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Geometric phase methods with Stokes theorem
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The geometric phase techniques for swimming in viscous flows express the net
displacement of a swimmer as a path integral of a field in configuration space. This
representation can be transformed into an area integral for simple swimmers using the
Stokes theorem. Since this transformation applies for any loop, the integrand of this
area integral can be used to help design these swimmers. However, the extension of
this Stokes theorem technique to more complicated swimmers is hampered by problems
with variables that do not commute and by how to visualise and understand the
higher-dimensional spaces. In this paper, we develop a treatment for each of these
problems, thereby allowing the displacement of general swimmers in any environment
to be designed and understood similarly to simple swimmers. The net displacement
arising from non-commuting variables is tackled by embedding the integral into a
higher-dimensional space, which can then be visualised through a suitability constructed
surface. These methods are developed for general swimmers and demonstrated on three
benchmark examples: Purcell’s two-hinged swimmer, an axisymmetric squirmer in free
space and an axisymmetric squirmer approaching a free interface. We show in particular
that, for swimmers with more than two modes of deformation, there exists an infinite
set of strokes that generate each net displacement. Hence, in the absence of additional
restrictions, general microscopic swimmers do not have a single stroke that maximises
their displacement.

Key words: micro-organism dynamics, swimming/flying, propulsion

1. Introduction

The success of the Gray & Hancock (1955) resistive-force model for spermatozoa
swimming inspired a great effort into the modelling of microscopic biological swimmers

† Email address for correspondence: lmk42@cam.ac.uk
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in viscous fluids. Hydrodynamic models of these systems now include long-range
hydrodynamic interactions in flagella and cilia (Keller & Rubinow 1976; Lighthill 1976;
Johnson 1979; Gueron & Liron 1992; Man, Koens & Lauga 2016; Koens & Lauga 2018),
interactions between the swimmers body and its flagella (Higdon 1979; Smith et al.
2009; Hu et al. 2015; Chakrabarti & Saintillan 2019a) and with walls (Barta & Liron
1988; Das & Lauga 2018; Walker et al. 2019). These hydrodynamic models have also
been coupled with elasticity to investigate the fluid–structure interactions at the heart
of biological flagella (Kim & Powers 2005; Ishimoto & Gaffney 2018; du Roure et al.
2019; Chakrabarti et al. 2020), while including models for internal activation allows us
to understand how spermatozoa and cilia generate their waveforms (Ishimoto & Gaffney
2018; Chakrabarti & Saintillan 2019a,b; Man, Ling & Kanso 2020). These approaches
have also been extended to consider the dynamics of microswimmers in complex media
(Koens & Lauga 2016a; Wróbel et al. 2016; Hewitt & Balmforth 2018; Omori & Ishikawa
2019). These theoretical developments, carried out in close collaboration with experiments
(Turner, Ryu & Berg 2000; Drescher, Goldstein & Tuval 2010; Goldstein 2015; Bianchi,
Saglimbeni & Di Leonardo 2017; Colin, Drescher & Sourjik 2019; Perez Ipiña et al. 2019;
Martinez et al. 2020), have led to an increased understandings of how bacteria (Lauga
2016), algae (Goldstein 2015) and spermatozoa (Gaffney et al. 2011) interact with their
environment and with each other and prompted the creation of artificial microscopic
swimmers to test hydrodynamic theories (Valdés et al. 2019; Hayashi & Takagi 2020),
explore collective active systems (Alapan et al. 2019; Karani, Pradillo & Vlahovska 2019)
and for the development of micro-technologies such as targeted drug delivery (Zhang,
Peyer & Nelson 2010; Maggi et al. 2015; Vizsnyiczai et al. 2017; Huang et al. 2019; Koens
et al. 2019).

The derivation of these theoretical models has occurred in conjunction with important
theoretical developments in our fundamental understanding of the world of viscous flows.
For example, in 1951, Taylor first determined the mathematics of swimming at low
Reynolds number and showed that it nonlinearly depended on the waving geometry (Taylor
1951). This paved the way for the work of Gray & Hancock (1955). Purcell (1977) later
argued that bodies could not swim in viscous fluids unless they broke the time symmetry
of the system (i.e. formed a so-called non-reciprocal stroke), which he demonstrated with
his simple two-hinged swimmer. The motion of Purcell’s swimmer was not solved until
much later (Becker, Koehler & Stone 2003) but has since been studied extensively (Avron
& Raz 2008; Hatton & Choset 2011, 2013, 2015; Gutman & Or 2016; Ramasamy &
Hatton 2016, 2017, 2019; Wiezel et al. 2018) and been extended to create other prototypical
low Reynolds number swimmers (Golestanian & Ajdari 2008). Lighthill (1976) also used
geometric arguments to determine asymptotically the flow around slender filaments such
as those used by bacteria and spermatozoa. This has led to models of filaments in other
geometries and with other shapes (Koens & Lauga 2016b; Borker & Koch 2019).

One significant, but far less used, theoretical development is the geometric swimming
formulation due to Shapere & Wilczek (1987, 1989b) who recognised that, as the
displacement of any viscous swimmer is purely a function of geometry, it could be
represented by a gauge theory. These gauge theories have been studied at length in physics
and so this representation introduces many new ideas and techniques. For swimmers that
travel in one dimension and only have two degrees of freedom, the geometrical techniques
could be further simplified through the use of the Stokes theorem. This simplification
allows the net displacement from any stroke to be visualised on a plane and thereby
provides new insights into the propulsion mechanisms and how to design the swimmer’s
displacement (Shapere & Wilczek 1989b; DeSimone & Tatone 2012; Desimone et al.
2012; Hatton & Choset 2015; Cicconofri & DeSimone 2016; Koens et al. 2018).
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General geometric phase methods

However, the same treatment is not generally possible for more complicated swimmers
because of (i) non-commuting variables within the gauge field and (ii) difficulties
visualising the configuration space (Hatton & Choset 2015; Hatton, Dear & Choset 2017;
Ramasamy & Hatton 2017; Bittner, Hatton & Revzen 2018). Attempts to produce similar
results often restrict the motion of the swimmer and the types of deformation.

In this paper we show that the displacement of a microscopic swimmer in any
environment can always be visualised on a single surface. This is achieved by developing
methods to overcome both the non-commuting variables and visualisation issues for a
general geometric swimming formulation. Our techniques are first described in the most
general framework and then demonstrated with examples of prototypical microswimmers.
The issue with non-commuting variables is overcome by embedding the system into
higher-dimensional spaces in which the Stokes theorem can again directly apply.
The multidimensional equivalent of conversation of flux then allows us to visualise
the dynamics in high-dimensional configuration spaces through a suitable surface.
Significantly, our generalisation shows that for any swimmer in an unbound deformation
space, there is no single stroke that maximises the displacement. Finally we outline how
the techniques could be used to choose the displacement of an arbitrary unconstrained
viscous swimmer.

The paper is organised as follows. Section 2 summaries the geometric swimming
formalism for viscous swimmers and explains the difficulties posed by complex swimmers
and some of the attempts to get around them. This development and associated difficulty is
demonstrated with the rotation of a small-angled Purcell two-hinged swimmer. Section 3
then introduces a method to overcome non-commutating variables so that the generalised
Stokes theorem can be applied. This is demonstrated in the case of the translation of
the aforementioned Purcell swimmer. In § 4 we next develop a method to understand
and visualise the full space configuration space after the use of the Stokes theorem.
We show in particular that the whole space can be viewed on a single surface and that
the net displacement is not unique to any one stroke, as demonstrated with a four-mode
squirmer and the translation of the Purcell swimmer. Finally, a general process to design a
swimmer’s displacement is outlined in § 5, demonstrated with a squirmer near an interface,
and our results are summarised in § 6.

2. Background: geometric swimming for Stokes flow

The geometric swimming techniques for Stokes flow are natural consequences of the
linearity and time independence of viscous flow. In this section we outline how the
geometric swimming representation comes about, how the Stokes theorem can be used
for simple swimmers and the difficulty with this extension in more complicated set-ups.

2.1. Origin of the geometric swimming representation
Microscopic swimmers typically exist within inertia-less environments (Lauga & Powers
2009). As a result, the swimmers are force and torque free and the surrounding fluid flow
is well described by the incompressible Stokes equations,

μ∇2u = ∇p, (2.1)

∇ · u = 0, (2.2)

where μ is the dynamic viscosity, u is the fluid velocity and p is the dynamic pressure. The
typical boundary conditions for these equations are the no-slip condition on the swimmers
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surface, i.e. the fluid velocity must equal the velocity on the swimmers surface. The linear
and time independence of the above equations mean that the swimming problem can
always be broken into two parts: the response to surface deformation and the response
to rigid body motion. The total motion is then found by adding the two flows together
afterwards. In each of these cases the forces and torques must be linearly related to an
appropriate velocity. The hydrodynamic force, F R, and torque, LR, on the swimmer from
rigid body motion can therefore be written as(

F R
LR

)
= −R(l, x) ·

(
U
Ω

)
, (2.3)

where U is the rigid body velocity, Ω is the rigid body angular velocity and R(l, x) is the
resistance matrix. The resistance matrix is only a function of the swimmer’s configuration
and laboratory frame position and orientation. In the above we have assumed that the
swimmer’s configuration is uniquely described by a set of deformation modes, l, while the
position and orientation in the laboratory frame is given by x. Similarly the hydrodynamic
force, F d, and torque, Ld, on the body from the shape deformation can be written as(

F d
Ld

)
= A(l, x) · dl

dt
, (2.4)

where A(l, x) is also a matrix which depends only on the swimmers configuration
and position. The matrices R(l, x) and A(l, x) must be determined by solving the
Stokes equations with the appropriate boundary conditions. Except in systems with
suitable symmetries, such as spheroids, this is difficult to do and many analytical and
computational techniques have been developed to tackle this (Keller & Rubinow 1976;
Lighthill 1976; Johnson 1979; Pozrikidis 1992; Cortez 2001; Cortez, Fauci & Medovikov
2005; Kim & Karrila 2005).

If these matrices can be found, the instantaneous velocity of a swimmer can be
determined by balancing the forces and torques on the swimmer. Since low Reynolds
number swimmers are force and torque free, their velocities can be written as(

U
Ω

)
= R−1(l, x) · A(l, x) · dl

dt
, (2.5)

in the absence of external forces or torques. Note that the inversion of R is always possible
as the resistance tensor is positive definite (Kim & Karrila 2005). The evolution of the
swimmers position and orientation in the laboratory frame is therefore given by

dx
dt

= B(x) ·
(

U
Ω

)
= M(l, x) · dl

dt
, (2.6)

where B(x) is the evolution matrix which relates the swimmers velocities to the rate of
change of its coordinates. Of course, B(x) is different for different representations of x. In
the above M(l, x) is the gauge field identified by Shapere & Wilczek (1987, 1989b).

The position of the swimmer after a specific deformation l(t) is given by integrating the
evolution equation, (2.6), over this path. Mathematically this can be written as

x(t) =
∫ t

0
M(l(t′), x(t′)) · dl

dt′
dt′. (2.7)

The above equation is therefore a parametrised path integral for the path l(t). This holds
for a general path and so any displacement is given by a path integral over the field M(l, x).
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General geometric phase methods

The net displacement from a periodic swimming stroke can thus always be written as the
path integral

Δx =
∮

∂V
M(l, x) · dl, (2.8)

where ∂V is the prescribed loop in the configuration space. Hence, M(l, x) contains all the
information about the swimmers displacement. This representation can be used to design
the swimmer’s displacement by identifying how Δx changes over many different strokes.

2.2. Extensions for simple swimmers
The analysis of the geometric swimming results can be made easier for isolated
one-dimensional swimmers with two degrees of freedom, l = {l1, l2}. In this case
M(l, x) = {M1(l1, l2), M2(l1, l2)} is independent of the laboratory frame configuration and
the translational displacement can be written as

Δx =
∮

∂V

(
M1(l1, l2)

dl1
dt

+ M2(l1, l2)
dl2
dt

)
dt

= −
∫∫

V

(
∂M1

∂l2
− ∂M2

∂l1

)
dl1 dl2, (2.9)

where we have used Green’s theorem (i.e. the two-dimensional version of the Stokes
theorem) and where V is the area inside the loop. This representation applies to any
choice of loop, and hence the displacement of the swimmer is inherently related to
−(∂M1/∂l2 − ∂M2/∂l1). Inspection of this function on the {l1, l2} plane therefore displays
the general behaviour of the displacement in an easy-to-visualise way. This can be useful
for the design and selection of swimming strokes for specific tasks. This representation
is also attractive from a theoretical perspective because swimming strokes that do not
break time-reversal symmetry contain zero area within them and so clearly produce no
displacement. Such is the appeal of this representation that it has been used popularly
under the names motility maps (DeSimone & Tatone 2012; Desimone et al. 2012;
Cicconofri & DeSimone 2016; Koens et al. 2018) and height functions (see Hatton &
Choset (2011) and references within).

