
(43)

≥ P[Tx1
(pY ′|X1

)|x1]
|Ex1(pŶ X1X2

,pŶ X1
)|

|Tx1
(pŶ |X1

)|
(44)

≥ P[Tx1
(pY ′|X1

)|x1] · 1

2(n+ 1)J2K−1
(45)

where all of probabilities are computed with respect to channel Wn, (43) follows from all elements of Ψ(B) satisfying (38),
(44) follows from (36) and (45) follows from (28).

Using a standard property of noise types we have that

P[Tx1(pY ′|X1
)|x1] ≥ e−n

(
D(PY ′|X1

‖PY |X1
|pX1

)+ζn

)
(46)

with ζn = JK−1
n log(n+ 1). From standard arguments of the method of types we obtain (16), where we have set pX = pX1

.



6

Again using standard arguments (see e.g. [11, Th. 2]) the result of Theorem 1 is applicable to any code, and not only
constant composition codes. This is due to the fact that every codebook Cn of rate R has a constant composition sub-codebook
C′n ⊆ Cn with rate R′ > R− J−1

n log(n+ 1) with

P qe,max(Cn,W ) ≥ P qe,max(C′n,W ). (47)

Additionally, a similar analysis would give an identical upperbound to the error exponent using the maximal sets M̂max(q)
from [8].

As is well known, the exponent from Theorem 1 is decreasing in R and Eqsp(pX , R) = 0 by choosing Y ′ = Y in (17) at a
rate equal to

R̄q(W,pX) , min
PY Ŷ |X∈Mmax(q,pX)

PY |X=W

I(pX , PŶ |X) (48)

We have shown that for rates R < R̄q(W,pX), the error probability decays at most exponentially. In the next section, we
show that for rates R > R̄q(W,pX) the error probability cannot decay sub-exponentially and is bounded away from zero as
n tends to infinity.

IV. CONVERSE

In this section, we show that for coding rates R

R > R̄q(W,PX) = min
PY Ŷ |X∈Mmax(q,PX)

PY |X=W

I(PX , PŶ |X) (49)

for a fixed input distribution PX , the error probability is bounded away from zero as n tends to infinity. Proofs are not included
due to space limitations and can be found in B.

Theorem 2: Let Cn = {x1, . . . ,xM} be a constant composition codebook of composition pX and length n. Assume
PY Ŷ |X ∈Mδ

max(q,pX) and PY |X = W . Then for any ε > 0, there exists a constant γn(ε) that depends on n,W and q, such
that 0 < γn(ε) < 1 for every n,W and q, such that

P qe,max(Cn,W, nε) ≥
(
1− γn(ε)

)
Pmax

tce (Cn, PŶ |X). (50)

The next result from [8] lower bounds the type-conflict error probability.
Theorem 3: With the assumptions of Theorem 2, for every PX , there exist n0, Ē(R) > 0 such that if n > n0 and

1
n log |Cn| > I(PX , PŶ |X)

Pmax
tce (Cn, PŶ |X) ≥ 1− 2−nĒ(R). (51)

The following result, also from [8] allows to establish a connection between codes of arbitrary distributions and constant
composition codes.

Theorem 4: Let W, q be channel and decoding metric, respectively. Define, for any input distribution PX ,

R̄q(W,PX) = min
PY Ŷ |X∈Mmax(q,PX)

PY |X=W

I(PX , PŶ |X) (52)

If R > R̄q(W,PX), ∃n0 ∈ N, 0 < γ < 1 and Ē(R) > 0 such that for n > n0, the error probability of any codebook Cn of
length n, M ≥ 2nR codewords satisfies

P qe,max(Cn,W ) ≥ (1− γ)(1− 2−nĒ(R)). (53)

Proof: For any distribution PX , set the code rate to be R > R̄q(W,PX). Similarly to the previous section, we know that
for any code Cn of length n and rate R, there exists a constant composition subcode C′n ⊂ Cn with length n satisfying, rate
R′ > R− J−1

n log(n+ 1), and composition pX such that

P qe,max(Cn,W ) ≥ P qe,max(C′n,W ). (54)

Applying Theorems 2 and 3 to code C′n, we get that for any δ > 0, if

R > R̄q(W,PX) > min
PY Ŷ |X∈M

δ
max(q,pX)

PY |X=W

I(pX , PŶ |X) (55)

we have that

P qe,max(C′n,W, nε) ≥
(
1− γn(ε)

)
Pmax

tce (C′n, PŶ |X) (56)

≥
(
1− γn(ε)

)
(1− 2−nĒ(R)) (57)
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where (57) is bounded away from zero as n tends to infinity. Now since the above inequality holds for any δ > 0 we get the
desired result.

