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ABSTRACT in small vocabulary recognition tasks, where the relatively

This paper describes, and evaluates on a large scale, the latticdnall number of competing hypotheses makes training vi-
based framework for discriminative training of large vocabulary able e.g. £1, 14, 2&]. For large vocabulary tasks, especially
speech recognition systems based on Gaussian mixture hiddedn large datasets there are two main problems: generalisa-
Markov models (HMMs). The paper concentrates on the maximumtion to unseen data in order to increase test-set performance
mutual information estimation (MMIE) criterion which has been over MLE; and providing a viable computation framework

used to train HMM systems for conversational telephone speechq estimate confusable hypotheses and perform parameter
transcription using up to 265 hours of training data. These eX-astimation.

periments represent the largest-scale application of discriminative Th tati bl b liorated by th
training techniques for speech recognition of which the authors are € computation problem can be ameliorated by (he use

aware, and have led to significant reductions in word error rate for0f @ lattice-based discriminative training framework][to

both triphone and quinphone HMMs compared to our best model£Ompactly encode competing hypotheses. This has allowed
trained using maximum likelihood estimation. The MMIE lattice- investigation of the use of maximum mutual information es-

based implementation used; techniques for ensuring improved gertimation (MMIE) techniques on large vocabulary tasks and
eralisation; and interactions with maximum likelihood based adap-large data sets and a variation of the method described in
tation are all discussed. Furthermore several variations to thg3(] is used in the work described in this paper.
MMIE tr_ai_ning scheme are introduced with the aim of reducing For large vocabulary tasks, it has often been held that
over-training. discriminative techniques can mainly be used to produce
HMMs with fewer parameters rather than increase absolute
1. INTRODUCTION performance over MLE-based systems. The key issue here
The model parameters in HMM based speech recognitioris one ofgeneralisationand this is affected by the amount
systems are normally estimated using Maximum Likelihood of training data available, the number of HMM parameters
Estimation (MLE). If speech really did have the statistics as-estimated, and the training scheme used.
sumed by an HMM (model correctness) and an infinite train-  Some discriminative training schemes, such as frame-
ing set was used, the global maximum likelihood estirhate discrimination [L4, 24], try to over-generate training set con-
is optimal in the sense that it is unbiased with minimum fysjons to improve generalisation. Similarly in the case of
variance [[9]. However, when estimating the parameters of MMIE-based training, an increased set of training set con-
HMM-based speech recognisers, training data is not unlimysions can improve generalisation. The availability of very
ited and the true data source is not an HMM. In this caseéjarge training sets for acoustic modelling and the computa-
examples can be constructed where alternatiserimina-  tjonal power to exploit these has also been a primary moti-

tive training schemes such as the Maximum Mutual Infor- vation for us to carry out the current investigation of large-
mation Estimation (MMIE) can provide better performance scale discriminative training.

than MLE[ - . ] The paper first introduces the MMIE training criterion
~ During MLE training, model parameters are adjusted 10 5 its optimisation using the Extended Baum-Welch al-
increase t.hc.-:‘ likelihood of theT word str_lngs correspondlnggorithm. The use of lattices in MMIE training is then de-
to the training utterances without taking account of the scriped, and the particular methods used in this paper are in-
probability of other possible word strings. In contrast t0 yoqyced. Sets of experiments for conversational telephone
MLE, discriminative training schemes take account of pos-ranscription are presented that show how MMIE training
sible competing word hypotheses and try and reduce thean pe successfully applied over a range of training set sizes.
probability of incorrect hypotheses (or recognition errors The effect of methods to improve generalisation, the inter-
directly). Discriminative schemes have been widely usedaction with maximum-likelinood adaptation and variations
Lit should be noted that conventional HMM training schemes only find ON the basic training scheme to avoid over-training are then
a local maximum of the likelihood function. discussed.




2. MMIE CRITERION far from the decision boundary, in a similar way to Mini-

MLE increases the likelihood of the training data given Mum Classification Error (MCE) training], did not result
the correct transcription of the training data: models IN iMproved recognition performance.
from other classes do not participate in the parameter re-
estimation. MMIE training was proposed ifi][as an alter- 3. EXTENDED BAUM-WELCH ALGORITHM
native to MLE and maximises the mutual information be- The MMIE objective function can be optimised by any of
tween the training word sequences and the observation sdéhe standard gradient-based methods although these are ei-
guences. When the language model (LM) parameters aréher slow to converge or, if using second order information,
fixed during training (as they are in this paper and in al- may be impractical for very large systems. Hence in this
most all MMIE work in the literature), the MMIE criterionis  work, we have used a version of the Extended Baum-Welch
equivalent to Conditional Maximum Likelihood Estimation (EBW) algorithm for optimisation.
(CMLE) proposed in19). CMLE increases tha posteriori The EBW algorithm uses re-estimation formulae reminis-
probability of the word sequence corresponding to the train-cent of those used by the standard Baum-Welch algorithm
ing data given the training data. However the technique isfor MLE training. It is shown in §] that a re-estimation for-
still normally referred to as MMIE and we use this term in mula of the form
thi paper. _ ) A (2E + D)

or R training observationdO1,0,,...,0,,...Og} N = JAON

with corresponding transcriptior{s, }, the CMLE/MMIE Y dik(FE + D)
objective function is given by ’

3

will converge to give a local optimum of (\) for a suffi-
(O My, ) P(w,) ciently large value of the constant.