2.3. Difficulties in the extension to more complicated swimmers
The extension of the above Green’s theorem idea to the general geometric swimmer
method encounters two difficulties: (i) the visualisation of the results and (ii) the treatment
of non-commuting variables.

First, the visualisation issue can be seen if we consider a field M(l, x) which is
independent of x. In this case the generalised Stokes theorem,

∫
∂V

w =
∫

V
dw, (2.10)

can be used to relate the closed line integral to the flux of a field through surfaces bounded
by the loop in any dimensional space. The above equation uses notation from exterior
calculus and so a summary of the relevant features has been included in Appendix A.
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The generalised Stokes theorem allows the displacement to be written as

Δxi =
∮

∂V
M ij dl j

=
∫∫

V
d

(
M ij dl j

)

= −1
2

∫∫
V

(
∂M ij

∂lk
− ∂M ik

∂l j

)
dl j ∧ dlk, (2.11)

where ∧ is the wedge product (the antisymmetric tensor product), d is the exterior
derivative and V is any surface bounded by the loop ∂V . In the above we have used index
notation, the Einstein summation convention and have invoked dl j ∧ dli = −dli ∧ dl j

and d2w = 0 for any w. Physically, dl j ∧ dlk represents the infinitesimal surface element
between directions l j and lk and, for a specific direction i, ∂M i

jk = −1
2 (∂M ij/∂lk −

∂M ik/∂l j) represents a skew-symmetric matrix of size N × N where N is the size of l.
This skew-symmetric matrix can be thought as the multidimensional equivalent to the
curl (Appendix A). Similarly to the Stokes theorem in three dimensions, this integral
can be interpreted as the flux of the multidimensional curl through the surface V . The
visualisation of this field is, however, non-trivial for any swimmer with N > 3, as it is not
possible to plot the full field in a simple way. The optimisation and design of general
swimmers requires therefore the development of techniques to efficiently search these
high-dimensional spaces (Ramasamy & Hatton 2017, 2019).

Secondly, the dependence of M(l, x) on the laboratory position and orientation further
complicates the extension of Green’s theorem to other swimmers. This complication even
occurs for two-dimensional swimmers in unbound fluids because rotations and translations
do not commute. For example the marching orders ‘Step, Turn’, create a different result to
‘Turn, Step’. Under these conditions the generalised Stokes theorem needs to be corrected
to account for the change of x along the path. These corrections can be written as an
infinite series of nested Lie brackets which are closely related to the Magnus expansion (a
generalisation of the matrix exponential for non-commuting matrix equations) (Radford
& Burdick 1998; Hatton & Choset 2015; Ramasamy & Hatton 2017; Bittner et al. 2018;
Ramasamy & Hatton 2019). This infinite series can be interpreted as expansion around
small loop sizes in which x changes little, because each Lie bracket captures the change
produced by the non-commuting variables from an infinitesimal loop in the configuration
space. Nested Lie brackets therefore capture the change of a change and so are more
important when x varies more. This series cannot typically be computed, and so is often
truncated to leading order in loop size (Shapere & Wilczek 1987, 1989b). The leading
correction in this series goes as

Δx =
∮

∂V
M · dl =

∫∫
V

d(M · dl) +
∑
i<j

∫∫
V

[
M i, M j

]
dli ∧ dl j

+ O
(∫∫∫ [[

M i, M j
]
, Mk

]
dli ∧ dl j ∧ dlk

)
, (2.12)

where M i is the ith column of M , and [X , Y ] = X · ∇Y − Y · ∇X is the Lie bracket of
the two vector fields (Radford & Burdick 1998). Each subsequent term in this expansion
involves an additional integral over the configuration loop. Hence, if � is the typical size
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General geometric phase methods

of the stroke, the nth term in the expansion scales with �n, reflecting that the series
representation applies in the small � limit.

This limit means that the error on this representation can become very large. Consider
for example the one-dimensional field M = {a, bx}, where a and b are constants. This field
is similar to that of an axisymmetric squirmer approaching a free interface (§ 5.2) and
corresponds to the evolution equation

dx
dt

= a
dl1
dt

+ b
dl2
dt

x(t), (2.13)

which can be solved exactly to find the net displacement

Δx = a ebl2(0)

∫ 2π

0
e−bl2(t) dl1

dt
dt, (2.14)

where t ∈ [0, 2π). In this case (2.12) predicts

Δxs = 0 − ab
∫∫

V
dl1 dl2 = −abA, (2.15)

where Δxs is the predicted displacement from (2.12), and A = ∫∫
V dl1 dl2 is the area

enclosed in the loop. The series approximated displacement, Δxs, is clearly very different
to the exact solution Δx. This is because non-commuting variables often nonlinearly affect
the displacement while the first two terms in (2.12) only account for the linear influence of
these variables. As such Δxs is the leading-order Taylor expansion of Δx in small stroke
size.

Hatton & Choset (2011) noticed that the Lie brackets in the series expansion depends
on the choice of frame. This meant that, although the error terms cannot be removed,
their contribution can be minimised through an appropriate choice of frame, called the
minimal perturbation frame. For isolated swimmers in an infinite fluid (i.e. when the
matrices in (2.5) are independent of x), they showed that this minimal perturbation frame
can be determined through a generalised Helmholtz decomposition and solving a set of
partial differential equations. This process cannot be done by hand in general and so
the authors developed a numerical procedure to perform these calculations, available in
MATLAB (Hatton 2020). This numerical procedure limits the theoretical insight that can
be developed from the technique but has been shown to improve significantly the results
of the series expansion for two-dimensional Purcell-like low Reynolds number swimmers
and some other two-dimensional non-low Reynolds number cases (Hatton & Choset 2011,
2013, 2015; Hatton et al. 2017; Ramasamy & Hatton 2017; Bittner et al. 2018; Ramasamy
& Hatton 2019). This process increases the range of applicability for the approximation,
(2.12), for isolated swimmer problems. However, no rigorous bound on the error after this
improvement has been found and so the limits of this increase is not definitely known.
We note that in such two-dimensional isolated swimmer geometries, the displacement can
be written as an exponential map (Shapere & Wilczek 1987, 1989b; Radford & Burdick
1998; Hatton & Choset 2015). Hence, exponentiating the results of Hatton & Choset (2011)
further increases the effectiveness of this representation.

2.4. Example: a small-angled Purcell two-hinged swimmer
The power of these geometric techniques can be demonstrated using Purcell’s famous
two-hinged swimmer. Purcell’s swimmer is considered one of the simplest model
swimmers. It is composed of three rigid rods connected end to end. All the rods lie in
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Figure 1. (a) Diagram of Purcell’s two-hinged swimmer in the laboratory frame. The three slender rods are of
unit length and the angles between the arms are φ1 and φ2. The laboratory orientation θ is defined with respect
to the central rod. (b) Iso-values of the integrand of (2.46) where dashed lines represents contours.

a single plane and the angles between these rods can be varied (figure 1a). If the angles are
changed in a non-reciprocal fashion this enables net motion within the two-dimensional
plane (Purcell 1977). Becker et al. (2003) developed a detailed theoretical model for this
swimmer. This model focused specifically on the swimming from the symmetric armed
stroke proposed by Purcell in which one arm is raised, the second other aim is raised,
the first is lowered and then the second is lowered. The motion and deformation of the
swimmer was then determined by ensuring it was force and torque free and that the hinges
imposed a specified torque difference across them. The motion of this swimmer has since
been studied extensively in different scenarios (Avron & Raz 2008; Hatton & Choset 2011,
2013, 2015; Gutman & Or 2016; Ramasamy & Hatton 2016, 2017, 2019; Wiezel et al. 2018).

Unlike Becker et al. (2003), we will specify the deformation and typically restrict
ourselves to the limit of small angles between rods (assumed to be of unit length). This
makes the calculation tractable analytically for any stroke we wish to consider. The full
problem will be used to compare with the results of (2.12) in the minimal perturbation
coordinates. Here, we specify the swimmers configuration, determine the gauge field MP

for the swimmer and demonstrate the simple extensions for the rotation of the swimmer.
We also explain why this does not work directly for translation.

2.4.1. Swimmer configuration and deformation velocity
The configuration of Purcell’s two-hinged swimmer and its deformation velocity are
needed to determine MP. If the component rods are slender, the structure of the swimmer
can be described by the motion of the centreline of these rods, r(s, t). Hence, in a reference
frame attached to the centre of the swimmer, its shape can be described by

r(s, t) + rc(t) =
⎧⎨
⎩

{−1 + (1 + s) cos φ1(t), (1 + s) sin φ1(t)} −3 < s < −1,

{s, 0} −1 < s < 1,

{1 + (s − 1) cos φ2(t), (s − 1) sin φ2(t)} 1 < s < 3,
(2.16)

where rc(t) = {cos φ2(t) − cos φ1(t), sin φ2(t) − sin φ1(t)}/3 is the centre of swimmer at
time t, s is the arclength of the swimmer and φ1(t) and φ2(t) are the angles between the
first and second rod and the second and third rods, respectively (figure 1a). This reference
frame is a two-dimensional Cartesian coordinate frame {x′, y′} where x′ is aligned with
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the central rod, called the body frame. Similarly the surface velocity of the swimmer is
approximately

V (s, t) = ṙ(s, t) = −ṙc +
⎧⎨
⎩

φ̇1{−(1 + s) sin φ1, (1 + s) cos φ1} −3 < s < −1,

{0, 0} −1 < s < 1,

φ̇2{−(s − 1) sin φ2, (s − 1) cos φ2} 1 < s < 3,

(2.17)

where ˙(·) denotes the time derivative, we have dropped the time dependence for brevity
and have neglected the thickness of the slender rods. This surface velocity has zero mean
but can still exerts a non-zero net force and torque on the body, which balance the force
and torque from rigid body translation and rotation and thus generate motion.

2.4.2. Forces and torques from deformation and rigid body motion
The force and torques on Purcell’s two-hinged swimmer can be estimated using
resistive-force theory (Lauga & Powers 2009). Resistive-force theory is an asymptotic
result that captures the hydrodynamic force per unit length, f , experienced by a slender
body in viscous flows in terms of the drag experienced if moved along its axis and
perpendicular to it. Mathematically this relationship says

f = − [
ζ‖t̂t̂ + ζ⊥

(
I − t̂t̂

)] · U, (2.18)

where U is the velocity of the cylinder at s, t̂ = ∂sr is the local tangent vector of the
swimmers body, ζ‖ is the drag coefficient for motion along the axis and ζ⊥ is the drag
coefficient for motion perpendicular to the axis (both drag coefficients have units of
viscosity). In the limit that the filament becomes infinitely thin, we have ζ⊥ = 2ζ‖. The
above representation is accurate to O(1/ log2(R/L)), where R is the radius of the cylinder
and L is the total length of the cylinder (Lauga & Powers 2009). The total hydrodynamic
force, F , and torque, L, on the body from any motion can then be determined by integrating

F =
∫ 3

−3
f ds, (2.19)

L =
∫ 3

−3
r ∧ f ds · ẑ′

, (2.20)

where ∧ is the wedge product and ẑ′ = x̂′ ∧ ŷ′ can be interpreted as the vector
perpendicular to the plane of motion. This technique can be used to determine the force
and torque on the body from (2.17) and rigid body motion for arbitrary configurations.
However, these forces are very complex and so are not practical for demonstration. Hence,
we will only state the results for small φ1 and φ2 to keep the example tractable.