Corollary 1: We have

Cq(W ) ≤ max
PX

min
PY Ŷ |X∈Mmax(q,PX)

PY |X=W

I(PX , PŶ |X) (58)

In terms of computation, unlike the bound proposed in [8], optimizing (58) is not a simple task. This observation stems
from the fact that the maximal setMmax(q, PX) in (58) depends on PX , unlike the maximal setMmax(q) in [8]. In addition,
the setMmax(q, PX) is itself defined as an optimization problem over distributions PX2|XŶ and this makes the problem more
difficult than [8]. As illustrated next, the advantages of the new bound are potentially significant.

A. Example

In this part we show the application of our bound to the counterexample in [7], where the channel and metric are

W =

[
0.97 0.03 0
0.1 0.1 0.8

]
, q =

[
0 0 0
0 log(0.5) log(1.36)

]
. (59)

For this example C(W ) = 0.7133 bits/use, the rate achievable by 2-letter superposition coding from [7] is R(2)
sc (W, q) = 0.1991

bits/use and our previous converse [8] stated that Cq(W ) ≤ R̄q(W ) = 0.6182 bits/use. Due to the intricate nature of the
optimization problem (58) (see above discussion), we have so far only been able to compute the bound for the fixed input
distribution PX = [0.75597 0.24403], which is the maximizing input distribution for the LM rate [3], [4]. The joint conditional
distribution given in I is maximal for the above PX .

TABLE I
NONZERO ENTRIES OF PY Ŷ |X FOR EXAMPLE 1

(j, k1, k2) PY Ŷ |X (j, k1, k2) PY Ŷ |X

(1, 1, 1) 0.37 (2, 1, 1) 0.1
(1, 1, 2) 0.6 (2, 2, 2) 0.1
(1, 2, 2) 0.03 (2, 3, 3) 0.62

(2, 3, 2) 0.18

Marginalizing the above PY Ŷ |X over Y we obtain

PŶ |X =

[
0.37 0.63 0
0.1 0.28 0.62

]
. (60)

which upper bounds the rates achievable with distribution PX = [0.75597 0.24403] by

I(PX ;PŶ |X) = 0.3824 bits/use. (61)

APPENDIX A
CONDITIONING ON THE TYPE OF A SEQUENCE

In this section we study the effect of conditioning on type of a sequence in its statistical properties.
Lemma 4: Let f : Z ×S → R be an arbitrary function and (Zi, Si), i = 1, 2, . . . , n be i.i.d. random variables taking values

on alphabets Z,S, respectively. Moreover, let p̂z denote the type of z = (z1, z2, . . . , zn). Analogously, p̂s denotes the type
of s = (s1, s2, . . . , sn). Then, we have

E

[
n∑
i=1

f(Zi, Si)
∣∣∣p̂z

]
= nEPS|Z×p̂z

[f(Z̃, S)] (62)

Where Z̃ is a random variable with distribution p̂z .
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Proof:

E

[
n∑
i=1

f(Zi, Si)
∣∣∣p̂z

]
= E

[
n∑
i=1

∑
z

f(z, Si)p̂z(z)

]
(63)

=

n∑
i=1

∑
z

E [f(z, Si)] p̂z(z) (64)

=

n∑
i=1

∑
z

EPS|Z̃=z
[f(z, S)]p̂z(z) (65)

= nEp̂z

[
EPS|Z̃

[
f(Z̃, S)

∣∣∣Z̃]] (66)

= nEPS|Z̃×p̂z(z)[f(Z̃, S)] (67)

Where (63) and (64) are derived from the definition of type and conditional expectation, (65) follows by replacing random
variables Si by S which does not effect the expectation and (67) follows from the tower rule of conditional expectation.