> i PA(Or [ M) P(w) @) Mean and Variance Updates

For continuous density HMMs, such as used in this work,
where M,, is the composite model corresponding to the the formula in 8) does not lead to a closed form solution for
word sequencev and P(w) is the probability of this se- the re-estimation of means and variances. However, using
quence as determined by the language model. The summa discrete approximation to the Gaussian distribution, Nor-
tion in the denominator ofl{ is taken over all possible word mandin P2] showed that the mean of a particular dimension
sequences allowed in the task and it can be replaced by  of the Gaussian for stagg mixture componentr, /15,, and

the corresponding varianaejz-m (assuming diagonal covari-
PA(Or[Maen) = ZP,\(OTIMU;)P(w) (2)  ance matrices) can be re-estimated by

R
Fanm(A) =Y log
r=1

_ {0mm(0) - 692(0)} + Dptjm

where M., encodes the full acoustic and language model fljm = num _ ~denl 1 ) 4)
used in recognition. {%'m Tim I

It should be noted that optimisation of)(requires the num((H2\ _ pden ()2 2 2
maximisation of the numerator terpy (O,| M., ), which &7 = {05 (0%) fg:j © 3e}n+ D + Him) — 5
is identical to the MLE objective function, while simul- {vmr =yt + D
taneously minimising the denominator tegm(O| M gen)- ®)

\n these equations, thg ,,(O) and;,,,(O?) are sums of
data and squared data respectively, weighted by occupancy,
for mixture component. of statej, and the Gaussian occu-
pancies (summed over time) ayg,,. The superscriptsum
andden refer to the model corresponding to the correct word

training data for each iteration of MMIE training. While this -
is viable for small vocabulary tasks, it is too computation- S€duence, and the recognition model for all word sequences,
respectively.

ally expensive for large vocabulary tasks when, for instance,
cross-word context dependent acoustic models are used ietting D
conjunction with a long span language model. Therefore, an A key issue in using the update equation$), &énd 6),
approximation to the denominator is required for the com-is setting the constand. If the value set is too large then
putational load to be feasible. training is very slow (but stable) and if it is too small the
Another notable feature of the MMIE objective function updates may not increase the objective function on each it-
is that it gives greater weight to training utterances whicheration. A useful lower bound o is the value which en-
have a low posterior probability of the correct word se- sures that all variances remain positive. B][this lower
guence. This feature, further discussedlif, €], contrasts  bound constraint was shown to lead to a system of quadratic
with the situation in MLE where all training utterances are inequalities to find a suitable value 6f, and in factD was
equally weighted. While it has been argued that MMIE may set to twice that value. Furthermore, using a single global
give undue weight to outlier training utterances, attempts invalue of D can lead to very slow convergence, andif][a
[2€] to modify the criterion to deweight training utterances phone-specific value db was used.

Since the denominator includes all possible word sequence
(including the correct one) the objective function has a max-
imum value of zero. The minimisation of the denominator
might ordinarily involve doing a recognition pass on all the



In preliminary experiments for the work reported here, it objective function is given in45] and uses the assumption
was found that the convergence speed could be further imthat as each mixture weight is varied, the mixture component
proved if D was set on a per-Gaussian level, i.e. a Gaussiarmccupancies that would be obtained from forward-backward
specificD;,,, was used. Itwas set at the maximum of i) twice alignment will vary by a factor that is between 1 and the ra-
the value necessary to ensure positive variance updates faio of the new to the old mixture weights. For the purposes
all dimensions of the Gaussian; or ii) a global constant of the proof, the mixture weight occupancies must also be

multiplied by the denominator occupan@%‘. assumed to be independent of the other parameters in the
The bulk of the experiments in this paper use a valueHMM.
of E = 1. However, in Sectior8, the use of other val- The optimisation of§) may be performed using a generic

ues forE are investigated: eithef = 2 or a value termed  function-optimisation routine. However, in the experiments
E = halfmax. The latter setting is found by first computing reported here an iterative scheme was used which involves
the value ofD;,,, as twice the minimum value for positive (repeatedly) taking each mixture weight in turn and find-
variances for each Gaussian and then setiing half the  ing the optimal value of that weight assuming the others’
maximum value ofi@ for all Gaussians. The scheme re- relative values are fixed while maintaining the sum-to-one

den

sults in a way of setting? that is fairly task and HMM-set ~ constraint.

independent. Whe® = halfmax was used for the experi- The update equation for a single row of a transition matrix
ments in this papef increased from about 2 to 6 as training IS Performed in the same way as the mixture weight update.
progressed. Note that for both the mixture weights and transition proba-

bilities, if the denominator occupancies are zero the update
is equivalent to the standard MLE update.

It should be noted that for the decision-tree tied-state mix-
ture Gaussian HMMs used in the experiments reported here,
the effect of MMIE training on the mixture weights (and
hence the mixture weight update itself) is relatively unim-
portant. Of course, for an HMM system using tied mixture
models, the mixture weight update rule is of much greater
significance.