In the small-φ1 and φ2 limit the net force and torque from the deformation velocity,
(2.17), is

Fφ = 4
3Δζ {(φ2 − 2φ1)φ̇1 − (φ1 − 2φ2)φ̇2, −(φ1 − φ2)(φ2φ̇1 + φ1φ̇2)} + O(φ4),

(2.21)

Lφ = −14
3 ζ⊥(φ̇1 + φ̇2) + 1

9 [4(3ζ̄ + 5Δζ )φ2
1 − 6(ζ̄ + 5Δζ )φ1φ2 + (3ζ̄ + 19Δζ )φ2

2]φ̇1

+ 1
9 [(3ζ̄ + 19Δζ )φ2

1 − 6(ζ̄ + 5Δζ )φ1φ2 + 4(3ζ̄ + 5Δζ )φ2
2]φ̇2 + O(φ4), (2.22)

where ζ̄ = (ζ⊥ + ζ‖)/2, and Δζ = (ζ⊥ − ζ‖)/2.
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Similarly the relationship between the force, F R = {Fx, Fy}, and torque, LR, and the
rigid body linear velocity, U = {Ux, Uy}, and angular velocity Ω is given by⎛

⎝Fx
Fy
LR

⎞
⎠ =

⎛
⎝A B C

B D E
C E F

⎞
⎠

⎛
⎝Ux

Uy
Ω

⎞
⎠ , (2.23)

where

A = −6ζ‖ − 4Δζ(φ2
1 + φ2

2) + O(φ4), (2.24)

B = 4Δζ(φ1 + φ2) − 8
3Δζ(φ3

1 + φ3
2) + O(φ4), (2.25)

C = 2Δζ(φ1 − φ2)(−4 + 2φ2
1 + φ1φ2 + 2φ2

2) + O(φ4), (2.26)

D = −6ζ⊥ + 4Δζ(φ2
1 + φ2

2) + O(φ4), (2.27)

E = −16
3 Δζ(φ2

1 + φ2
2) + O(φ4), (2.28)

F = −18ζ⊥ + 4
3 [2(ζ̄ + 4Δζ )φ2

1 − (ζ̄ + 7Δζ )φ1φ2 + 2(ζ̄ + 4Δζ )φ2
1] + O(φ4). (2.29)

2.4.3. The gauge field of Purcell’s two-hinged swimmer
The gauge field of Purcell’s two-hinged swimmer is determined through the balance of the
forces and torques. If the swimmer is force and torque free, the instantaneous velocities
are in the body frame

Ux = −2Δζ

81ζ‖

[
(4φ1 + 5φ2)φ̇1 − (5φ1 + 4φ2)φ̇2

] + O(φ3), (2.30)

Uy = 0 + O(φ3), (2.31)

Ω = − 7
27

(φ̇1 + φ̇2) − 1
1458ζ‖ζ⊥

(
φ̇1Q(φ1, φ2) + φ̇2Q(φ2, φ1)

) + O(φ4), (2.32)

where

Q(x, y) = (27Δζ 2 + 24Δζ ζ̄ + 29ζ̄ 2)y2 + 2(13ζ̄ − 15Δζ )(ζ̄ + 3Δζ )xy

− 4(27Δζ 2 − 24Δζ ζ̄ + 13ζ̄ 2)x2. (2.33)

In the above, the angular velocity has been expanded to a higher order than the linear
velocity because the leading net rotation occurs at O(φ3) while the leading net translation
occurs at O(φ2). The body frame linear velocities are 0 if Δζ = 0 while the rotation
remains non-zero. This is consistent with the current understanding of the swimming of
slender bodies (Koens & Lauga 2016a).

The evolution of the laboratory frame position, X (t) = X(t)x̂ + Y(t)ŷ, and orientation,
θ(t), are found by expressing the velocities in the laboratory frame (figure 1a). In two
dimensions, the angular velocity remains unchanged but the translational body frame
velocities are rotated. The rate of change of the configuration is⎛

⎝Ẋ
Ẏ
θ̇

⎞
⎠ =

⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ ·

⎛
⎝Ux

Uy
Ω

⎞
⎠

= MP ·
(

φ̇1
φ̇2

)
, (2.34)
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where

MP =
⎛
⎝ MP

x1 MP
x2

MP
y1 MP

y2
MP

θ1 MP
θ2

⎞
⎠ (2.35)

and

MP
x1 = −2Δζ

81ζ‖
(4φ1 + 5φ2) cos θ, (2.36)

MP
x2 = 2Δζ

81ζ‖
(4φ2 + 5φ1) cos θ, (2.37)

MP
y1 = −2Δζ

81ζ‖
(4φ1 + 5φ2) sin θ, (2.38)

MP
y2 = 2Δζ

81ζ‖
(4φ2 + 5φ1) sin θ, (2.39)

MP
θ1 = − 7

27
− Q(φ1, φ2)

1458ζ‖ζ⊥
, (2.40)

MP
θ2 = − 7

27
− Q(φ2, φ1)

1458ζ‖ζ⊥
. (2.41)

Here, MP is the gauge field for the small-angled Purcell two-hinged swimmer. The
laboratory frame displacement can be determined by integrating (2.34) for prescribed φ1
and φ2. Swimming strokes have the additional constraint that φ1 and φ2 must be periodic,
so the pattern can be repeated. The net displacements observed in the laboratory frame are
therefore given by ⎛

⎝ΔX
ΔY
Δθ

⎞
⎠ =

∮
MP · dlP

dt
dt =

∮
MP · dlP, (2.42)

where lP = {φ1, φ2} are the two deformation modes of the Purcell swimmer. This result
is independent of the speed at which lP varies, as expected for swimmers in Stokes flow
(Purcell 1977).

2.4.4. Rotation of small-angled Purcell two-hinged swimmer
The net rotation of Purcell’s two-hinged swimmer can be determined with the extended
geometric swimmer techniques since the rotation part of the gauge field MP

θ = {MP
θ1, MP

θ2}
is independent of the swimmers position and orientation. When separated from the
translations, the net angular displacement for the Purcell swimmer, Δθ , is expressed as

Δθ =
∮

MP
θ (lP) · dlP. (2.43)

This equation is a path integral and can be determined if we prescribe a specific stroke.
For example, the Purcell-like stoke

φex =

⎧⎪⎨
⎪⎩

{a − A + 2At, −A} 0 < t < 1,

{a + A, −A + 2A(t − 1)} 1 < t < 2,

{a + A − 2A(t − 2), A} 2 < t < 3,

{a − A, A − 2A(t − 3)} 3 < t < 4,

(2.44)
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where a and A are constants, generates a net rotation of

Δθex =
∮

MP
θ (φex) · dφex = 32aA2(2ζ̄ 2 + 9Δζ 2)

729ζ‖ζ⊥
. (2.45)

The loop φex forms a square with side lengths 2A in phase space offset from the origin
by a in φ1 and becomes the Purcell swimming stroke when a = 0 (Purcell 1977; Becker
et al. 2003). In the a = 0 limit, the rotation goes to zero because of the symmetries of the
motion.

Multiple evaluations of these path integrals are needed to determine the behaviour of the
swimmer. This can be quite cumbersome and so it is favourable to use Green’s theorem to
transform the net rotation into

Δθ =
∮

∂V
MP

θ (lP) · dlP

=
∫∫

V

(
∂Mθ2

∂φ1
− ∂Mθ1

∂φ2

)
dφ1 dφ2

= 32(2ζ̄ 2 + 9Δζ 2)

729ζ‖ζ⊥

∫∫
V

(φ1 − φ2) dφ1 dφ2, (2.46)

where the above double integrals are to be taken over the area of the loop. This integral is
much simpler to deal with than the field MP

θ (lP) because the components in MP
θ (lP) that do

not contribute to the net displacement are removed through taking derivatives. This makes
the evaluation the integral significantly easier. For example the net rotation from loop φex
is

Δθex = 32(2ζ̄ 2 + 9Δζ 2)

729ζ‖ζ⊥

∫ a+A

a−A

∫ A

−A
(φ1 − φ2) dφ2 dφ1 = 32aA2(2ζ̄ 2 + 9Δζ 2)

729ζ‖ζ⊥
, (2.47)

identically to the path integral evaluation.
This relationship holds for any loop and so the net rotation can be estimated through a

plot of the integrand (see figure 1b). The ability to quickly estimate the net rotation by eye
provides a practical method to design strokes with desired rotations. Since regions that can
generate larger rotations can be identified simply by evaluating the magnitude of the plot.

Although this technique has worked well to determine the net rotation, the translational
terms depend on the orientation of the swimmer in the laboratory frame, θ . This provides
the integral with a memory of the path taken and thus prevents the use of Green’s theorem
directly. As a result many have used the series approximation to treat such problems
(Hatton & Choset 2011, 2013, 2015; Hatton et al. 2017; Ramasamy & Hatton 2017, 2019;
Bittner et al. 2018). Alternatively, we show that this problem can be overcome exactly
by embedding the integral into a suitable higher-dimensional space. This is needed to
generally discuss the behaviour of any swimmer’s displacement.

3. Treatment of non-commuting variables

The generalised Stokes theorem can be used whenever the displacement is given by

Δx =
∮

∂V
M(l) · dl, (3.1)

where M(l) only depends on the configuration of the swimmer. However, in general,
the field M(l, x) depends on both the swimmer’s position and orientation through x.
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Figure 2. Diagram depicting the embedding of displacement integral into higher space. (a) The original path
(red) used for the integral in the configuration plane. (b) The equivalent path (dark blue) after treating the
non-commuting variables as a specified path. (c) The dashed path (green) used to close the loop.

This dependence can arise from many sources, such as the influence of boundaries in
the swimmer’s resistance matrix, (2.3), the fact that rotations and translations do not
commute, or hydrodynamics interactions between multiple swimmers. This additional
dependence on x(t) gives the field a memory of the path taken and so the Stokes theorem
no longer applies. As discussed above, corrections to the Stokes theorem can be formed
but typically restrict the solution to smaller loops. In this section, we describe a general
method to overcome the presence of non-commuting variables exactly. This is achieved by
embedding the system in a higher-dimensional space in which these variables are treated
as prescribed paths and the generalised Stokes theorem can be used again after closing
the paths. This embedding method has been used previously to model the swimming
from a non-neutrally buoyant scallop (Burton et al. 2010). We generalise this idea to
any swimmer and any stroke. This physically allows for strokes in which the swimmer
experiences external forces and torques and thereby enables the embedded representation
to treat the dynamics of a swimmer in any scenario simultaneously. Any specific case
exists as a subspace of the whole embedded space. We first derive this representation in
its most general form and then demonstrate its equivalence to path integral representation
using the translation of the Purcell swimmer.

3.1. General embedding of non-commuting variables
Consider a general swimmer whose position and orientation, x, satisfy (2.6). The position
of the swimmer at each point in time can be determined by integrating this equation with
respect to a prescribed path, (2.7) and the net displacement is found when this path forms
a closed loop, (2.8) (figure 2a). In a parametric sense this net displacement can also be
written as

Δx =
∫ tfin

0
M(l(t), x(t)) · dl

dt
dt, (3.2)

where the loop is parametrised such that l(0) = l(tfin) and t ∈ [0, tfin]. Importantly, Δx is
independent of the choice of parametrisation as required by the time independence of the
Stokes equations. This integral appears to depend on two parametrised paths l(t) and x(t).
This consideration might prompt us to rewrite the integral formally as

Δx =
∫ tfin

0

(
M(l(t), x(t)) · dl

dt
+ 0 · dx

dt

)
dt

=
∫ tfin

0
M ′(l′(t)) · dl′

dt
dt, (3.3)
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where l′ = {l, x} and M ′ = {M, 0}. This reformulation treats x(t) as a prescribed path
by embedding the path integral into a higher-dimensional space (see figure 2b). The
dimension of the new configuration space is the number of deformation modes, l, plus
the number of position and orientation variables, x. The prescription of x(t) removes any
path memory and therefore makes the representation closer to what is required to apply
the generalised Stokes theorem. However, it also allows for paths that do not satisfy (2.6).
These new paths correspond to systems in which the swimmer is subject to external forces
and torques (Burton et al. 2010). Biological microscopic swimmers often experience such
external forces and torques through gravity or the additional drag produced by background
fluid flows (Gaffney et al. 2011; Goldstein 2015; Lauga 2016; Bianchi et al. 2017; Perez
Ipiña et al. 2019; Martinez et al. 2020) while several artificial microscopic swimmers
rely on external forces and torque to drive the motion (Zhang et al. 2010; Vizsnyiczai
et al. 2017; Huang et al. 2019). Hence, these additional paths allow us to consider the
behaviour of the swimmer in any environment simultaneously and will enable us to show
that the displacement of the swimmer in any scenario can always be visualised on a
single surface. The paths which correspond to a specific physical scenario form a subset
of this space. This subset is model dependant and simply connected if variations of the
path produce a continuous variation of the displacement. The general identification of
these regions has been left for future work, however, we note that in some situations
these paths can be found by solving some of the governing equations (Burton et al.
2010).

The generalised Stokes theorem requires a closed path integral over a field that only
depends on the prescribed variables at that point of space. The above embedding has
removed the memory contributions from the non-commuting variables x(t). However,
x(t) is expected to change over the course of a stroke. This means that the path in
(3.3) is not closed (figure 2b). The difference between the start and end position in this
higher-dimensional space is

l′(tfin) − l′(0) = {l(tfin) − l(0), x(tfin) − x(0)} = {0, x(tfin) − x(0)}, (3.4)

where we have used the periodicity condition for l(t). The difference between the start and
ends of the new path occurs only in the added dimensions and path movements in these
added dimensions contributes nothing to the final integral. Therefore, if the original path
is given by l′(t) = {l(t), x(t)}, the path integral of k′(t) = {l(0), x(tfin − t)} gives∫ tfin

0
M ′(k′(t)) · dk′

dt
dt =

∫ tfin

0

(
M(l(t), x(t)) · 0 + 0 · dx

dt

)
dt = 0, (3.5)

and has a distance between the start and end of k′(tfin) − k′(0) = {0, −x(tfin) + x(0)}.
This k′ path starts at l′(tfin), ends at l′(0) and does not contribute to the total displacement.
Hence, the net displacement integral can then be written as

Δx =
∫ tfin

0
M ′(l′(t)) · dl′

dt
dt +

∫ tfin

0
M ′(k′(t)) · dk′

dt
dt

≡
∮

l′+k′
M ′(l′) · dl′, (3.6)

which again closes the integral (figure 2c). We emphasise that the path k′(t) was chosen
to travel along x(tfin − t) intentionally. In principle several paths can be used to close
this loop in the higher-dimensional space. However, in periodic geometries these closing
paths could generate a contribution from the periodicity. This is avoided by making
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No net motion

Net motion

(b)

(a)

Figure 3. Diagrams depicting how a one-hinged swimmer can move. (a) A simple open and close motion
produces no net motion due to the scallop theorem. (b) The same open and close motion combined with
laboratory frame rotations can allow net motions.

k′(t) travel backwards along x(t). Crucially, the above loop closure has turned the net
displacement integral into a form in which the generalised Stokes theorem can be directly
applied. This embedding process is simple enough to be done by hand and overcomes the
influence of non-commuting variables exactly without the need to assume small swimming
strokes.