Lemma 5: With the assumptions of Lemma 4 we have

E

[( n∑
i=1

f(Zi, Si)

)2∣∣∣p̂z

]
= n2EPS|Z×P̂z

[f(Z̃, S)]2 + nEPS|Z×P̂z
[f(Z̃, S)2]− nEP̂z

[
EPS|Z [f(Z̃, S)|Z̃]2

]
(68)

Where Z̃ is a random variable with distribution p̂z .
Proof: By expanding the term in the expectation we have

E

[( n∑
i=1

f(Zi, Si)

)2∣∣∣p̂z

]
= E

∑
i6=k

f(Zi, Si)f(Zk, Sk)
∣∣∣p̂z

+ E

[
n∑
i=1

f(Zi, Si)
2
∣∣∣p̂z

]
(69)

Then for the first term of the right hand side of (69) we can use Lemma 4

E

[
n∑
i=1

f(Zi, Si)
2
∣∣∣p̂z

]
= nEPZ|S×p̂z

[f(Z̃, S)2] (70)

Where Z̃ is a random variable with distribution p̂z . Moreover, for the second term of right hand side of (69) we have

E

∑
i 6=k

f(Zi, Si)f(Zk, Sk)
∣∣∣p̂z

 = E

 ∑
z1 6=z2

∑
i 6=k

f(z1, Si)f(z2, Sk)p̂z(z1)
np̂z(z2)

n− 1


+ E

∑
z

∑
i 6=k

f(z, Si)f(z, Sk)p̂z(z)
np̂z(z)− 1

n− 1

 (71)

=
n

n− 1
E

∑
i 6=k

∑
z1,z2

f(z1, Si)p̂z(z1)f(z2, Sk)p̂z(z2)


− 1

n− 1
E

∑
i 6=k

∑
z

f(z, Si)f(z, Sk)p̂z(z)2

 (72)

=
n

n− 1

∑
i6=k

EPS|Z×p̂z

[
f(Z̃, Si)

]
EPS|Z×p̂z

[
f(Z̃, Sk)

]
− 1

n− 1

∑
i6=k

Ep̂z

[
EPS|Z [f(Z̃, Si)|Z̃]EPS|Z [f(Z̃, Sk)|Z̃]

]
(73)

= 2

(
n

2

)(
n

n− 1
EPS|Z×p̂z

[
f(Z̃, S)

]2
− 1

n− 1
Ep̂z

[
EPS|Z [f(Z̃, S)|Z̃]2

])
(74)

where (71) follows from expanding the expectation when the type of the sequence is known. Observe that there are two terms
separating all cases depending on whether z1, z2 are equal or not. When they are not equal, the number of such possibilities
is np̂z(z1)np̂z(z2) while the number of choices is n(n − 1), yielding a probability equal to n

n−1 p̂z(z1)p̂z(z2). Similarly,
when z1 = z2 = z, the number of such possibilities is np̂z(z1)(np̂z(z2)− 1), while the number of choices remains n(n− 1),
yielding a probability equal to 1

n−1 p̂z(z1)(np̂z(z2)− 1). Eq. (72) follows by rearranging the terms. Additionally, (73) follows
by taking the expectation inside using Lemma 4. Combining (70) and (74) with (69) we get the result.
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Corollary 2: With the assumptions of Lemma 4 we have

Var

[
n∑
i=1

f(Zi, Si)
∣∣∣p̂z

]
= nEp̂z

[
VarPS|Z [f(Z̃, S)|Z̃]

]
(75)

where Z̃ is a random variable with distribution p̂z .
Proof:

Var

[
n∑
i=1

f(Zi, Si)
∣∣∣p̂z

]
= E

( n∑
i=1

f(Zi, Si)

)2 ∣∣∣p̂z

− E

[
n∑
i=1

f(Zi, Si)
∣∣∣p̂z

]2

(76)

= n2EPS|Z×P̂z
[f(Z̃, S)]2 + nEPS|Z×P̂z

[f(Z̃, S)2]− nEP̂z

[
EPS|Z [f(Z̃, S)|Z̃]2

]
− n2EPS|Z×P̂z

[f(Z̃, S)]2 (77)

