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Logarithm

@ Concave function

!
&

@ Information theory:

o Entropy H(p) = —>_!_, pilog pi (Concave).
o Kullback-Leibler divergence (or relative entropy)

D(pllq) = Zp, log(pi/ai)

Convex jointly in (p, q).
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Matrix logarithm function

e X symmetric matrix with positive eigenvalues (positive definite)

A1 log(A1)
X:U( )U* — Iog(X):U( )U*
An log(Xr)

where U orthogonal.
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Matrix logarithm function

e X symmetric matrix with positive eigenvalues (positive definite)
A1 log(A1)
X:U( )U* — Iog(X)zU( )U*
An log(An)
where U orthogonal.
@ von Neumann Entropy of X: H(X) = — Tr[X log X]. Concave in X.

@ Quantum relative entropy:
D(X||Y) = Tr[X(log X — log Y)]

Convex in (X, Y) [Lieb-Ruskai, 1973].
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Concavity of matrix logarithm

Striking property of the matrix logarithm (operator concavity):
log(AMA+(1—=XN)B) = Alog(A) + (1—)\)log(B)

where
e A/B>0and A e[0,1]

e “X > Y" means X — Y positive semidefinite (Léwner order)
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Convex optimisation

@ How can we solve convex optimisation problems involving matrix logarithm?

@ Even for scalar logarithm, things are not so simple

(solvers for exponential cone are not as well-developed as solvers for symmetric cones)

@ CVX modeling tool developed by M. Grant and S. Boyd at Stanford

% Maximum entropy problem

cvx_begin
variable p(n)
maximize sum(entr (p))
subject to p >= 0; sum(p) == 1;
A*p == b;
cvx_end

@ CVX uses a successive approximation heuristic. Works good in practice
but:

o sometimes fails (no guarantees)
o slow for large problems
e does not work for matrix logarithm.
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Semidefinite programming

This talk:

@ New method to treat matrix logarithm and derived functions using
symmetric cone solvers (semidefinite programming)

@ Based on accurate rational approximations of logarithm
@ Much faster than successive approximation heuristic

@ Works for matrix logarithm
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Outline

@ Semidefinite representations

@ Approximating matrix logarithm

o Numerical examples, comparison with successive approximation (for
scalars) and other matrix examples
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Semidefinite programming

minimize (C,X) st A(X)=b, X >0

Xesn

@ Problem data: C, A, b

@ Auvailable solvers: SeDuMi, SDPT3, Mosek, SDPA, etc. (e.g.,
sedumi (A,Db,C))

o Generalization of linear programming where

xXER" & XeS" x>0 X>=0
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Semidefinite formulation

@ Not all optimisation problems are given in semidefinite form...

o Example:

maximise 2x+y st x> +y*<1
x,y€R
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Semidefinite formulation

@ Not all optimisation problems are given in semidefinite form...

o Example:

maximise 2x+y st x> +y*<1
x,y€R

Formulate as semidefinite optimisation using the fact that:

1—x
2 2 y -
x+y <1l & y 14 x =0
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Examples of semidefinite formulation
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Examples of semidefinite formulation

X | =
IN
~+
)

x
R
Y

o
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Semidefinite representations

@ Concave function f has a semidefinite representation if:
f(x)>t — S(x,t) =0

for some affine function S : R"t! — S9

o Key fact: if f has a semidefinite representation then can solve optimisation
problems involving f using semidefinite solvers.
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@ Concave function f has a semidefinite representation if:
f(x)>t <~ JueR":S(x,t,u) =0

for some affine function S ; R"T1+m _y §d
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Semidefinite representations

@ Concave function f has a semidefinite representation if:
f(x) >t <~ JueR":S(x,t,u) =0

for some affine function S : R"+1+m _, gd

o Key fact: if f has a semidefinite representation then can solve optimisation
problems involving f using semidefinite solvers.

@ Book by Ben-Tal and Nemirovski gives semidefinite
representations of many convex,/concave functions.

@ Helton-Nie conjecture: “Any convex semialgebraic function
has a semidefinite representation” (caveat: size of
representation may be very large!)
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Back to logarithm function

Goal: find a semidefinite representation of logarithm.

t

Logarithm is not semialgebraic! We have to resort to approximations.
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Integral representation of log

Starting point of approximation is:

! x—1
log(x) = /o mds
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Integral representation of log

Starting point of approximation is:

! x—1
log(x) = /o mds

o Key fact: integrand is concave and semidefinite rep. for any fixed s!

1+s(x—1) 1

1 1—st =0

X7_1>t =S
1+s(x—1) ~

13/24



Integral representation of log

Starting point of approximation is:

! x—1
log(x) = /o mds

o Key fact: integrand is concave and semidefinite rep. for any fixed s!