The ability to treat x and l in this way, and thereby invoke the generalised Stokes
theorem, is a reflection of how these factors interact to generate motion. Consider a
reciprocal stroke in l. Without a change in x the stroke will generate no translation.
However, if x changes suitably throughout the deformation, displacement can occur. This
has been demonstrated by Burton et al. (2010), who considered a single-hinged swimmer
(scallop) which could change its centre of buoyancy throughout the stroke. Though the
swimmer cannot swim by opening and closing the hinge under normal circumstances,
by changing its centre of buoyancy the swimmer rotated itself throughout the stroke and
so generated a net displacement (figure 3). The full range of net displacements possible
requires therefore the consideration of all combinations of x and l.

The above derivation proves that the path integral for the displacement, (3.2), is
equivalent to a closed path integral representation in a l + x-dimensional space without
path memory terms. Hence, the displacement of any swimmer, in any environment, can
always be written in a form where the generalised Stokes theorem can be applied. The
ability to always write the displacement in this way has specific implications about the
motion of viscous microswimmers and will allow all possible displacements of a swimmer
to be identified through a single surface, as we will show in § 4.
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L. Koens and E. Lauga

3.2. Example: translation of a Purcell swimmer

3.2.1. Small-hinge angle demonstration
The equivalence of the above representations can be demonstrated analytically by
considering the net translation of the Purcell swimmer in the small-angle limit. The
translation of the swimmer, in this limit, is given by

(
ΔX
ΔY

)
=

∮ (
MP

x1(φ1, φ2, θ) MP
x2(φ1, φ2, θ)

MP
y1(φ1, φ2, θ) MP

y2(φ1, φ2, θ)

)
·

⎛
⎜⎝

dφ1

dt
dφ2

dt

⎞
⎟⎠ dt. (3.7)

In the absence of external forces and torques, trajectories for the orientation, θ , satisfy
(2.34) which to the accuracy we have considered for translation, O(φ2), has the solution

θ(t) = θ0 − 7[φ1(t) + φ2(t)]
27

+ 7[φ1(0) + φ2(0)]
27

+ O(φ3), (3.8)

where θ0 is the initial orientation of the swimmer. The restriction on the accuracy of
θ is necessary to ensure we do not expand the model inconsistently when considering
translation. The above equation shows that, to this order, θ − θ0 is O(φ) and so must
also be treated as a small parameter in the small-angle limit. In which case the relevant
components of the M become

MP
x1 = −2Δζ

81ζ‖
(4φ1 + 5φ2) [cos θ0 − (θ − θ0) sin θ0] , (3.9)

MP
x2 = 2Δζ

81ζ‖
(4φ2 + 5φ1) [cos θ0 − (θ − θ0) sin θ0] , (3.10)

MP
y1 = −2Δζ

81ζ‖
(4φ1 + 5φ2) [sin θ0 + (θ − θ0) cos θ0] , (3.11)

MP
y2 = 2Δζ

81ζ‖
(4φ2 + 5φ1) [sin θ0 + (θ − θ0) cos θ0] . (3.12)

The net displacement generated from the Purcell-like loop, φex, (2.44) in this limit is

(
ΔX
ΔY

)
= −8A2Δζ

2187ζ‖

(
270 cos θ0 + 7(9a + 20A) sin θ0
270 sin θ0 − 7(9a + 20A) cos θ0

)
. (3.13)

The non-zero ΔY for θ0 = 0 arises solely from the interactions of rotations and
translations. When a = θ0 = 0, this loop corresponds to the Purcell swimming stroke
(Purcell 1977) and the displacement is identical to the small-angled asymptotic results
found by Becker et al. (2003).

The dependence on the orientation of the swimmer, θ , of the net displacements means
that Green’s theorem cannot be applied to the integral directly. As discussed above this
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General geometric phase methods

can be overcome by treating θ as a prescribed path, and reformatting the integrals as

(
ΔX
ΔY

)
=

∮
∂V

(
MP

x1(φ1, φ2, θ) MP
x2(φ1, φ2, θ) 0

MP
y1(φ1, φ2, θ) MP

y2(φ1, φ2, θ) 0

)
·

⎛
⎜⎜⎜⎜⎜⎝

dφ1

dt
dφ2

dt
dθ

dt

⎞
⎟⎟⎟⎟⎟⎠ dt,

=
∮

∂V

(
M ′P

x (φ1, φ2, θ)

M ′P
y (φ1, φ2, θ)

)
· dl′P, (3.14)

where ∂V is the loop considered, M ′P
x = {MP

x1(φ1, φ2, θ), MP
x2(φ1, φ2, θ), 0}, M ′P

y =
{MP

y1(φ1, φ2, θ), MP
y2(φ1, φ2, θ), 0} and dl′P = {dφ1, dφ2, dθ}. This form allows us to use

Stokes theorem and so the net displacement can be written as(
ΔX
ΔY

)
=

∫∫
V

(∇ × M ′P
x (φ1, φ2, θ)

∇ × M ′P
y (φ1, φ2, θ)

)
· dS′P, (3.15)

where V is any surface bounded by ∂V , dS′
P is the infinitesimal surface element, ∇× is

the curl operation taken with respect to the coordinates {φ1, φ2, θ} and

∇ × M ′P
x (φ1, φ2, θ) = 2Δζ

81ζ‖
{(5φ1 + 4φ2) sin θ0, (4φ1 + 5φ2) sin θ0,

10[cos θ0 − (θ − θ0) sin θ0]}, (3.16)

∇ × M ′P
y (φ1, φ2, θ) = −2Δζ

81ζ‖
{(5φ1 + 4φ2) cos θ0, (4φ1 + 5φ2) cos θ0,

− 10[(θ − θ0) cos θ0 − sin θ0]}. (3.17)

The ∇ × M ′P
x (φ1, φ2, θ) and ∇ × M ′P

y (φ1, φ2, θ) fields are plotted in figure 4.
The equivalence of this embedded representation and the path integral can be

demonstrated with the example loop φex. In this new space the example loop becomes
φ′

ex = {φex, θ(t)}, where we must use (3.8) for θ(t). This path is periodic and so does not
need to be closed with another path. A surface that bounds this loop can be parametrised
using φ1 and φ2 by S′P

ex(s, t) = {φ1, φ2, θ0 − 7(φ1 + φ2 − a + 2A)/27} and so the surface
element is

dS′P
ex = ∂S′P

ex

∂φ1
× ∂S′P

ex

∂φ2
dφ1 dφ2 =

{
7
27

,
7
27

, 1
}

dφ1 dφ2. (3.18)

The displacement is therefore given by(
ΔX
ΔY

)
=

∫ A

−A
dφ2

∫ a+A

a−A
dφ1

(∇ × M ′P
x (φ1, φ2, θ)

∇ × M ′P
y (φ1, φ2, θ)

)
·
{

7
27

,
7
27

, 1
}

= −8A2Δζ

2187ζ‖

(
270 cos θ0 + 7(9a + 20A) sin θ0

270 sin θ0 − 7(9a + 20A) cos θ0

)
, (3.19)

which is identical to the result in (3.13). This result is independent of the surface
chosen. However, this freedom of choice can make the surface integral evaluation more
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–0.5

0
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2

0

1.0

–0.5
0

0.5
1.0

φ2

θ θ

φ1 φ2

φ1–1.0
–0.5

0
0.5

1.0

(b)(a)

Figure 4. The vector fields found from the curl of the displacement fields when θ0 = 0 for Purcell’s swimmer
in the small-angle limit; (a) ∇ × M ′P

x (φ1, φ2, θ), (b) ∇ × M ′P
y (φ1, φ2, θ). The size of the arrows displays the

relative strength of the field at that point. In both plots the stroke corresponding to φ1 = 0.7 cos(t), φ2 =
0.4 sin(2t) has been plotted in black with a surface that is bounded by said loop. The colour of this surface
reflects the flux of field through the surface at each point with the total displacement being the total flux
through the surface. The red dashed loop in (a) generates the same ΔX as the black loop but exists solely in a
φ1–φ2 plane.

complicated than the path integral for prescribed paths. We note that if φ′
ex was not

periodic, an additional path, such as that described above, can always be added to the
path integral by tracing back on the θ(t) trajectory while leaving the other coordinates
unchanged. Hence, this representation allows the Stokes theorem to be used for any stroke.

The visualisation of the ∇ × M ′P
x (φ1, φ2, θ) and ∇ × M ′P

y (φ1, φ2, θ) fields (figure 4)
can be useful in the design of strokes for specific motions. Regions capable of producing
higher displacement can be identified by the respective size of the arrows and loops can be
aligned to control the flux of these arrows through them. For example, imagine we want to
find strokes which produce ΔX = 0 but allow ΔY /= 0 with θ0 = 0. We could prescribe a
general φ1 and φ2 and try to find see when the path integrals evaluate to zero. However,
this is not necessary if we inspect the fields. Since ∇ × M ′P

x (φ1, φ2, θ) is constant and
solely in the θ direction, the value of ΔX from any stroke is related to the area of the
loop projected on a φ1–φ2 plane. Regions of this projected loop traced counter-clockwise
add to the displacement while regions traced clockwise subtract from it. Any combination
of loops that trace the same area clockwise as counter-clockwise therefore produces no
displacement. A figure-8 loop is a simple example of such a shape (figure 4). These loops
can, however, produce ΔY /= 0 because ∇ × M ′P

x (φ1, φ2, θ) has a different structure and
so meets our original criteria. Hence, figure 4 has allowed us to quickly identify a large set
of strokes that meet our criteria without the need of any calculations and so can be useful
for designing strokes. Unfortunately, the visualisation of such fields in dimensions higher
than three is tricky and so different methods need to be produced. In the next section we
propose a method to visualise the displacements from any loop in the extended space on a
surface, similarly to how ΔX could be determined by considering the area enclosed by the
projected loop on a φ1–φ2 plane.
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General geometric phase methods

3.2.2. Comparison with the minimal perturbation coordinates series representation
The small-hinge angle translation model used for demonstration, is equivalent to the
small-stroke size limit of the Lie bracket approximation, (2.12). As a result, the net
displacement from the leading approximation in the minimal perturbation coordinates
will be the same as the embedded representation. A comparison of the accuracy between
the embedded method and the small-stroke approximation in the minimal perturbation
coordinates (Hatton & Choset 2011, 2013, 2015; Hatton et al. 2017; Ramasamy & Hatton
2017, 2019; Bittner et al. 2018) requires us therefore to consider the Purcell swimmer
problem with arbitrary sized hinge angles. This full system can be done analytically for
the embedded representation but is rather complex and so we have omitted it here for
brevity. A version of the numerical program necessary for the small-stroke approximation
in the minimal perturbation coordinates is freely available and works in MATLAB (Hatton
2020). We compared the results from this program to the exact results for the square Purcell
strokes to ensure we ran it correctly. Note that in the full Purcell swimmer system the y
displacement field is the same as the x field but with a phase shift of θ = π/2.

We compared the displacement found from these methods for strokes of the form

{φ1, φ2} = {Φ1 + cos(t), Φ2 + sin(t)}, (3.20)

for varying Φ1 and Φ2. These strokes are unit circles in the configuration space centred
about {Φ1, Φ2}. Contour plots of the net displacement in x and y determined by solving
(2.6), the minimal perturbation coordinate approximation, the embedded results using the
exact form of θ(t) and the embedded results for a guess θg(t) = tΔθ/2π are shown in
figure 5. The guess θg(t) is the simplest from which accounts for a change in angle over the
stroke. Unsurprisingly, the embedded results with the exact form of θ(t) (figure 5e, f ) are
identical to the solution from (2.6) (figure 5a,b) as we proved that they are mathematically
equivalent above. The minimal perturbation coordinate approximation (figure 5c,d) and
the embedded results with θg(t) (figure 5g,h) both replicate the x displacement better than
the y displacement but in each case have regions with over 10 % error and sometimes
get the sign of the displacement wrong. Furthermore the similarity in the structure of the
embedded results with θg(t) (figure 5g,h) and the solution from (2.6) (figure 5a,b) could be
a coincidental result specific to the Purcell swimmer. We note that the exponentiated map
of the minimal perturbation coordinate approximation has a negligible difference with the
exact solution for the values tested.