= nEPS|Z×P̂z
[f(Z̃, S)2]− nEP̂z

[
EPS|Z [f(Z̃, S)|Z̃]2

]
(78)

= nEP̂z
[VarPS|Z [f(Z̃, S)|Z̃]] (79)

where (76) follows from the definition of variance, and (77) follows by directly using Lemmas 4 and 5.
Lemma 6: Let (Zi, Si), i = 1, 2, . . . , n be i.i.d random variables, z = (Z1, Z2, . . . , Zn) and A ⊂ PnZ then

E

[
n∑
i=1

f(Zi, Si)
∣∣∣A] ≥ n min

p̂z∈A
EPS|Z×p̂z

[
f(Z̃, S)

]
(80)

Proof: We have

E

[
n∑
i=1

f(Zi, Si)
∣∣∣A] =

1

P(A)
E

[(
n∑
i=1

f(Zi, Si)

)
1{p̂z ∈ A}

]
(81)

≥ min
p̂z∈A

E

[(
n∑
i=1

f(Zi, Si)

)∣∣∣p̂z

]
(82)

= n min
p̂z∈A

EPS|Z×p̂z

[
f(Z̃, S)

]
(83)

Where (81) is by definition of conditional expectation, (83) is by using the Lemma 4.
The analogous of the above lemma does not hold for the variance and we need an extra assumption on the boundedness of
maxz∈Z

∣∣EPS|Z=z
[f(z, S)]

∣∣.
Lemma 7: Let (Zi, Si), i = 1, 2, . . . , n be i.i.d. random variables, z = (z1, z2, . . . , zn) and A ⊂ PnZ . Then, we have

Var

[
n∑
i=1

f(Zi, Si)
∣∣∣A] ≤ n max

P̃Z∈A
EP̃Z

[
VarPS|Z [f(Z̃, S)|Z̃]

]
+ 4n2G1G2 (84)

where Z̃ is a random variable with distribution P̃Z . Moreover, G1, G2 are defined as

G1 = max
z∈Z

∣∣EPS|Z=z
[f(z, S)]

∣∣ (85)

G2 = max
P̃Z ,P̄Z∈A

(
EPS|Z×P̃Z [f(Z̃, S)]− EPS|Z×P̄Z [f(Z̄, S)]

)
. (86)

Proof:

Var

[
n∑
i=1

f(Zi, Si)
∣∣∣A] = E

( n∑
i=1

f(Zi, Si)

)2 ∣∣∣A
− E

[
n∑
i=1

f(Zi, Si)
∣∣∣A]2

(87)

≤ max
p̂z∈A

E

( n∑
i=1

f(Zi, Si)

)2 ∣∣∣p̂z

− min
p̂z∈A

E

[(
n∑
i=1

f(Zi, Si)

)∣∣∣p̂z

]2

(88)

≤ n2EPS|Z×P̃Z [f(Z̃, S)]2 + nEPS|Z×P̃Z [f(Z̃, S)2]− nEP̄Z
[
EPS|Z [f(Z̄, S)|Z̄]2

]
−

− n2EPS|Z×P̄Z [f(Z̄, S)]2 (89)

≤ nEP̃Z
[
VarPS|Z [f(Z̃, S)|Z̃]

]
+ n2

(
EPS|Z×P̃Z [f(Z̃, S)]2 − EPS|Z×P̄Z [f(Z̄, S)]2

)
(90)
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where Z̃ and Z̄ are random variables with distribution P̃Z and P̄Z that correspond to the maximizing and minimizing types
in (88), respectively. Additionally, for the second term of the right hand side of (90) we have

n2
(
EPS|Z×P̃Z [f(Z̃, S)]2 − EPS|Z×P̄Z [f(Z̄, S)]2

)
(91)

= n2
(
EPS|Z×P̃Z [f(Z̃, S)]− EPS|Z×P̄Z [f(Z̄, S)]

)(
EPS|Z×P̃Z [f(Z̃, S)] + EPS|Z×P̄Z [f(Z̄, S)]

)
(92)

≤ n2(2G1)(2G2) (93)

= 4n2G1G2. (94)