Mixture Weight & Transition Probability Updates
The originally proposed re-estimation formula for the
mixture weight parameters,,, follows directly from @)

cjm {6(27};, + C}
0.
Zﬁz Cjrn { chh + C}

The constanC is chosen such that all mixture weights are
positive. However, the derivative

(6)

Cim =

4. LATTICE-BASED MMIE TRAINING:
OF _ L (jmum _deny @ PREVIOUS WORK
Jjm jm

acjm. Cim

The parameter re-estimation formulae presented in Sec-

is extremely sensitive to small-valued parameters. As an altion 3 require the generation of occupation and weighted
ternative, a more robust approximation for the derivative wasdata counts for both the numerator terms which rely on us-

suggested in1d]: ing the correct word sequence and the denominator terms
which use the recognition model.
OF  Vjm Ve 8 The calculation of the denominator terms directly is com-
dcjm - 2o Vit B > »y;.lgl (8) putafcionally very expensive and so approximations to the de-
nominator have been suggested. Early work suggested us-
This method was used, for example, bByi[30]. Unfor- ing N-best lists §] which are calculated once (from an MLE
tunately this update rule can lead to instability as trainingmodel set) to approximate the set of possible sentences dur-
proceeds and so an alternative was sought. ing MMIE training. However, for even moderately complex

The alternative mixture weight update rule suggested hergasks and long sentences only a very small number of the
is free from smoothing constants, and informal experimentsprobable sentences will be included. An alternative is to use
have shown that normally it results in a faster increase in thesome type of lattice structure to represent the various likely
overall MMIE objective function than the above approach alternatives. In 3] a looped lattice model was proposed
with the derivative approximation irg]. which could include any pronunciation of a particular word

For a particular statg, the mixture weight update used in at most once. The approach was evaluated using a 2000
this paper consists of finding the mixture weigjs, which word task with a few hours of training data.
maximise the following function: A more sophisticated approach to the use of word lattices

that fully encode sequential acoustic and language model

M n : . .
Z num o s fon s ) constraints was presented it9] 30]. The lattices used were
_1%’” & Cim Cjm generated by the HTK large vocabulary recognition system

[31]. The HTK lattices are composed of nodes which repre-
subject to the sum-to-one constraint. @), (hec;,, are the  sent the ends of words at particular points in time and the
original weights and the;,, are the mixture component oc- arcs that connect these represent particular word pronun-
cupancies. A proof that maximisin@)(will increase the ciations. The denominator lattices often contain repeated



arcs/nodes to encode slightly different start/end times andanodel, lexical and LM) but provides far more “confusable”
different start/end context-dependent HMMs due to variantstates for any particular utterance. This in turn, as would
previous/following words. Lattices are generated once usingoe expected, reduces training set performance compared to
an MLE HMM set, and then used repeatedly for several iter-MMIE but improves generalisation. Ir2{] it was shown
ations of MMIE training. The technique also uses lattices forthat the improvements obtained by FD were at least as good
collecting the numerator statistics to represent the possibilityas those reported by MMIE using the same models and task
of alternative pronunciations. In cases where the recognisersetup in (). It could be argued that FD over-generalises the
generated denominator lattices did not contain the correctonfusable data set by modelling confusions that will never
sequence, the denominator lattice was formed by mergingn practice arise, and will perform more poorly for the most
the recogniser lattice with the numerator lattice. challenging recognition tasks with greater inherent acoustic
Given word lattices for the numerator and denominator, confusability. It was reported ir8{] that FD didn’t improve
the technique in0] performed at each iteration a forward- error rates over MLE trained models for a broadcast news
backward pass at the word lattice node/arc level to generrecognition task.
ate the posterior probability of a particular lattice arc occur-\yeakened Language Models
ring. The Viterbi state-level segmentation for for each arc
was found, and used with the arc posterior probability to
calculate the statistics for the EBW re-estimation formulae.
The method was used to train HMM sets for up to 65k word 5,3 The aim is to provide more focus on the discrimi-

vocabulary tasks for the North American Business Newsaiiqn provided by the acoustic model by loosening the lan-
corpus using cross-word triphone acoustic models, N-grany, ;a4e model constraints. In this way, more confusable data
LMs, and up to 66 hours of training data. is generated which improves generalisation. The use of a
unigram LM during MMIE training is further investigated
5. IMPROVING MMIE GENERALISATION in this paper.