4. Visualisation of high-dimensional swimmers

The previous section showed that the net displacement from any swimmer, in any
background environment, can be represented exactly by a closed path integral in a
higher-dimensional space in which non-commuting variables are treated as prescribed
paths. This representation allows the generalised Stokes theorem to be applied, and so the
net displacement can be related to the flux of a field through the path. The visualisation of
this field can assist with the design of swimming stokes for specific tasks (Keaveny, Walker
& Shelley 2013; Koens et al. 2018; Quispe, Oulmas & Regnier 2019) but is typically hard
to do if there is more than three dimensions. In this section, we consider the behaviour of
the net displacement throughout the entire embedded-configuration space of an arbitrary
swimmer when the generalised Stokes theorem applies. We show that, if the embedded
space has more than two dimensions, every net displacement can be produced by an infinite
set of swimming strokes. Different and equivalent swimming strokes can be visualised
from this idea and the method is applied to a four-mode spherical squirmer and the Purcell
swimmer.
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Figure 5. Density plots of the net displacement in x (a,c,e,g) and y (b,d, f,h) from a Purcell swimmer with the
swimming stroke equation (3.20) for different models. (a,b) The exact solution determined by (2.6). (c,d) The
minimal perturbation coordinate approximation. (e, f ) The embedded method using the exact path for θ(t).
(g,h) The embedded method using the guess path θg(t) = tΔθ/2π.

4.1. The divergence of the displacement field
If the Stokes theorem applies, the net displacement of the swimmer in any direction can
be written as

Δxi =
∮

∂V
M ij dl j =

∫∫
V

∂M i
jk dl j ∧ dlk, (4.1)

where V is any surface bounded by ∂V and ∂M i
jk = −(1/2)(∂M ij/∂lk − (∂M ik/∂l j)). The

right-hand side of the above equation can be written as a vector product of the unique
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General geometric phase methods

elements of ∂M i ≡ ∂M i
jk with the different infinitesimal surface elements dl j ∧ dlk. Hence,

this integral can be interpreted as the flux of ∂M i through any surface V which is bounded
by ∂V . This means the field ∂M i must be divergence free. This is a consequence of the
fact closed forms are exact in exterior calculus (see Appendix A). This provides the
displacement field with a strong parallel to incompressible fluid flow. In particular, there
exists no one loop that can maximise the flux for systems with more than two modes
of deformation (N > 2). If a maximum displacement exists, there must be an infinite
number of deformation loops that produce it. These strokes may correspond to different
environments in the embedded-configuration space.

4.2. Non-equivalent strokes
The divergence-free nature of the field ∂M i means that the displacement behaviour in one
region can be ‘advected’ into another. Hence, although the full space is high-dimensional,
not all of that space contains unique information. Two loops with the same displacement
will be referred to as equivalent strokes since they contain the same ∂M i information,
while two loops with different displacements will be said to be non-equivalent strokes. All
the unique information in the field is therefore contained within a set of non-equivalent
strokes that contains at least one stroke from every possible displacement. To the best
of our knowledge, the identification of these sets of non-equivalent strokes has not been
considered before. We show that certain realisations of this set can be constructed by
considering how the flux through a stroke changes with an infinitesimal deformation and
using the results to form special surfaces in the configuration space. Similar flux catching
techniques have been successfully used in several fields including electromagnetism and
fluid flows.

Consider a swimming stroke described in deformation space by C(t) where t is the
parametrisation around the loop. A deformation anywhere along this loop produces then
a new loop given by C ′(t) and the surface bridging these two loops is given by S(s, t)
where s is the parametrisation in the direction of the deflection (figure 6). The flux of ∂M i

through this surface is then given by∫∫
∂M i

jk
∂Sj

∂s
∧ ∂Sk

∂t
ds dt =

∫∫
∂M i

jk

(
∂Sj

∂s
∂Sk

∂t
− ∂Sk

∂s
∂Sj

∂t

)
ds dt

= 2
∫∫

∂M i
jk

∂Sj

∂s
∂Sk

∂t
ds dt

≡ 2
∫∫

∂S
∂s

· ∂M i · ∂S
∂t

ds dt, (4.2)

where we have used the asymmetric nature of the field, ∂M i
jk = −∂M i

kj. In the limit ds →
0, the above equation is a parametrised realisation of Leibniz’s rule (Ramasamy & Hatton
2019). The change in flux due to an infinitesimal displacements at any point along the loop
is therefore related to

ΔF = ∂S
∂s

· ∂M i · ∂S
∂t

, (4.3)

where ΔF is the change in the flux per unit area. Since ∂S/∂t = ∂C/∂t at the undisturbed
loop, ΔF identifies how the displacement changes when a stroke is infinitesimally distorted
in different directions. If the direction of ∂S/∂s is perpendicular to ∂M i · (∂S/∂t) the
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C(t)

C′ (t)
∂Mi

S(s, t)

l2 l3

l1

Figure 6. Diagram depicting the deformation of a loop in a space with three modes of deformation; C(t) (dark
purple) is the undeformed loop, C ′(t) (orange) is the deformed loop and the area in light blue is the surface
S(s, t) created between the two loops. The arrows in the blue region point in the direction of s and the red arrow
is an example direction for ∂M i.

infinitesimal deformation generates no additional flux and so the strokes will be equivalent.
However, if ∂S/∂s is parallel to ∂M i · (∂S/∂t) the strokes can be different.

In a N-dimensional configuration space, ΔF shows that the direction, ∂M i · (∂S/∂t), is
responsible for the change in flux through a loop and the size of this change is linearly
proportional to the amount of the distortion in this direction. Changes to the stroke which
do not have a component in this direction (i.e. distortions which are a linear combination of
the other N − 1 directions) do not change the flux through the loop. Hence any distortion
containing a component in the ∂M i · (∂S/∂t) direction will increase the net displacement
of the stroke. We note that the direction ∂M i · (∂S/∂t) exists within the configuration space
of the swimmer and so differs to the gradient of flux terms in Ramasamy & Hatton (2017,
2019) which represent a direction in the parametrisation space of the loop itself. This
gradient of flux representation can be derived from ∂M i · (∂S/∂t) by multiplying ∂M i ·
(∂S/∂t) by the distortion produced by changing each parametrisation mode of the loop
and then integrating over the entire loop.

The identification of this flux changing direction in the configuration space allows us
to construct surfaces which contain the full set of non-equivalent strokes available to a
swimmer. These surfaces, which we call surfaces of non-equivalent strokes, can be formed
by distorting the loop in a direction that always contains a non-zero component in ∂M i ·
(∂S/∂t). This ensures that as the loop distorts the flux through it changes. Recalling that
∂S/∂s corresponds to the direction of distortion, the surfaces of non-equivalent strokes
must satisfy a partial differential equation of the form

∂S
∂s

= a(S)∂M i(S) · ∂S
∂t

+v

(
S,

∂S
∂t

)
, (4.4)

where a(S) is an arbitrary function of S, v(S, ∂S/∂t) is an arbitrary vector orthogonal
to ∂M i · (∂S/∂t) and we have included the dependence on S in ∂M i(S) to be explicit.
Different choices of a(S) and v(S, ∂S/∂t) produce different surfaces of non-equivalent
strokes, so it can be freely chosen to simplify the governing equations. Yet, even with this
freedom, there are infinity many surfaces that do not satisfy this equation. Throughout, we
will typically set a(S) = 1 and v(S, ∂S/∂t) = 0 but note that if ∂M i(S) = 0 at specific
values of S, a(S) should be chosen such that a(S)∂M i(S) /= 0 everywhere. If ∂M i(S) = 0
everywhere, this is the trivial case and so the swimmer does not generate net displacement.
The parametrisation of the above equation is such that s represents the different loops while
t is the position around the loop. Importantly, for general a(S), s is not linked to a physical
property of the selected loop and so it will depend on the initial loop chosen.

Since the displacement from a swimmer in any environment can be written as a
closed path integral in the embedded-configuration space (§ 3) and surfaces which satisfy
(4.4) capture all non-equivalent strokes, the displacement from a swimmer, regardless
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General geometric phase methods

of the environment, can always be visualised on a single surface. This is similar to the
one-dimensional two-mode swimmer whose displacement can be visualised through a
plane and so offers similar design possibilities. On this general surface the displacement
from a specific environment exists over a continuous region of s, with maximal and
minimal displacements for the system lying at the boundaries of these regions. If the region
is closed, there must be at least one stroke which generates these maximal and minimal
displacements, although there may be an infinite number of strokes. These regions are case
and surface dependant and so their identification has been left for future work.

Finally, we note that, for a specific problem, it is possible to restrict the surfaces
to only contain relevant strokes through the application of a projection operator. If the
given system contains N modes of deformation and M non-commuting variables these
constrained surfaces can be shown to satisfy

∂S
∂s

= P ·
[

a(S)∂M i(S) · ∂S
∂t

+v

(
S,

∂S
∂t

)]
, (4.5)

where the projection operator, P, ensures that distortions are in the relevant directions and
can be written as

P =
(

IN×N 0N×M
M(S) 0M×M

)
. (4.6)

In the above, IN×N is the identity matrix of size N × N, and 0i×j is a matrix of zeros
of size i × j. Although the above representation is appealing a priori, the surfaces from
(4.5) are no longer guaranteed to capture the full set of non-equivalent strokes available to
the system and may in general miss the maximal displacement possible. Hence, it is not
generally possible to visualise all possible displacements from a swimmer on one of these
surfaces, unlike the surfaces constructed from (4.4).

4.3. Equivalent strokes
The non-divergent nature of ∂M i implies that, if (4.4) can be solved, all other loops in the
configuration space must be equivalent to at least one of the loops on S(s, t). This means
that, similarly to the two-mode case, the displacement generated from any stroke in the
space can be visualised through a single surface and so again provides an easy way to
investigate the possible displacements generated. The design of strokes now corresponds
to choosing different values of s and searching for equivalent structures.

Equivalent strokes can be identified by considering different solutions to (4.4). Since
the parametrisation s is not generally linked to a physical property of the loop, the
parametrisation of each surface of non-equivalent loops found through (4.4) depends on
the initial stroke used. However, provided each surface spans all the net displacements
possible, different surfaces must be composed of equivalent strokes but with potentially
different labels for s. This is due to freedom in the choice of parametrisation for the
surface. For example, consider two surfaces Sa(s, t) and Sb(s′, t′). If the Sa(s = 1, t) loop
generates the same displacement as to the Sb(s′ = 5, t′) loop, the two loops are equivalent
but have been labelled differently. Since the parametrisations of surfaces are not unique,
the identification equivalent loops is therefore the same as rescaling the s parametrisation
on the different surfaces in relation to the net displacement through each loop. This can be

916 A17-23

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

, o
n 

08
 Ju

l 2
02

1 
at

 1
5:

40
:5

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

18
1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.181


L. Koens and E. Lauga

Deformation model Slip on sphere(a) (b)

Figure 7. Diagram depicting a deforming sphere and a perfect sphere with slip. In the small deformation
limit, the flow around a deforming sphere can be treated as a sphere with effective slip boundary conditions.

achieved by considering the total change in the flux with s which is given by

dΔxi

ds
=

∮
∂S
∂s

· ∂M i · ∂S
∂t

dt, (4.7)

where the integral has been taken over the full loop. This equation determines the
displacement of every loop on the surface simultaneously and so removes the need to
compute several loops individually to construct a similar space. If two solutions to (4.4)
generate the same (4.7), then the equivalent loops must already share the same s to within
a constant shift. If, however, they generate different (4.7), the s on one of the solutions
can be rescaled such that they are the same. This could be achieved by writing the loops
in terms of Δxi instead of s. Importantly this re-parametrisation process is closely linked
to the transformation invariants of (4.4) and (4.7). If both these equations are invariant to
translation, then any translation of the original solution would produce a set of equivalent
loops.