1+s(x—1) 1

1 1—st =0

X7_1>t =
1+s(x—1) ~

o Get semidefinite approximation of log using quadrature:

Right-hand side is semidefinite representable
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Rational approximation

x—1
log(x) ~ Z Jl+ij—1) 3 /

rm(x) — Log
! m=3

rm = m'th diagonal Padé approximant
of log at x = 1 (matches the first 2m [
Taylor coefficients).
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Rational approximation

x—1
log(x) ~ Z Jl+ij—1) 3 /

rm(x) — Log
! m=3

rm = m'th diagonal Padé approximant
of log at x = 1 (matches the first 2m [
Taylor coefficients).

@ Improve approximation by bringing x closer to 1 and using
log(x) = # log(x™) (0 < h < 1):

Fm,p(X) 1= frm(xh)
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Rational approximation

x—1
log(x) ~ Z Jl+ij—1) 3 /

rm(x) — Log
! m=3

rm = m'th diagonal Padé approximant
of log at x = 1 (matches the first 2m [
Taylor coefficients).

@ Improve approximation by bringing x closer to 1 and using
log(x) = # log(x™) (0 < h < 1):

Fm,p(X) 1= frm(xh)

@ Remarkable fact: rp, 4 is still concave and semidefinite representable!
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Quadrature + exponentiation

Fm.p(x) = frm(xh)

e Semidefinite representation of rp p (say h = 1/2 for concreteness):

X1/2 Z y

rm x)>t <= dy>0s.t.
12(x) = y > {rm(y)z )2

2

@ Uses fact that r,, is monotone and x'/2 is concave and semidefinite rep.

e Can do the case h = 1/2* with iterative square-rooting.
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Approximation error

Approximation error ||r;, 5 — log || on [1/a, a] (h = 1/2%):

100 m=2, k=2 |
2 //——_mzfi, k=3 |
104 F 1

m=4, k=4
100 1

10° 102 103 104 10°

Approximation error
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Approximation error

Approximation error ||r;, 5 — log || on [1/a, a] (h = 1/2%):

100k m=2, k=2 |
102 // m=3, k=3 |

m=4, k=4

Approximation error
>
ES

=)
3

1010 F

107‘2 1 ‘2 ‘3 ‘4 ‘5
10 10 10 10 10
Recap: Two ingredients
@ Rational approximation via quadrature
o Use log(x) = % log(x") with small h to bring x closer to 1.

Key fact: resulting approximation is concave and semidefinite representable.
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Matrix logarithm

What about matrix logarithm?
@ Integral representation is valid for matrix log as well:

0g(X) = [ (X =11+ s(x = 1)) as
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Matrix logarithm

What about matrix logarithm?
@ Integral representation is valid for matrix log as well:

0g(X) = [ (X =11+ s(x = 1)) as

o Key fact: integrand is operator concave and semidefinite rep. for any
fixed s (use Schur complements)
_ I+s(X—=1) /
1
X=NDH{l+s(X=-1N)"=T [ / |_ T =0
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Matrix logarithm

What about matrix logarithm?
@ Integral representation is valid for matrix log as well:

0g(X) = [ (X =11+ s(x = 1)) as

o Key fact: integrand is operator concave and semidefinite rep. for any
fixed s (use Schur complements)

X =D +s(X =) =T [’“(X") !

/ j—sT| =0

@ Get semidefinite approximation of matrix log using quadrature:

|Og Z J1+5 1)

Right-hand side is semidefinite representable
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Exponentiation

@ Exponentiation idea also works for matrices:

Fon(X) = %rm(Xh) O<h<1)

@ rp, is not only monotone concave but operator monotone and operator
concave. Also X — X" is operator concave and semidefinite rep.

X227 & [)T( ﬂzo
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Exponentiation

@ Exponentiation idea also works for matrices:

Fon(X) = %rm(Xh) O<h<1)

@ rp, is not only monotone concave but operator monotone and operator
concave. Also X — X" is operator concave and semidefinite rep.

X227 & [)T( ﬂzo

o Approximation log(X) =& ry, n(X) called inverse scaling and squaring

method by Kenney-Laub, widely used in numerical computations.