A key issue in MMIE training (and discriminative train-  asqustic Model “Scaling”

ing in general) is the generalisation performance i.e. the dif- ) combining the likelihoods from an HMM-based
ference between training set and test set accuracy. Whilg ., stic model and the LM it is usual to scale the LM log
MMIE training often greatly reduces training set error from probability. This is necessary because, primarily due to in-

an MLE baseline, the reduction in error rate on an indepeny » iy modeliing assumptions, the HMM underestimates the
dent test se.t IS .normally much Iegs, .., compared to MLE, robability of acoustic vector sequences leading to a very
th_e general_lsguon performance is poorer. Furthermore, aglide dynamic range of likelihood values.

with all statistical modelling approaches the more complex An alternative to LM scaling is to multiply the acoustic

the model the poorer the gener_alisat@on. Since fairly COM"model log likelihood values by the inverse of the LM scale
plex ”?Ode's are _n_eeded to obtain optimal _performance_ Witha ctor (acoustic model scaling). This will produce the same
MLE, it can be d_|ff|cult to improve these with MMIE tram-_ effect as language model scaling when considering only a
ing. Therefore it has been widely thought that the maJorSingle word sequence as for Viterbi decodingHowever,

application of discriminative training techniques to large vo- when likelihoods from different sequences are added, such

cabulary recognition tasks is to reduce error rates when rel:,jIS in the forward-backward algorithm or for the denomina-

atively fe_w parameters are used rather t_hgn to if“p“’"e t_hetbr of (1), the effects of LM and acoustic model scaling are
best achievable error rates from MLE training: this paper IS\ery different. If language model scaling is used, one partic-

aimed at challenging that view. ular state-sequence tends to dominate the likelihood at any

There have been a number of approaches to try 10 iMyqint i time and hence dominates any sums using path like-

prove generalisation performance for MMIE-type training jihq6ds. However, if acoustic scaling is used, there will be

schemes, some of which are discussed below. These metiyy, o5 paths that have fairly similar likelihoods which make

ods involve trying to increase the amount of confusable datg, \,,_negligible contribution to the summations. Therefore
prpc_essgd during trammg In some way. Th.e Frame D'_S'acoustic model scaling tends to increase the confusable data
cr|m|na}tlor_1 (FD) tech_mque, th_at we have preV|oust|r_1vest|— set in training by broadening the posterior distribution of
gated, is discussed first. In this paper we have experimented, . occupationde® that is used in the EBW update equa-
with two other techniques aimed at improving generalisa-jjsns  This increa:

: X . ease in confusable data also leads to im-
tion: weaker language models and acoustic model scaling. proved generalisation performance

In [27] it was shown that improved test-set performance
could be obtained using a unigram LM during MMIE train-
ing, even though a bigram or trigram was used during recog-

Frame Discrimination It should be noted that acoustic scaling is used for similar
Frame Discrimination (FD)14] replaces the recognition reasons when finding word posterior probabilities from lat-
model probability in the denominator of)(with all Gaus- 3Although a unigram was used in MMIE training, the confusable data

sians in parallef. FD therefore removes many constraints was also constrained by the word lattices used which were generated with

that make some Gaussian sequences very unlikely (phongtrigramLM. . o

4The acoustic model and LM scaling effects will be identical for the
2A unigram Gaussian level language model based on training set occurViterbi path only if all components of the acoustic model log likelihood are

rences is used. scaled including the contribution from transition probabilities.




tices [L7, 4] which are used for either posterior decoding or to the union of the original sets of transitions, with dupli-

confidence estimation. cates removed. This process of lattice reduction is repeated
until no further merges are possible and decreases the aver-
6. CURRENT LATTICE-BASED TRAINING age lattice density by up to an order of magnitude. A full
METHODS forward-backward search on the resulting lattice is then per-

) o ] ) ] formed, with the time information for each phone, extended
_ The lattice-based training technique used in this papet,y 5 small margin, used for pruning. The acoustic likeli-
is based on that in3[] but has various differences in de- 1,44 scaling is performed by directly scaling the values of
tail. Furthermore several variants of the current scheme havg;he state output distribution log probability densities. Typi-

been investigated. _ cally, the full-search method takes about 1xRT per iteration
The first step is to generate word-level lattices, normally for the experiments in Sectich

using an MLE-trained HMM system and a bigram LM ap-

propriate for the training set. This step is normally per- Details of the Exact-Match Implementation .
formed just once and for the experiments in Sectiche The exact-match approach calculates the likelihood of

word lattices were generated in about 5x Real-Time (RT). each phone segment in the lattice, based on its start and end
The second step is to genergthone-markedattices times, and then accumulates statistics for the EBW updates
which label each word lattice arc with a phone/model se-43N9 the forward-backward algorithm. There are two pos-

guence and the Viterbi segmentation points. These are ar%ible advantages_ to this approach. Fir.stly, only one forwgrd-
found from the word lattices and a particular HMM set ackward pass is necessary for a given model with given

which may be different to the one used to generate the orig—.Start and end times, no matter how many times it appears

inal word-level lattices. In our implementation, these phoneIn the'lattice and hence the exact-match typically runs twice
marked lattices also encode the LM probabilities used in&s quickly as the full-search method. Secondly, the segment-
MMIE training which again may be different to the LM used level acoustic log likelihoods can be scaled as a whole which

to generate the original word-level lattices. This stage typi-keelos multiple parallel confusable models while retaining

cally took about 2xRT to generate triphone-marked latticesSharp transitions between states. However, the fact that the

for the experiments in Section although the speed of this zzgg)iztgr:?: ggﬁzsmr::ﬁtiprl]eori]tz _rrgteilg;id;?%ﬁf;:?;ﬁﬁted
process could be considerably increased. P 9