4.4. Example: four-mode squirmer
The prototypical swimmer with multiple discrete modes of deformation is the spherical
squirmer. Squirmers are spherical bodies that periodically deform their surface in order to
generate motion. These surface deformations are typically assumed to be small and so can
be expanded as an effective slip velocity over its surface (figure 7). This swimmer was first
proposed by Lighthill (1952), the calculation was corrected by Blake (1971), and has since
had many extensions which consider both the swimmers speed and efficiency (Shapere
& Wilczek 1989a,b; Ishimoto & Gaffney 2013; Felderhof & Jones 2016; Pedley, Brumley
& Goldstein 2016; Eastham & Shoele 2019). Notably, Shapere & Wilczek (1989b) used
the geometric swimming techniques to derive an equation for the mean velocity in the
limit of small, but arbitrary, surface deformations. However, this form is too complicated
for demonstration and so the original axisymmetric model of Blake will be employed.
The motion of this squirmer does not induce any non-commuting variables but is
complex enough for the equivalent/non-equivalent stroke techniques described above to be
of use.
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4.4.1. Squirmer formulation
The oscillating surface of an axisymmetric squirmer (Blake 1971) can be parametrised by
the polar surface angle of the base sphere, θ0, as

R = 1 + ε

N∑
n=2

αn(t)Pn(cos θ0), (4.8)

θ = θ0 + ε

N∑
n=1

βn(t)Vn(cos θ0), (4.9)

where (R, θ) is the radial and polar position of the deformed sphere sphere, Pn(x) is the
Legendre polynomial of order n, Vn(cos θ0) = 2 sin θ0P′

n(cos θ0)/(n(n + 1)), ε is small,
2N − 1 is the number of modes and αn(t) and βn(t) are periodic functions of time
(figure 7). The swimming velocity of this squirmer to order ε3 is (Blake 1971)

U = 2ε

3
β̇1 − 8ε2

15
α2β̇1 − 2ε2

5
α̇2β1 + ε2

N−1∑
n=1

4(n + 2)βnβ̇n+1 − 4nβ̇nβn+1

(n + 1)(2n + 1)(2n + 3)

+ ε2
N−1∑
n=2

(2n + 4)αnβ̇n+1 − 2nα̇nβn+1 − (6n + 4)αn+1β̇n − (2n + 4)α̇n+1βn

(2n + 1)(2n + 3)

− ε2
N−1∑
n=2

(n + 1)2αnα̇n+1 − (n2 − 4n − 2)α̇nαn+1

(2n + 1)(2n + 3)
, (4.10)

where we use ˙(·) to mean derivatives with respect to time. The displacement from this
velocity can be treated generally with the geometric swimming techniques. Here, we will
set αn = 0 and N = 4 for demonstration purposes, in which case the velocity becomes

U =
(

2ε

3
− 2ε2

15
β2

)
β̇1 + 2ε2

105
(21β1 − 4β3) β̇2 + ε2

105
(16β2 − 5β4) β̇3 + 5ε2

63
β3β̇4

=
{

2ε

3
− 2ε2

15
β2,

2ε2

105
(21β1 − 4β3) ,

ε2

105
(16β2 − 5β4) ,

5ε2

63
β3

}

· d
dt

{β1, β2, β3, β4} . (4.11)

The net displacement, without using the generalised Stokes theorem, may thus be
written as

Δx =
∮

MSq · dlSq, (4.12)

where the integral is taken over a specified path and

MSq =
{

2ε

3
− 2ε2

15
β2,

2ε2

105
(21β1 − 4β3) ,

ε2

105
(16β2 − 5β4) ,

5ε2

63
β3

}
, (4.13)

dlSq = {dβ1, dβ2, dβ3, dβ4} . (4.14)

The behaviour of the net displacements can be found from the above equation by
prescribing different loops and exploring its dependence on them.
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However, it is easy to misinterpret these results. Consider for example the
three specific strokes C1(t) = {cos t, sin t, 0, 0}, C2(t) = {cos t, 0, sin t, 0}, and C3(t) =
{0, 0, cos t, 21 sin t/5}. The first and second of these loops represent circles in the β1 − β2
and β1 − β3 planes respectively, while the last is an ellipsoid in the β3 − β4 plane with
semi-axis lengths 1 and 21/5. The net displacements from each of these loops can be
integrated directly to find

Δx[C1(t)] = 8πε2

15
, (4.15)

Δx[C2(t)] = 0, (4.16)

Δx[C3(t)] = 8πε2

15
. (4.17)

These results indicate that the displacement of a squirmer depends strongly on the shape
and the position of the loop in the configuration space. For example, although C1(t) and
C2(t) are both circles, they do not share the same displacement because the correspond the
very different strokes. However, this is not the full story as C1(t) and C3(t) also correspond
to very different strokes but generate the same displacement. Hence, if we wanted to find
a relationship between these loops, we would (normally) need to study many more strokes
to capture the full picture.

4.4.2. Properties of the displacement field
Using our new approach, the displacement field of the squirmer allows us to rationalise
these results. The generalised Stokes theorem allows us to write the displacement as

Δx =
∮

MSq · dlSq =
∫∫

∂MSq :
(

dlSq ∧ dlSq
)

, (4.18)

where : denotes the double contraction. Here, the path integral is to be taken over a loop,
the area integral is taken over any surface bounded by said loop and we have

∂MSq = 4ε2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
15

0 0
1
15

0 − 1
35

0

0
1
35

0 − 1
65

0 0
1
65

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.19)

dlSq ∧ dlSq =

⎛
⎜⎝

0 dβ1 ∧ dβ2 dβ1 ∧ dβ3 dβ1 ∧ dβ4
−dβ1 ∧ dβ2 0 dβ2 ∧ dβ3 dβ2 ∧ dβ4
−dβ1 ∧ dβ3 dβ2 ∧ dβ3 0 dβ3 ∧ dβ4
−dβ1 ∧ dβ4 −dβ2 ∧ dβ4 −dβ3 ∧ dβ4 0

⎞
⎟⎠ . (4.20)

The off-diagonal structure of ∂MSq is standard for systems in which only the nearest
neighbour modes are coupled while the constant coefficients are typical for systems
expanded to leading order in shape nonlinearities. The surfaces to integrate over for each of
the example strokes can be easily produced by simply multiplying each curve by s ∈ [0, 1],
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and the results found are identical to the displacements above. This matrix representation
for the displacement can be simplified further through the coordinate transformation

x1 = cos θ1β1 + sin θ1β3, (4.21)

x2 = cos θ2β2 + sin θ2β4, (4.22)

x3 = − sin θ1β1 + cos θ1β3, (4.23)

x4 = − sin θ2β2 + cos θ2β4, (4.24)

where θ1 = arctan(
√

255109−335
378 ) and θ2 = arctan(

√
255109−497

90 ) − π. In these coordinates,
∂MSq becomes

∂MSq
R = 2ε2

315

⎛
⎜⎜⎝

0
√

337 + √
757 0 0

−√
337 − √

757 0 0 0
0 0 0 −√

337 + √
757

0 0
√

337 − √
757 0

⎞
⎟⎟⎠ ,

(4.25)
and the net displacement can be written as

Δx =
∫∫

∂MSq
R : (dx ∧ dx)

= 4ε2

315

∫∫ (√
337 +

√
757

)
dx1 ∧ dx2 +

(√
757 −

√
337

)
dx3 ∧ dx4. (4.26)

A similar coordinate transformation is always possible for constant ∂MSq matrices but
is not always possible for general ∂MSq (Appendix B). This representation of the
displacement indicates that only the areas enclosed by a stroke in the x1–x2 and x3–x4
planes actually contribute to the net displacement. These contributions are scaled by a
specific factor related to the matrix eigenvalues (Appendix B).

For a N-mode system with a constant ∂MSq, this representation for the net displacement
extends to

Δx = 2λ1

∫∫
dx1 ∧ dx2 + 2λ2

∫∫
dx3 ∧ dx4 + · · · 2λn

∫∫
dx2n−1 ∧ dx2n + · · · ,

(4.27)

where λi are positive constants. If N is even there are N/2 non-zero values of λi, while if N
is odd there are (N − 1)/2 non-zero values. The above is a direct result of the existence of a
the aforementioned coordinate transformation. We note that locally such a transformation
exists for any ∂MSq (see Appendix B) and so (4.27) is always locally true.

In these coordinates, the example loops become

C1(t) = {cos θ1 cos t, cos θ2 sin t, − sin θ1 cos t, − sin θ2 sin t}, (4.28)

C2(t) = {cos θ1 cos t + sin θ1 sin t, 0, cos θ1 sin t − sin θ1 cos t, 0}, (4.29)

C3(t) = {sin θ1 cos t, 21
5 sin θ2 sin t, cos θ1 cos t, 21

5 cos θ2 sin t}. (4.30)

The second stroke, C2(t), only has components in the x1 and x3 directions. Hence, it
encloses no area in the x1 − x2 or x3 − x4 planes and so its displacement must be 0, as
we had obtained. This coordinate representation therefore identifies why C2(t) generates
no displacement by inspection. The same idea can be applied to many other loops.
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4.4.3. Non-equivalent strokes
The behaviour of the field around any loop can be interpreted through a surface of
non-equivalent strokes created from the loop. These surfaces reveal the direction in which
the loops change value and identify the remaining space as equivalent. We will look
for surfaces that satisfy (4.4) when a(S) = 1 and v = 0. In the rotated coordinates this
equation becomes

∂S1

∂s
= 2ε2

315

(√
337 +

√
757

) ∂S2

∂t
, (4.31)

∂S2

∂s
= −2ε2

315

(√
337 +

√
757

) ∂S1

∂t
, (4.32)

∂S3

∂s
= 2ε2

315

(√
757 −

√
337

) ∂S4

∂t
, (4.33)

∂S4

∂s
= −2ε2

315

(√
757 −

√
337

) ∂S3

∂t
, (4.34)

where S(s, t) = {S1(s, t), S2(s, t), S3(s, t), S4(s, t)}, in the rotated frame. These equations
rescale to

∂S1

∂s1
= ∂S2

∂t
, (4.35)

∂S2

∂s1
= −∂S1

∂t
, (4.36)

∂S3

∂s2
= ∂S4

∂t
, (4.37)

∂S4

∂s2
= −∂S3

∂t
, (4.38)

where s1 = (2ε2/315)(
√

337 + √
757)s and s2 = (2ε2/315)(

√
757 − √

337)s.
The equations above are two sets of the Cauchy–Riemann equations. Hence, each Si must
satisfy a two-dimensional Laplace equation and the general solution can be represented
through two holomorphic functions as

S(s, t) = {Re[ f1(s1 + it)], Im[ f1(s1 + it)], Re[ f2(s2 + it)], Im[ f2(s2 + it)]}, (4.39)

where Re[·] denotes the real part, Im[·] denotes the imaginary part and f1(s + it) and
f2(s + it) are arbitrary analytic functions in which t describes a closed loop. This general
solution set extends trivially to any ∂MSq, which is a constant N × N matrix, with the
solution being represented through N/2 or (N − 1)/2 analytic functions if N is even or
odd, respectively.

The ability to write the general solution in terms of a collection of analytic functions is a
reflection of the distinct planes which generate motion. In the case of the squirmer, f1(s1 +
it) provides a parametrisation of the x1–x2 plane while f2(s2 + it) is the parametrisation
of the x3–x4 plane. Conformal maps are just re-parametrisations of these planes. However,
since re-parametrisations of each plane can be done independently, the actual surfaces can
look very different.

The application of boundary conditions to the general solution allows us to identify
specific surfaces of loops with different displacements. For example the surfaces generated
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2

–2

–2
–2

2

5

0

–5
x3

x1

x2

x4S3

S1

0

0 0

Figure 8. Two surfaces of strokes that generate different displacements for four-mode squirmer. The colour
of the surface corresponds the position in the fourth dimension, x4.

from C1(t) and C3(t) are

S1(s, t) = {(cos θ1 cosh s1 − cos θ2 sinh s1) cos t, (cos θ2 cosh s1 − cos θ1 sinh s1) sin t,

(sin θ1 sinh s2 − sin θ2 cosh s2) cos t, (sin θ2 sinh s2 − sin θ1 cosh s2) sin t} ,

(4.40)

S3(s, t) = {(sin θ1 cosh s1 − b sin θ2 sinh s1) cos t, (b sin θ2 cosh s1 − sin θ1 sinh s1) sin t,

(b cos θ2 cosh s2 − cos θ1 sinh s2) cos t, (cos θ1 cosh s2 − b cos θ2 sinh s2) sin t} ,

(4.41)

where b = 21/5, S1(s, t) is the surface which becomes C1(t) at s = 0 and S3(s, t) is the
surface of loops which becomes C3(t) at s = 0. These surfaces are plotted in figure 8 and
are visually very different. This is because the direction in which the deflection increases
the flux, ∂M i · (∂S/∂t), depends on the shape of the initial loop. These surfaces inherently
identify a set of strokes of different displacement. All other loops are equivalent to one
on the surface. The design of specific displacements is therefore reduced to exploring
the displacement of specific strokes over the surface, rather than over a high-dimensional
space. Once a desired displacement is identified, equivalent loops can then be considered.

4.4.4. Equivalent strokes
A solution to (4.4) contains, by construction, equivalent loops to another solution of (4.4)
but with a different label for s. The identification of equivalent loops requires therefore
unifying these labels across the solutions. Since two loops are equivalent if they produce
the same displacement, this unification is possible through the change in net displacement
with s across a surface, (4.7). For the four-mode squirmer, (4.7) is

dΔx
ds

=
∮ (

∂MSq
R · ∂S

∂t

)2

dt

=
⎛
⎝2ε2

(√
337 + √

757
)

315

⎞
⎠

2 ∮ [(
∂S1

∂t

)2

+
(

∂S2

∂t

)2
]

dt
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+
⎛
⎝2ε2

(√
757 − √

337
)

315

⎞
⎠

2 ∮ [(
∂S3

∂t

)2

+
(

∂S4

∂t

)2
]

dt

=
⎛
⎝2ε2

(√
337 + √

757
)

315

⎞
⎠

2 ∮ ∣∣∣∣∂ f1
∂t

∣∣∣∣
2

dt

+
⎛
⎝2ε2

(√
757 − √

337
)

315

⎞
⎠

2 ∮ ∣∣∣∣∂ f2
∂t

∣∣∣∣
2

dt, (4.42)

where | · |2 is the complex modulus. This equation can be used in many ways to identify the
equivalent loops on different solutions to (4.4). The solution of (4.42) determines the net
displacement of every loop on a surface as a function of the loop label parameter s. This
allows the loops in said surface to be re-parametrised by Δx. If this process is repeated on
each surface all equivalent loops will be labelled by the same Δx.