@ Remarkable that it “preserves” concavity and can be implemented in
semidefinite programming.
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From (matrix) logarithm to (matrix) relative entropy

log(x) & rm,n(x)
@ Perspective transform (homogenization):

f:R— Rconcave = g(x,y):=yf(x/y) also concave on R x R, |
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From (matrix) logarithm to (matrix) relative entropy

log(x) & rm,n(x)
@ Perspective transform (homogenization):

f:R—Rconcave = g(x,y):=yf(x/y) also concave on R x R

o Perspective of log is (x,y) — y log(x/y) related to relative entropy. Can
simply approximate with the perspective of ry, p:

ylog(x/y) = yrmn(x/y)

Semidefinite representation is obtained by homogenization (replace 1 by y).
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From (matrix) logarithm to (matrix) relative entropy

log(x) & rm,n(x)
@ Perspective transform (homogenization):

f:R—Rconcave = g(x,y):=yf(x/y) also concave on R x R

o Perspective of log is (x,y) — y log(x/y) related to relative entropy. Can
simply approximate with the perspective of ry, p:

ylog(x/y) = yrmn(x/y)

Semidefinite representation is obtained by homogenization (replace 1 by y).

@ What about for matrices? What is the perspective transform?
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Matrix perspective

@ Matrix perspective of f:
g(X, Y) _ Y1/2f‘( Y71/2XY71/2)Y1/2

e Theorem [Effros, Ebadian et al.]: If f operator concave then matrix
perspective of f is jointly operator concave in (X, Y).
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Matrix perspective

Matrix perspective of f:

g(X, Y) _ Y1/2f‘( Y71/2XY71/2)Y1/2

Theorem [Effros, Ebadian et al.]: If f operator concave then matrix
perspective of f is jointly operator concave in (X, Y).

For f = log matrix perspective is related to operator relative entropy
Dop(X[|Y) = = YY2log(Y 12Xy ~1/2)y1/2

@ Approximate with the matrix perspective of ry, p:

Dop(X|Y) = =YY 21, o(YV2XY1/2)y1/2

@ Semidefinite representation obtained by homogenization
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Numerical experiments: maximum entropy problem

maximize — .., x; log(x;)
subjectto Ax=0b (A€ R™" beRY
x>0
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Numerical experiments: maximum entropy problem

maximize

— 2271 % log(xi)

subjectto Ax=0b

x>0

(A€ R™" beRY

CVX’s successive approx.

Our approach m=3,h=1/8

n 4 time (s) accuracy” time (s) accuracy”
200 100 1.10s 6.635e-06 0.88 s 2.767e-06
400 200 3.38s 2.662e-05 0.72 s 1.164e-05
600 300 9.14 s 2.927e-05 1.84 s 2.743e-05
1000 500 | 52.40s 1.067e-05 391s 1.469e-04

@ CVX's successive approx.: Uses Taylor expansion of log instead of Padé

*accuracy measured wrt specialized MOSEK routine

approx + successively refine linearization point
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Geometric programming

@ Geometric program:

minimize  fo(x)
subject to  fi(x) <1, j=1,....¢
x>0

where fo, ..., f; are posynomials (polynomials with nonnegative coeffs)

e Important class of convex optimization problems (applications in circuit
design, communications, etc.)

CVX’s successive approx. | Our approach m=3,h=1/8

n 4 time (s) accuracy time (s) accuracy
100 200 7.60 s 1.853e-06 2.69s 3.769e-06
200 200 7.47 s 2.441e-07 3.72s 7.505e-07
200 400 | 42.71s 3.666e-06 14.36 s 2.855e-06

200 600 | 184.33 s 7.899e-06 3545 s 4.480e-06
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Application in quantum information theory: relative
entropy of entanglement

e Quantify entanglement of a bipartite state p

min D(p||T) s.t. T € Sep

n Cutting-plane Our approach
[Zinchenko et al.] m=3,h=1/8
4 6.13 s 0.55s
6 1230s 0.51s Sep = “separable” states
8 29445 0.69 s
9 37565 0.82s
12 50.50 s 1.74 s
16 100.70 s 5555

cvx_begin sdp
variable tau(na*nb,na*nb) hermitian;
minimize (quantum_rel_entr(rho,tau));
subject to tau >= 0; trace(tau) == 1;
Tx(tau,2, [na nb]) >= 0; J Positive partial transpose constraint
cvx_end
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Conclusion

@ Approximation theory with convexity

@ Approach extends to other operator concave functions via their integral
representation (Lowner theorem)

@ Our approximation for scalar log has size (second-order cone rep.)
\/log(1/€) where ¢ error on [e™1, e]. Is this best possible?

@ Paper soon to be posted on arXiV with Matlab code
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Conclusion

@ Approximation theory with convexity

@ Approach extends to other operator concave functions via their integral
representation (Lowner theorem)

@ Our approximation for scalar log has size (second-order cone rep.)
\/log(1/€) where ¢ error on [e™1, e]. Is this best possible?

@ Paper soon to be posted on arXiV with Matlab code

Thank you!
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