Given the phone-marked lattices for the numerator andCOUId lead to reduced accuracy.
_denominator_ of each training audio segment, two alternatiye 7 MMIE EXPERIMENTS WITH HUBS DATA
implementations have been used to generate the Gaussian-
level occupation probabilities and associated weighted-data This section describes a series of MMIE-training exper-
statistics needed for EBW updates. Thé-searchimple-  iments using the Cambridge University HTK (CU-HTK)
mentation aims to perform a full forward-backward pass System for the transcription of conversational telephone
at the state-level constrained by the lattice. Pruning isdata from the Switchboard and Call Home English corpora
performed by using the phone-marked lattice segmenta{'Hub5" data). These experiments were performed in prepa-
tion points extended by a short-period in each direction. ration for the NIST March 2000 Hub5 Evaluation.
However in the alternativexact-matchcase, a state-level The experiments investigated the effect of different train-
forward-backward pass for each context-dependent modeld Set and HMM set sizes and types; the use of acous-
instance in the lattice is performed solely between thetic likelihood scaling and unigram LMs in training and any
Viterbi segmentation points for each model. In both casesPossible interactions between MMIE training and maximum
the search was also optimised as far as possible by comikelinood linear regression-based adaptation. All the ex-
bining redundantly repeated models which first requires thaPeriments in this section used the full-search lattice-training
conversion to a model-level lattice. For the recognition ex-implementation and a value & = 1 to set the Gaussian-
periments in this paper, these model-level lattices typicallySPecificD for EBW updates. The effect of alternatives will
have an average lattice density of several hundred arcs. Difoe discussed in Sectiéh
ferent optimisations were possible in the two cases and thesBasic CU-HTK Hub5 System
are discussed below. The CU-HTK Hub5 system is a continuous mixture den-
Details of the Full-Search Implementation sity, tied-state cross-word context-dependent HMM system
based on the HTK HMM Toolkit. The full system operates

For the full-search case, the model-level lattice is com-;, multiple passes, using more complex acoustic and lan-
pacted by combining instances of the same model which oc-

cur in the same position in the same word and overlap inguage models and unsupervised adaptation in later passes.

: ) . . . Incoming speech is parameterised into cepstral coeffi-
time. A single instance of the model is created with start/end . g spee P N P

: . . . cients and their first and second derivatives to form a 39
times the minimum/maximum of the two original models.

The set of arcs entering/leaving the new combined arc is Segimensional vector every 10ms. Cepstral mean and vari-
9 9 nce normalisation and vocal tract length normalisation is

5All run times are measured on an Intel Pentium Il running at 550MHz. Performed for each conversation side in both training and
6Typically 50ms at both the start and end of each phone. test.




The HMMs are constructed using decision-tree based Baseline genderindependent sets of triphone HMMs were
state-clustering{3] and both triphone and quinphone mod- created for each training set and trained using MLE. The
els can be used. The lexicon used in the experiments belomumber of clustered speech states in each triphone model
was either a 27k vocabulary (as usediin]) or a 54k vocab-  set; the number of Gaussians per state; and the average num-
ulary and the core of this dictionary is based on the LIMSI ber of Gaussians to be trained per hour of training data is
1993 WSJ lexicon. The system uses word-based N-grangiven in Table2. Note that there are two versions of the
LMs estimated from an interpolation of Hub5 acoustic train- MLE model set for Minitrain.
ing transcriptions and Broadcast News texts. In the experigyperiments with 18 Hours Training
ments reported here, trigram LMs are used unless otherwise Initially we investigated MMIE training using Minitrain

stated. _ _ _ with 12 Gaussian/state HMMs which were our best MLE
The system operates in mulnple passes. _Tnphone modelg sined models. Lattices were generated on the training set
are used in word lattice generation. The lattices are used fODsing a bigram LM. The bigram 1-best hypotheses had a

both later recognition passes and also during system deveb, o \word error rate (WER) and a Lattice WER (LWER)
opment. Lattice rescoring was used to generate many of thf ] of 6.2%.

results given below.

Baseline Models and Hub5 Training/Test Data MMIE _%WER _
Three different training sets and three different test sets Iteration | Acoustic Scaling] LM Scaling

were used in the MMIE experiments. The different training 0 (MLE) 50.6 50.6

sets, ranging from 18 hours to 265 hours in size were used 1 50.2 51.0

to investigate how well the MMIE approach scales to very 2 49.9 51.3

large training sets while still allowing many experiments to 3 50.5 51.4

be run. 4 50.9 -

The characteristics of the three training sets are shown in . ] ]
Table 1. The Minitrain set, defined by BBN, used BBN- Table 3: 18 hour experiments with 12 mixture component models
id .dt inti f;'l the h5train00 ' i dt (eva_l97sub): comparison of acoustic model and language model
provided transcriptions, while the rain00 sets used tranycyjing.

scriptions based on those provided by Mississippi State Uni-

versity (MSU). All the training sets contain data from the  The Minitrain 12 Gaussian/state results given in Teble
Switchboard | (SWB1) corpus and the h5train00 sets alsacompare acoustic and language model scaling for several it-
contain Call Home English (CHE) data. The h5train0Osuberations of MMIE training. It can be seen that acoustic scal-
set is a subset of h5train00 and covers all of the traininging helps avoid over-training and the best WER is after 2
speakers in the SWB1 portion of h5train00, and a subset ofterations. The training set lattices regenerated after a sin-

Table 1: Hub5 training sets used.