Alternatively, rather than finding the net displacement from every loop on each surface,
(4.42) can also be used to re-parametrise one surface in terms of the s variable of another
surface. Consider the surfaces Sa(s, t) and Sb(s′, t). The use of the chain rule on (4.42)
shows that s and s′ on these surfaces can be related by

∮ (
∂MSq

R · ∂Sa(s, t)
∂t

)2

dt = dΔx
ds

= dΔx
ds′

ds′

ds

=
⎡
⎣∮ (

∂MSq
R · ∂Sb(s′, t)

∂t

)2

dt

⎤
⎦ ds′

ds
. (4.43)

If we know a loop on each surface that generates the same displacement, this equation
creates a relationship between s′ and s such that the loop Sb(s′(s), t) is equivalent to the
loop Sa(s, t). This relationship is illustrated with S1(s, t) and S3(s′, t) in figure 9(a). This
solution was found numerically using the condition that the flux is the same at s′ = s = 0.
From this figure the equivalent loops in the two configurations and be easily identified. For
example, we see that the loop S1(s = −10, t) has the same displacement as S3(s′ ≈ −7, t).
This process allows the equivalence to be identified without needing to calculate Δx for
each surface, thereby reducing the computations needed. Furthermore if Δx was known
on one surface, the values of Δx on the second can be easily deduced.

Equivalent loops can also be identified through the symmetries of (4.4). Alterations
of a surface of non-equivalent loops that leave (4.42) and (4.4) unchanged retain the
same parametrisation of s (to within a constant). This means that the equivalent loops
are easily identified. Translations, rotations and reflections in the x1–x2 and x3–x4 planes
of any solution are example transformations which retain the same parametrisation in the
squirmer problem. A slightly more complicated transformation that also satisfies these
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2 3

4

2

0

0 x1

x2

x3

1
–1321

1

0

s of S1 (s, t)

s′  
of

 S
3  

(s
′ , 

t)

5–5–10

–5

0

5

10

0

(b)(a)

Figure 9. (a) The equivalence relationship between s′ and s for S3(s′, t) and S1(s, t). The relationship is
structured such that the displacement from S3(s′(s), t) is the same as S1(s, t). (b) Diagram of equivalent loop
construction. Starting with loop 1 (blue) in the x1–x2 plane the loop is distorted into loop 2 (orange) shape
that preserves the area but also sits in the x1–x2 plane. The loop is then transformed into loop 3 (green) by the
equivalence relationship for projecting loops.

conditions is

{S1(s1, t), S2(s1, t), S3(s2, t), S4(s2, t)}

�→
{

0, 0, S3(s2, t) + 1
σ

S1(σ s1, t), S4(s2, t) + 1
σ

S2(σ s1, t)
}

(4.44)

{S1(s1, t), S2(s1, t), S3(s2, t), S4(s2, t)}
�→ {S1(s1, t) + σS3(s2/σ, t), S2(s1, t) + σS4(s2/σ, t), 0, 0}, (4.45)

where σ = (
√

757 − √
337)/(

√
337 + √

757). This transformation maps the contributions
between the x1–x2 and the x3–x4 planes. This enables any surface to be visualised on the
x1–x2 or x3–x4 plane alone. Since any stroke on a surface of non-equivalent strokes can
always be parametrised such that s = 0 this transformation also applies to any loop in the
space. For example this relationship states that all the loops in the S1(s, t) surface are
equivalent to

S1(s, t) �→ {(cos θ1 cosh s − cos θ2 sinh s) cos t + σ (sin θ1 sinh s − sin θ2 cosh s) cos t,

(cos θ2 cosh s − cos θ1 sinh s) sin t + σ (sin θ2 sinh s − sin θ1 cosh s) sin t,

0, 0}, (4.46)

where equivalent loops share the same parametrisation of s. The above transformation
means that the net displacement of any of stroke, (4.26), can be determined from the area
within the loop when mapped onto a suitable plane. This is because (4.26) relates the
displacement of a loop to the area enclosed within the x1–x2 or x3–x4 planes. From this
we see that the strokes C1(t) and C3(t) enclose the same area when mapped to the x1–x2
or x3–x4 plane and so generate the same displacement. This ability to visualise any loop
on a single plane and relate its displacement to the area enclosed extends to any system
with constant ∂MSq but with different scaling factors. Hence, identically to the two-mode
swimmers, all the loops can be visualised on a plane and the displacement determined
from the integral within this loop.
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Finally, in the case where ∂MSq is constant, the inverse of these plane transformation
maps also holds. The full space of equivalent loops can therefore be constructed from the
set of loops on the x1–x2 plane that preserve the area within the stroke combined with
all possible maps out of the surface that preserve the flux (figure 9b). Equivalent loops
could therefore be designed by transforming the loop on the plane through a method that
conserves area and then projecting the loop out into the space.

4.5. Example: surfaces for translation of Purcell swimmer
Similarly to the squirmer, surfaces of non-equivalent strokes can also be constructed for
the translation of the Purcell swimmer. In the small-angle limit with θ0 = 0, the surfaces
of non-equivalent strokes for net x displacements behave identically to the squirmer
but with three degrees of freedom instead of four because ∇ × M ′P

x (φ1, φ2, θ), (3.16),
is constant. The surfaces for net y displacement are, however, more complicated since
∇ × M ′P

y (φ1, φ2, θ), (3.17), is not constant. In this case

∂MP
y (Sp) = −2Δζ

81ζ‖

⎛
⎜⎝

0 −10θ −(4φ1 + 5φ2)
−10θ 0 (5φ1 + 4φ2)

(4φ1 + 5φ2) −(5φ1 + 4φ2) 0

⎞
⎟⎠ , (4.47)

and the vector v, which is perpendicular to ∂MP
y · ∂SP/∂t, can be written generally as

vP = b(SP)
∂SP

∂t

+ c(SP)

⎛
⎝ 0 −10θ(5φ1 + 4φ2)

2 (4φ1 + 5φ2)(5φ1 + 4φ2)
2

−10θ(4φ1 + 5φ2)
2 0 (5φ1 + 4φ2)(4φ1 + 5φ2)

2

100θ2(4φ1 + 5φ2) 100θ2(5φ1 + 4φ2) 0

⎞
⎠

× ∂SP

∂t
, (4.48)

where SP = {φ1(s, t), φ2(s, t), θ(s, t)}. Hence, the partial differential equation for the
surfaces of non-equivalent strokes in y is

∂SP

∂s
= a(SP)∂MP

y (Sp) · ∂SP

∂t
+ vP, (4.49)

for arbitrary choices of a(SP), b(SP) and c(SP). There is no choice of a(SP), b(SP) and
c(SP) and coordinate transform which can reduce these equations to the Cauchy–Riemann
equations. This means that simple planes are not a surface of non-equivalent strokes for the
displacement in y and so planes will not, in general, contain every possible displacement
that the swimmer can generate. This partial differential equation can be solved numerically
to find the surfaces for a specific choice of a(SP), b(SP) and c(SP). Sections of three such
surfaces for a(S) = 1, v = 0 are shown in figure 10. These surfaces have been coloured
according to the net displacement in y the corresponding loop generates. Equivalent
strokes between the surfaces can therefore be easily identified by looking for loops which
sit within the same colour. We note that if any stroke is taken backwards it generates a
displacement of the same size but opposite sign.
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1
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–1

20

10
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–1

1
0
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0

φ1
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1 0

θ

Figure 10. Sections of three surfaces of non-equivalent strokes for the y displacement of the Purcell
swimmer. All these surfaces were formed with a(S) = 1, v = 0 and the initial strokes were {φ1, φ2, θ} =
{0.01 cos(t), 0.01 sin(t), 0.5}, {0.01 cos(t), 0.01 sin(t), −0.5}, {0.01 cos(t)/

√
2, 0.01 cos(t)/

√
2, 0.01 sin(t)}.

The colour of each surface reflects the displacement in y generated from each loop.

5. Steps to design the displacement of a viscous swimmer

In the above sections, we developed new techniques to treat non-commuting variables and
the visualisation of phase space. These methods can be used to help design unconstrained
viscous swimmers for specific displacements. Here, we outline one method to do this and
demonstrate it in full on a simple example.

5.1. General procedure
Consider a viscous swimmer, which we want to travel a total displacement L along a
specific axis after each stroke. The swimmer can deform its body using N different modes
and moves in three dimensions. From our analysis, we know that if the displacement L is
possible, there is an infinite number of ‘strokes’ which could create it. The space of strokes
that produce the displacement L can be found through the following steps:

(i) Calculate the full displacement field, M(l, x), of the swimmer (§ 2.1).
(ii) Embed the field, M(l, x) → M ′(l′), to overcome non-commuting variables (§ 3).

(iii) Apply Stokes’ theorem to the field M ′(l′) to find ∂M ′(l′) (§ 4.1).
(iv) Use ∂M ′(l′) to obtain surfaces of non-equivalent strokes ((4.4), § 4.2).
(v) Identify a stroke of displacement L, if possible, in this set using (4.7).

(vi) Determine the equivalent strokes through symmetries or other solutions (§ 4.3).

If only one stroke producing the displacement L is needed, this process can be stopped at
step (v). Note that it is possible that no single stroke can lead to a displacement L in step (v).
In that case, we can consider loops of displacement L/n, where n is a positive integer; these
loops will then produce the displacement L after n strokes. Also, the procedure outlined
above will work for a general swimmer, although of course simpler methods could exist
for specific systems.
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h
h

1

Figure 11. Diagram depicting the configuration of the squirmer approaching the free surface. The squirmer
has radius 1 and the separation between the surface and the swimmer is h. The physics of a squirmer near a flat
interface is the same as a squirmer approaching a mirror one with separation 2h.

5.2. Example: squirmer near a free interface
This process can be demonstrated in full using the example an axisymmetric squirmer near
a free surface (figure 11). Although this swimmer does not generate any off axis rotation,
the presence of the free surface means the swimmer’s field will depend on the distance
between the swimmer and the interface at all separations. This swimmer is therefore not
isolated and its displacement cannot be found with the minimal perturbation coordinates
treatment of (2.12). Here we will look for strokes which generate a net displacement of L
and explicitly go through each of the above steps.

5.2.1. Calculate the displacement field
Similar to the Purcell and squirmer examples above, to find the displacement field we
need to perform a force balance on the squirmer in the presence of the interface. For this
purpose we assume that the squirmer is very close to the interface, such that lubrication
stresses dominate, and that the free interface is flat (figure 11). We will denote the clearance
between the free interface and the squirmer h, the radius of the squirmer 1 and consider
the surface deformations

R = 1 + εα2(t) cos θ0, (5.1)

θ = θ0 + εβ1(t) sin θ0. (5.2)

The viscous hydrodynamics of a swimmer near a flat free interface is equivalent to that
of the swimmer and a mirror swimmer on the other side of the interface (Kim & Karrila
2005). The force on the squirmer, from rigid body motion and the surface deformations,
can therefore be determined through the hydrodynamic interactions of two spheres with
prescribed surface velocities. Hence, the hydrodynamic drag on the squirmer from motion
perpendicular to the interface is the same as the drag on two approaching spheres and, in
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the lubrication limit h 
 1, is given by (Kim & Karrila 2005)

FH = −3πμ

2h
dh
dt

. (5.3)

This Force originates from the region on the squirmer that is closest to the interface and
is caused by the large gradients in the velocity needed to meet the incompressible flow
condition.

Similarly the surface velocity from the α2(t) deformation mode, also generates
lubrication flows. This is because around θ0 = 0 (the point closest to the interface) the
surface velocity of the squirmer from this deformation mode is ε dα2/dt and is directed
towards the interface. Hence, the flow in this nearly touching region for this mode is
identical to that of approaching spheres with velocity ε dα2/dt. Since the flow in this
region dominates the stress on the body (Kim & Karrila 2005) the hydrodynamic force
on the body from this mode is

Fα = −3πμε

2h
dα2

dt
. (5.4)

Unlike the rigid body motion and the flow from α2, the flows generated by the β1(t)
deformation mode is not lubricating (Ishikawa, Simmonds & Pedley 2006) and so the
force on the lubrication scale h 
 1 is roughly constant. For this example we write it as
proportional to the free space squirmer velocity generated by this mode and given by

Fβ = −4πμεk
dβ1

dt
, (5.5)

where k is a positive constant.
These deformation forces can be balanced with the rigid body motion force to find

dh
dt

= −dα2

dt
− 8εk

3
h(t)

dβ1

dt
= Msi ·

{
dα2

dt
,

dβ1

dt

}
, (5.6)

where Msi = −ε{1, 8kh/3}. This field has same structure as in (2.13) and has the exact
solution

h(t) = h(0) exp
(

−8εk
3

[β1(t) − β1(0)]
)

− exp
(

−8εk
3

β1(t)
) ∫ t

0
exp

(
8εk
3

β1(t′)
)

dα2(t′)
dt′

dt′. (5.7)

Although we have this solution, the presence of the exponentials make it non-trivial to
identify the strokes which generate displacements L. We will therefore show how we can
do this by embedding the field and exploring the space of equivalent and non-equivalent
strokes.