APPENDIX B
PROOF OF THEOREM 2

In this section, we prove Theorem 2, i.e.,

P qe,max(Cn,W, nε) ≥ (1− γn(ε))Pmax
tce (Cn, PŶ |X). (95)

where

γn(ε) = 1− 1

N(ε)

(
1− 2nσ2

0 + 4n2κ1κ2

n2(δ − ε)2

)
(96)

σ2
0 = max

x∈X
Var[q(x, Y )] (97)

κ1 = max
x1,x2∈X

∣∣EPY Ŷ X1=x,X2=x2
[q(x1, Y )− q(x2, Y )]

∣∣ (98)

κ2 = max
P̃Ŷ X1X2

,P̄Ŷ X1X2
∈F

(
EPY |Ŷ X1

×P̃Ŷ X1X2

[q(x1, Y )− q(x2, Y )]− EPY |Ŷ X1
×P̄Ŷ X1X2

[q(x1, Y )− q(x2, Y )]
)

(99)

and the constant N(ε) and set F are to be specified in the proof.
Proof: Without loss of generality assume that x1 is the codeword with maximum type conflict error on channel PŶ |X .

For every message ` = 2 . . . ,M , define the sets

A` = {y | qn(x`,y) ≥ qn(x1,y) + nε} (100)
B` = {y | p̂ŷ|x` = p̂ŷ|x1

, p̂ŷx`x1
∈ F} (101)

Firstly we prove two lemmas which would be helpful in choosing of N(ε) and set F .
Lemma 8: We have

κ2 ≤ max
P̃Ŷ X1X2

,P̄Ŷ X1X2
∈F

4 · qmax · ‖P̃Ŷ X1X2
− P̄Ŷ X1X2

‖1 (102)

Where qmax = maxx∈X ,y∈Y q(x, y)
Proof: The proof directly follows from definition of κ2 in (99) and triangle inequality.

Lemma 9: For every ε > 0 there are N(ε) different probability distributions {P 1
Ŷ X1X2

, P 2
Ŷ X1X2

, . . . , P
N(ε)
Y X1X2

} ⊂ PYXX such
that every other distribution is in ε ball of one these distributions, i.e., for every PY X1X2

there exists an index 1 ≤ s ≤ N(ε)
such that

‖PY X1X2
− P sY X1X2

‖1 ≤ ε (103)

Proof: Since PYXX is a compact set under the L1 distance, the result follows.
Then, we have

P qe,max(Cn,W, nε) = P
[ M⋃
m′=2

Am′

]
(104)

=

M∑
`=2

P
[ M⋃
m′=2

Am′ |B`
]
P[B`] (105)

≥
M∑
`=2

P[A`|B`]P[B`] (106)
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where (104) follows from the definition or error probability, (105) is obtained by conditioning on B`, ` = 2, . . . ,M and (106)
is by using the following inequality

P
[ M⋃
m′=2

Am′ |B`
]
≥ P[A`|B`]. (107)

We proceed by lower-bounding P[A`|B`] as follows

P[A`|B`] = P[qn(x`,y) ≥ qn(x1,y) + nε|B`] (108)
= 1− P[qn(x`,y)− qn(x1,y) < nε|B`] (109)

≥ 1− P
[
|qn(x`,y)− qn(x1,y)− µ| > µ− nε|B`

]
(110)

≥ 1− σ2

(µ− nε)2
(111)

where µ = E[qn(x`,y) − qn(x1,y)|B`] and σ2 = Var[qn(x`,y) − qn(x1,y)|B`] and (111) is derived by from Chebychev’s
inequality.

To compute µ, σ in (111) we use Lemma 6. We choose (Zi, Si), i = 1, 2, . . . , n in Lemma 6 to be ((x1(i),x`(i), Ŷi), Yi), i =
1, 2, . . . , n where Zi corresponds to triplet of (x1(i),x`(i), Ŷi) and Si corresponds to Yi. Moreover, if we define f(Zi, Si) =
f(x1(i),x`(i), Ŷi, Yi) = qn(x`(i), Yi)− qn(x1(i), Yi) we have

qn(x`, Y
n)− qn(x1, Y

n) =

n∑
i=1

q(x`(i), Yi)− q(x1(i), Yi) (112)

=

n∑
i=1

f(x1(i),x`(i), Ŷi, Yi). (113)