The test sets used were a subset of the 1997 Hub5 ev

CHE. gle MMIE iteration gave a WER of 16.8% and a LWER of
0 . ; . o i
Training Total Conversation Sides _3.2 %, §howmg that the technlqug is very effective in reduc
i ing training set error. However, it was found that these re-
Set Time (hrs)| SWB1| CHE . : )

— generated lattices were no better to use in subsequent train-
Minitrain 18 398 - ing iterations and so all further work used just the initially

hStrain00sub] 68 862 92 generated word lattices.

h5train00 265 4482 235 The advantage from MMIE training for the 12 Gaussian

per state system is small and so a system with fewer Gaus-
sians per state was investigated. As shown in Tabiee
aP— Gaussian system has approximately the same ratio of pa-

. S . . ameters to training data as our h5trainOOsub system.
uation set, eval97sub, containing 10 conversation sides o? g y

Switchboard Il (SWB2) data and 10 of CHE; the 1998 eval- MMIE %WER
uation data set, eval98, containing 40 sides of SWB2 and 40 lteration | Lattice Bigram ‘ Lattice Unigram
CHE sides (in total about 3 hours of data) and the March
. . . 0 (MLE) 51.5 51.5
2000 evaluation data set, eval00, which has 40 sides of 1 0.0 797
SWB1 and 40 CHE sides. - -
sides 2 49.8 49.6
Training Number of | Gaussians Gaussian 3 50.1 50.0
Set Speech States per state | per hour 4 50.8 -
M?n?tra?n 3088 12 2060 Table 4: 18 hour experiments with 6 mixture component models
Minitrain 3088 6 1030 (eval97sub): comparison of lattice LMs.
h5train0O0sub, 6165 12 1090
h5train00 6165 16 370 The results from MMIE training of the 6 Gaussian/state

Table 2: Hub5 Triphone Model Sets

Minitrain system (with acoustic scaling) are shown in Ta-
ble 4 and again show the best performance after two MMIE



iterations. Furthermore the gain over the MLE system is We also experimented with data-weighting with this setup

1.7% absolute if a bigram LM is used and 1.9% absoluteduring MMIE training. The rationale for this is that while

if a unigram LM is used: the 6 Gaussian per state MMIE- the test data sets contain equal amounts of Switchboard and

trained HMM set now slightly outperforms the 12 Gaussian CHE data, the training set is not balanced. Therefore we

system. Furthermore it can be seen that using a weakeneghve a 3x higher weighting to CHE data during training.

LM (unigram) improves performance a little and in fact the The results of these experiments on both the eval97sub and

gain from using a unigram is greater if no acoustic scalingeval98 test sets are shown in Taldle It can be seen that

is performed: both acoustic scaling and the weakened LMwithout data weighting there is an improvement in WER of

increase the amount and diversity of confusable data. 2.6% absolute on eval97sub and 2.7% absolute on eval98.
Data weighting gives a further 0.2% absolute on eval98,

. ) but rather variable results on eval97sub. However if data

_ The effect of using the 68 hour hStrain00sub set was,yeighting is applied during MLE training for eval97sub the

investigated next and tests were performed on both th, g paseline improves by 0.7% absolute. It might be con-

eval97sub and eval98 sets. In this case the phone-markedyged that the extra weight placed on poorly recognised
denominator lattices had a LWER of 7.4%. The results of y5¢5 by MMIE training relative to MLE reduces the need

Experiments with 68 Hours Training

MMIE training are shown in Tablé. for the data weighting technique.
MIMIE GWER Qumphone Model Training -
lteration | eval97sub] eval98 Since the CU-HTK Hub5 system also uses quinphone

models, we also investigated MMIE training of these mod-

0 (MLE) 46.0 46.5 els using the full h5train00 set. The decision tree state clus-
L 43.8 45.0 tering process for quinphones includes questions regarding
2 43.7 44.6 +2 phone context and word-boundaries. The baseline quin-
3 44.1 44.7 phone system uses 9640 speech states and 16 Gaussians per

Table 5: Word error rates on eval97sub and eval98 using State to giye 580 Gaussians_p(_ar hour of tr.aining data.
h5train00sub training. The quinphone MMIE training used triphone-generated

word lattices, but, since the phone-marked lattices were re-
Again it can be seen that the peak improvement comesenerated for the quinphone models, it was necessary to fur-
after two iterations, but in this case there is an even largether prune the word-lattices. The results of MMIE trained
reduction in error rate than was seen for the 6 Gaussian/statguinphones on the eval97sub set are shown in Tabkote
Minitrain experiments: 2.3% absolute on eval97sub andthat these experiments, unlike all previous ones reported
1.9% absolute on eval98. The word error rate for the 1-beshere, include pronunciation probabilities.
hypothesis from the original bigram word lattices measured

on 10% of the training data was 27.4%. The MMIE models MMIE %WER
obtained after two iterations on the same portion of training lteration | eval97sub
data gave an error rate of 21.2%, so again MMIE provided a 0 (MLE) 42.0
very sizeable reduction in training set error. 1 40.4
Further experiments using this same training set/baseline 2 39.9
model set are given in Secti@n 3 40.1
Triphone Experiments with 265 Hours Training Table 7: Quinphone MMIE results on eval97sub. Pronunciation