5.2.2. Embed the field
After identifying the displacement field the next step in finding the strokes of displacement
L is to embed the field such that non-commuting variables are now treated as prescribed
paths. This can be achieved by simply adding zeros to the end of Msi to account for each
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non-commuting variable. Hence, in the case of the squirmer the embedded field is M ′si =
−ε{1, 8kh/3, 0} and the net displacement can be written as

Δh =
∮

∂V
Msi · {dα2, dβ1} =

∮
∂V ′

M ′si · {dα2, dβ1, dh}, (5.8)

where ∂V is the loop in α2, β1, and ∂V ′ = ∂V + k is the stroke embedded into the higher
plane plus a path k which closes the loop but adds nothing to the displacement.

5.2.3. Apply Stokes’ theorem
In the embedded representation we can now apply the generalised stokes theorem to find

Δh =
∮

∂V ′
M ′si · {dα2, dβ1, dh} =

∫∫
V ′

∂M ′si :
(

dlsi ∧ dlsi
)

, (5.9)

where V ′ is a surface bounded by the stroke and

∂M ′si = 4kε
3

⎛
⎝ 0 0 0

0 0 1
0 −1 0

⎞
⎠ , (5.10)

dlsi ∧ dlsi =
⎛
⎝ 0 dα2 ∧ dβ1 dα2 ∧ dh

−dα2 ∧ dβ1 0 dβ1 ∧ dh
−dα2 ∧ dh dβ1 ∧ dh 0

⎞
⎠ . (5.11)

5.2.4. Determine the surfaces of non-equivalent strokes
Next we take the results from the generalised Stokes theorem and substitute it into (4.4)
to look for surfaces on non-equivalent strokes. For the squirmer by an interface these
equations become

∂α2(s, t)
∂s

= 0, (5.12)

∂β1(s, t)
∂s

= 4kε
3

∂h(s, t)
∂t

, (5.13)

∂h(s, t)
∂s

= −4kε
3

∂β1(s, t)
∂t

, (5.14)

which has the general solution

S(s, t) = {α2(s, t), β1(s, t), h(s, t)}

=
{

f (t), Re
[

g
(

3
4kε

s + it
)]

, Im
[

g
(

3
4kε

s + it
)]}

, (5.15)

where g(z) is an analytic function and f (t) is a periodic function in t. Since f (t) is arbitrary
and does not depend on s, distortions in α2 do not contribute to the net displacement which
only depends on the area enclosed by the stroke within the β1–h plane in the embedded
space. This is reflected by the dependence on the analytic function g(z), similarly to a
squirmer in free space.
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5.2.5. Identify desired displacement
The general solution for the surfaces of non-equivalent strokes indicate that the
displacement from any stroke solely depends on the area enclosed by the loop when
projected onto the β1–h plane. This is captured by the dependence of the solution
on the analytic function g(z), with the different choices of g(z) representing all the
different parametrisation of this plane possible. Swimming strokes which generates net
displacements of size L, for a given choice of g(z), are the strokes which enclose an area
3L/8kε within it. For example consider the parametrisation g(z) = cosh(z) with f (t) = 0.
In which case the surface of non-equivalent strokes is given by

Sex(s, t) =
{

0, cosh
(

3s
4kε

)
cos(t), sinh

(
3s

4kε

)
sin(t)

}
, (5.16)

and the displacement from each s is given by

Δh =
∫∫ ′

V
∂M ′si :

(
dSex

dt
∧ dSex

ds

)
ds dt

= 8kε
3

∫ 2π

0
dt

∫ s

0
ds′ −3

8kε

[
cos(2t) − cosh

(
3s′

2kε

)]

= 4πkε
3

sinh
(

3s
2kε

)
, (5.17)

which provides us with the displacement L when s = 2kεarcsinh(3L/4kπε)/3.

5.2.6. Determine equivalent strokes
In the above section we found that any loop in a β1–h plane that encloses an area of 3L/8kε
generates a displacement of size L. Hence, all these strokes are equivalent. Furthermore,
we found that α2 does not modify the displacement in the embedded representation and
so any stroke that encloses an area 3L/8kε in the β1–h plane with arbitrary α2(t) also
generates the net displacement L. With this we have identified all the equivalent strokes
with net displacement L and can now choose a stroke from this set that best suits our
purposes.

In the case of the squirmer by an interface we can further restrict this set of equivalent
strokes to isolate the strokes that also satisfy (5.6). Since the displacement of this squirmier
only depends on the stroke taken in β1–h we can rearrange the original equation to solve
for α2. This gives us

α2(t) − α2(0) = −h(t) + h(0) − 8εk
3

∫ t

0
h(t′)

dβ1(t′)
dt′

dt′, (5.18)

which we can solve for any prescription of h(t) and β1(t). In addition to the above we also
require that α2(t) and β1(t) are periodic over the stroke ∂V while h(t) is arbitrary. This is
because in the embedded space we can always add an additional path k which holds α2 and
β1 constant but returns h(t) to its original value without changing the net displacement.
Hence, if the stroke has a period of 2π this periodicity condition becomes

L = h(2π) − h(0) = −8εk
3

∫ 2π

0
h(t′)

dβ1(t′)
dt′

, (5.19)
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where we have used that we are considering strokes that displace L. If we expand β1(t) in
terms of the Fourier series

β1(t) = A0 +
∞∑

n=1

An cos(nt) + Bn sin(nt), (5.20)

the above relationship can be written as

− 3L
8εk

=
∞∑

n=1

n

[
Bn

∫ 2π

0
h(t′) cos(nt′) dt′ − nAn

∫ 2π

0
h(t′) sin(nt′) dt′

]
, (5.21)

and can be used to determine one of the coefficients in β1. Hence, the strokes with
displacement L and satisfy (5.6) are loops which enclose an area of 3L/8kε in the β1–h
plane, satisfy (5.21) and have α1 specified by (5.18) over ∂V . These can be formed by
selecting the path in h(t) desired, using (5.21) to determine one of the coefficients in β1,
choosing the others and then finally substituting these paths into (5.18). Hence, through
this method we can identify all the strokes which generate a displacement L and satisfy
(5.6).

6. Conclusion

In this paper we proposed a method to identify, and explore the displacement of arbitrary
viscous swimmers by combining geometric swimming techniques and Stokes’ theorem.
Typically, issues with non-commuting variables and visualisation would prevent the direct
application to arbitrary swimmers. We developed novel methods to overcome these issues
and thereby showed that the set of possible displacements achieved by any viscous
microswimmer in any environment can always be visualised using a single surface.

We first showed that variables that do not commute can be treated as parametrised paths
by embedding the path integral representation into a higher-dimensional configuration
space. This higher-dimensional treatment inherently captures the displacement of the
swimmer in all possible situations, is mathematically exact and can be performed by
hand but takes the configuration paths specific to a problem as an input. It also allows
the generalised Stokes theorem to be applied directly to every situation.

We then showed that, if the generalised Stokes theorem can be applied, all possible
net displacements can be visualised on special surfaces called surfaces of non-equivalent
strokes. This is because the generalised Stokes theorem always gives the net displacement
in terms of the flux of a divergent-free field through a surface. This divergence-free
property implies that an infinite set of loops must exist for any net displacement and
that no one swimming stroke will generate the maximum displacement without additional
conditions. We used the properties of this field to create surfaces of strokes in the
configuration space that contain all possible net displacements for the swimmer in every
situation. This identification and construction procedure has never been done previously to
our knowledge. The displacements available to a specific physical system with constraints
occupy a continuous region on these surfaces. Loops on different surfaces which generate
the same displacement were then identified by considering the change in net displacement
with the loop parametrisation. In the special case of a constant field, we also showed that
all loops can be projected onto a single plane and suggest a method to create equivalent
loops from an initial one.

Finally, we drew these methods together to describe a general procedure to explore and
design the motion of a general swimmer. This involves the combination of the embedding
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of the path integral to overcome non-commuting strokes and the surface construction
techniques to determine a set of non-equivalent paths. This procedure can be applied to
any swimmer in any environment and is demonstrated on a squirmer near a free surface.

The methodology developed in this paper considered an idealised system and treated
all possible environmental cases simultaneously. However, we are typically interested in
swimmers in a given environment with constraints like no external force, constant volume
or constant surface area. Hence, the methods described could be applied more broadly if a
generic procedure to identify and include these limits could be developed. This would also
reveal how constraints would affect our results on the degeneracy of equivalent strokes and
has been identified as important future work. Additionally, it would be interesting to see
if these surface creation ideas can be of use in the optimisation of swimmers, through the
addition of cost metrics like in Ramasamy & Hatton (2017, 2019). Finally the discussion
also raises the question about what strokes would be equivalent to those commonly seen
in nature.
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Appendix A. Calculating the exterior derivatives

In this appendix we outline how to calculate of the exterior derivative of the vector-like
objects called 1-form to produce the matrix-like structures called 2-forms. A thorough
introduction to exterior derivatives can be found in Crane et al. (2013).

A 1-form can generally be written as

w ≡ wi dxi, (A1)

where wi is the component of the 1-form in the direction dxi and we have used the Einstein
summation convention. This representation is coordinate dependant and so the wi change
in different coordinates. The wedge product of two 1-forms is the antisymmetric tensor
product and produces a 2-form. Wedge products therefore have the properties w ∧ w = 0
and w ∧ v = −v ∧ w. The value of the wedge product is given by

w ∧ v ≡ (wi dxi) ∧ (vj dx j) = 1
2

(
wivj − wjvi

)
dxi ∧ dx j. (A2)

It is worth noting that the coefficients of any two form can always be represented by a
skew symmetric matrix like

wivj − wjvi ≡

⎛
⎜⎜⎝

0 (w1v2 − w2v1) (w1v3 − w3v1) · · ·
− (w1v2 − w2v1) 0 (w2v3 − w3v2)
− (w1v3 − w3v1) − (w2v3 − w3v2) 0

...
. . .

⎞
⎟⎟⎠ .

(A3)
We note that higher-order forms can be constructed by taking the wedge product of lower
forms.
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The above definitions now allow us to define the exterior derivative d. Similarly
to the 1-form being like a vector, the exterior derivative is akin to an antisymmetric
gradient operation. The exterior derivative applied to a scalar is

dφ = ∂φ

∂xi dxi, (A4)

while the exterior derivative applied to a 1-form is

dw ≡ d(wi dxi) = d(wi) ∧ dxi + wi ∧ d(dxi)

=
(

∂wi

∂x j dx j
)

∧ dxi = 1
2

(
∂wi

∂x j − ∂wj

∂xi

)
dx j ∧ dxi, (A5)

where d2w = 0 for any w because the operation is antisymmetric. The definition of the
exterior derivative also provides us with the means to write down the generalised Stokes
theorem, ∫

∂V
w =

∫
V

dw, (A6)

where w is a N-form, V is the N + 1-volume and ∂V is the boundary of said volume. In our
paper, we are only interested in at most 2-forms and so the relationship becomes a surface
and the edge of the surface.

Appendix B. Properties of skew symmetric matrices

Any N × N skew-symmetric matrix, A, has complex eigenvalues that occur in pairs, i.e.

±iλ1, ±iλ2, . . . ± iλN/2 if N is even,

0, ±iλ1, ±iλ2, . . . ± iλ(N−1)/2 if N is odd, (B1)

where λ1, λ2, . . . are real positive numbers. As such no real transformation can diagonalise
the system. However, there is always a rotation matrix Q such that

QT · A · Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λ1
−λ1 0 0 · · · 0 · · ·

0 0 λ2
−λ2 0 0 · · ·

...
. . .

...

0 0 · · · 0 λn
−λn 0 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

where ·T is the matrix transpose.
The flux through a surface element is therefore

Aij dli ∧ dl j = 2λ1 dx1 ∧ dx2 + 2λ2 dx3 ∧ dx4 + · · · 2λn dx2n−1 ∧ dx2n + · · · , (B3)

were dxi = Qij dl j is the rotated basis directors. This representation separates the flux into
non-interacting components. For example the flux through a surface that sits purely in the
x1 and x2 plane is the same as a plane that sits purely in x1, x2 and x3 because Aij has
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no A13 or A23 components in this frame. The rotated directors, dxi, are therefore a natural
representation for the calculation of the flux through surfaces.

The above discussion considered a constant skew symmetric matrix, Aij. The
displacement field, (∂M ij/∂lk − (∂M ik/∂l j)), however, will vary with the position in space.
The eigenvalues, λi, the rotation matrix, Q, and directors, dxi, will thus also vary with the
position in space. Furthermore, the directors do not typically prescribe a new coordinate
system because the displacement field is non-conservative.
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