Therefore, from Lemma 6 we have

E[qn(x`,y)− qn(x1,y)|B`] = E
[ n∑
i=1

q(x`(i),y(i))− q(x1(i),y(i))|B`
]

(114)

= E
[ n∑
i=1

f(x1(i),x`(i),y(i), ŷ(i))|B`
]

(115)

≥ n min
p̂ŷx1x`

∈B`
EPY |Ŷ x1x`

×p̂Ŷ x1x`
[q(X̃`, Y )− q(X̃1, Y )] (116)

= n min
p̂ŷx1x`

∈B`
EPY |Ŷ x1

×p̂ŷx1x`
[q(X̃`, Y )− q(X̃1, Y )] (117)

≥ n min
X2:PŶ X2

=PŶ X1

E[q(X2, Y )− q(X1, Y )] (118)

≥ nδ (119)

where (116) follows from Lemma 6, (117) is by Y being independent from x` given Ŷ ,x1 and (118) follows from the
definition of events B`, and (119) follows from the definition of set Mδ

max(d, PX). As for σ2, we use Corollary 2 in the same
way. We have

Var[q(x`,y)− q(x1,y)|B`] = Var

[ n∑
i=1

q(x`(i),y(i))− q(x1(i),y(i))|B`
]

(120)

≤ n max
p̂ŷx1x`

∈B`
Ep̂Ŷ x1x`

[
VarPY |Ŷ x1x`

[q(X̃`, Y )− q(X̃1, Y )]
]

+ 4n2κ1κ2 (121)

= n max
p̂ŷx1x`

∈B`
Ep̂ŷx1x`

[
VarPY |Ŷ x1

[q(X̃`, Y )− q(X̃1, Y )]
]

+ 4n2κ1κ2 (122)

≤ 2nσ2
0 + 4n2κ1κ2 (123)

Therefore, combining (119) and (123) we get

P[A`|B`] ≥ 1− 2nσ2
0 + 4n2κ1κ2

n2(δ − ε)2
(124)
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Now recall that x1 is the codeword which has the maximum type conflict error over channel PŶ |X . Moreover, by combining
(124) and (106) we get the following result

P qe,max(Cn,W, nε) ≥
M∑
`=2

P[A`|B`]P[B`] (125)

≥
(

1− 2nσ2
0 + 4n2κ1κ2

n2(δ − ε)2

) M∑
`=2

P[B`] (126)

The above analysis is valid for an arbitrary set F . Now we need to choose the set F in such a way that P[∪M`=2B`] ≥
1

N(ε)P
max
tce (Cn, PŶ |X). If we choose F = PYXX , then, the variance in (120) can be too large but P[∪M`=2B`] = Pmax

tce .
In order to control the variance, instead, since the union of the N(ε) ε-neighbourhoods of the distributions P sY X1X2

for
s = 1, . . . , N(ε), completely covers the space of joint distributions PYXX , we choose F to be the ε-neighbourhood of some
distribution P s̄Y X1X2

. We choose the distribution P s̄Y X1X2
in such a way that most of the joint types that yield a type-conflict

error in the ε-neighbourhood of P s̄Y X1X2
. This way, we can guarantee, that for such ε-neighbourhood of P s̄Y X1X2

,

M∑
`=2

P[B`] ≥ P[∪M`=2B`] (127)

≥ 1

N(ε)
Pmax

tce (Cn, PŶ |X) (128)

As a result from (128) and (126) we get

P qe,max(Cn,W, nε) ≥
1

N(ε)

(
1− 2nσ2

0 + 4n2κ1κ2

n2(δ − ε)2

)
Pmax

tce (Cn, PŶ |X) (129)

Now note that based on Lemma 8 we can choose ε small enough such that κ2 is as small as we want, since the L1 norm in (102)
is always smaller than ε by Lemma 9. Then N(ε) is the constant defined in lemma 9. Therefore 1− 2nσ2

0+4n2κ1κ2

n2(δ−ε)2 ∈ (0, 1).

When ε is small, then N(ε) increases, which is not a problem since N(ε)
(
1 − 2nσ2

0+4n2κ1κ2

n2(δ−ε)2

)
still remains in the interval

(0, 1).
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