The good performance on smaller training sets led ugProbabilities were used.

to investigate MMIE training using all the available Hub5

data: the 265 hour h5train00 set. The h5train00 set containF rAzs\;VwEﬁie'\émlti;r?zmigf ;l;gzll?tl:)cléifr?:s th);\ﬁ\/vg]ﬁ_
267,611 segments and numerator and denominator word'9 7

e atices were creted fo cach vaned segmen, anf21°0 ° 10 WHle WME veno B oo
from these, phone-marked lattices were generated. - . q 9
the triphone models. This may be because of the extra prun-

MMIE %WER ing required for the phone-marked Iatticc:—zs, or because there
lteration eval97sub\ evalos are rather more HMM parameters to estimate.
0 (MLE) 444 456 Interaction with MLLR
1 42 4 43.7 All the above results used models that were not adapted to
1 (3xCHE) 2420 435 the particular conversation side. Since model adaptation by
2 418 429 parameter transformation using maximum likelihood linear
2 (3xCHE) 419 427 regression (MLLR) [5, 6] is now a well-established tech-

nique, it is important to investigate if there is an interaction
Table 6: Word error rates when using h5train00 training with and between the MMIE trained models and transformation pa-
without CHE data weighting (3xCHE). rameters estimated using MLE.



To measure MLLR adaptation performance, MMIE and scaling on the number of confusable states; the use of the
MLE models (both using CHE data weighting) were used in exact-match and full-search lattice processing methods; the
a full-decode of the test data, i.e. not rescoring lattices, witheffect of different values of the global constaFiton opti-

a 4-gram language model. The output from this first passamisation and test-set performance; and a brief investigation

was used to estimate a global speech MLLR (block-diagonainto a modified objective function.

mean and diagonal variance) transform. If Qnough datg Waghcreased Confusion Data by Acoustic Model Scaling

available a separate transform was also estimated for silence __ . . .
. To illustrate the effect of acoustic scaling (rather than lan-

models and the output from the respective non-adapted pass

was used for adaptation supervision. The adapted modelguage model scaling) on the distribution of the posterior

robability of state-occupation, the average number of states
were then used for a second full-decode pass. The results of. . o
; . with a posterior probability greater than 0.01 was computed
these experiments are shown in TaBle

for both the full-search and the exact-match lattice search
procedures. The results are shown in Téble

Adaptation| % WER eval98
MLE \ MMIE Search Scaling
None 446 | 425 Type Acoustic LM
MLLR 42.1 | 39.9 num | den | num | den

Full-search | 3.54| 8.16| 1.43| 1.63
Exact-match| 1.78 | 5.58 | 1.26 | 1.45

Table 8: Effect of MLLR on MLE and MMIE trained models.

The results show that the MMIE models are 2.1% abso- . , . .
lute better than the MLE models without MLLR. and 2.2% Table 9: Average number of states with a posterior probability of
u ) - ! : occupation greater than 0.01 with and without acoustic scaling.
better with MLLR. In this case, MLLR seems to work just
as well with MMIE trained models: a relatively small num- - A5 expected, acoustic likelihood scaling significantly
ber of parameters are being estimated with MLLR a[\d thesgyroadens the posterior probability distribution. It is also
global transforms keep the Gaussians in the same “configunoteworthy that the exact-match procedure reduces the num-
ration” as optimised by MMIE. ber of confusable states quite markedly since models are not
March 2000 CU-HTK Hub5 System computed outside the lattice arc Viterbi segmentation points.

The MMIE triphone and quinphone models were included Objective Function Optimisation and Generalisation
in the March 2000 CU-HTK Hub5 evaluation systef]

Although this system incorporates numerous changes com- -0.02
pared to that described if(]], the use of MMIE models in
the system gave the greatest benefit.

Initial lattices were generated using gender independent
MMIE triphone HMMs with a 54k vocabulary and a 4-gram
language model. Subsequent passes through the data us
MMIE triphones and quinphones as well as MLE gender-
dependent soft-tied1[] triphones and quinphones. All
model sets use pronunciation probabilities, iterative MLLR
adaptation combined with a global full-variance transform =006 o
[7]. The final system output for each model set was gener- * o Full-search, E=1
ated to minimise the expected word error rate via confusion e Ei’;;ffﬁﬁth,EEETLmax
networks [L7]. The output of the MMIE and MLE model —s— Exact-match, E=2.0
stages were combined via confusion network combination _g g ‘ ‘ ‘ —— Exact-match, EZhalfmax
[ ] to give the ﬁnal OUtDUt- 0 Ite%ation of M2MIE trainir?g (startinéwith MLEBftrained n?odels) !

On the eval98 data, this system gives an error rate of
35.0%, and on the March 2000 evaluation data (eval00)

25.4%, which was the lowest error rate obtained in the eval- Figure 1: MMIE criterion optimisation.

uation by a statistically significant margin.

0.04

MIE criterion p&Pframe

The increase in MMIE objective function and the corre-
8. FURTHER INVESTIGATION OF THE MMIE sponding test-set error rate (eval97sub) were measured us-
TRAINING SCHEME ing both the full-search and exact-match schemes and also
] ) ] o several values of the global smoothing constafit:= 1,
In this section, the properties of the MMIE training p _ 9, and E = halfmax. The experiments used the 68

scheme used in Sectiohare investigated along a number o, h5train00sub training setup with acoustic scaling. The
of variations. These include the effect of acoustic likelihood change in objective function as training proceeds is shown

"The eval00 test-set consistently yields much lower error rates thanin Figure 1 and the corresponding error rates in Figdre
eval9s across all recognition systems. While there is no consistent difference in WER between




46 S T—— word error rates can be obtained for the transcription of con-
* - Full-search, E=halfmax versational telephone speech.
—— Exact-match, E=1.0 . . . .
4551 —s— Exact-match, E=2.0 || The MMIE objective function was reviewed and the two
s —*— Bxact-maich, Ehalfmax key issues for its application to large vocabulary tasks were
5 discussed: the efficiency of objective function optimisation
S a5 ~ ~ 8 and generalisation to test data.
§ ° The Extended Baum Welch algorithm, with Gaussian spe-
g cific D constants, was used and it was shown that two itera-
MY ] tions of updating were sufficient to obtain good performance
§ s over a large range of data set sizes and model types. Fur-
2al , thermore, a novel updating formula for the mixture weight
: * parameters was introduced.
* The use of a weakened language model (a unigram), and,
4355 1 > 3 7 5 P - P more importantly, acoustic likelihood scaling were investi-
lteration of MMIE training gated as methods of increasing the amount of relevant con-

fusable data during MMIE training. Both these techniques
improve generalisation and allow better performance to be
obtained with MMIE training using more complex models.
Therefore, in contrast to previously held beliefs, it is pos-
sible to use MMIE training for the most challenging large
vocabulary tasks to reduce error rates over the best MLE

ily occurs, although the second iteration of MMIE train- models, and not just provide good performance with a re-

. : . . duced number of parameters.

ing yields good results. Using a higher value of the global ) _ -
smoothing constant which further increases during train- _ / lattice-based approach to calculating the statistics re-
ing, such agZ — halfmax, results in the objective function lated to the objective function denominator was used, and
being optimised to a poorer final value, but with less dangef™V0 SPecific implementations of lattice search were de-
of over-training. However, the underlying problem is that scribed. Both methods, unlike previous work on lattice-

improving the objective function past a certain point causes?@S€d discriminative training algorithms, perform a full
the test-set accuracy to deteriorate. forward-backward pass at the model level. However they

differ in the constraints used at the model boundaries and
were found to be comparable in error rate, although the
exact-match scheme has a lower computational cost.

While MMIE training is effective, it is clear that over-
training can easily occur. One possible solution is to mod-
ify the objective function to aid generalisation directly. One
method for doing this is to use an interpolation of the MMIE

0.87vme +0-2FMLe and MLE objective functions and this seems to be effective.
This objective function can be implemented simply by an We intend to further investigate other modifications to im-
appropriate scaling of the MMIE numerator statistics. The prove generalisation performance.
exact-match method was used on the h5trainO0sub training While this paper has concentrated on the MMIE objective
set with £ = 1. Evaluation using the eval97sub test-set function, much of what has been discussed can be directly
showed that the error-rate converged as the objective funcapplied to other objective functions. A general formulation
tion was optimised to yield 43.7% error on the 5th iteration. to |attice-based discriminative training was proposed ii,[

While these models gave the same test-set accuracy aghich discuses how other measures, such as MCE, can be
conventional MMIE training, it was noted that the model pa- ysed in the lattice framework.
rameters had changed rather less from the MLE parameter The MMIE training scheme was applied to transcription
values than the pure MMIE ones with the same accuracyof Hubs data for training sets up to 265 hours in size for
90% of means were within 0.1 standard deviations of thepgth triphone and quinphone models and resulted in a 2-3%
MLE values, compared to 90% within 0.25 standard devia-apsolute reduction in word error rate. The trained MMIE tri-
tions for similarly performing pure MMIE models. phone and quinphone HMMs were used in the March 2000
CU-HTK Hub5 system which had the lowest error rate in

9. DISCUSSION & CONCLUSIONS the evaluation by a statistically significant margin. While the

This paper has discussed the use of discriminative trainmethod is still very computationally expensive, it is now be-
ing for large vocabulary HMM-based speech recognition for coming feasible to investigate MMIE training on this scale.
a training set size and level of task difficulty not previously We believe that there is much exciting research on large-
attempted. It has been shown that significant reductions irscale discriminative training still to be done.

Figure 2: Error rates for several MMIE training variants.

full-search and exact-match, our implementation of exact-
match search ran significantly faster.
One problem with usind” = 1 is that over-training eas-

H-Criterion Objective Function

An alternative solution to over-training is to modify the
objective function. In particular, an interpolation of the
MMIE and MLE objective functions, which gives a type of
H-criterion [3], was examined. The function investigated
here was
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