Semidefinite approximations of matrix logarithm

Hamza Fawzi
DAMTP, University of Cambridge

Joint work with
James Saunderson (Monash University) and Pablo Parrilo (MIT)

December 6, 2016

Logarithm

- Concave function

- Information theory:
- Entropy $H(p)=-\sum_{i=1}^{n} p_{i} \log p_{i}$ (Concave).
- Kullback-Leibler divergence (or relative entropy)

$$
D(p \| q)=\sum_{i=1}^{n} p_{i} \log \left(p_{i} / q_{i}\right)
$$

Convex jointly in (p, q).

Matrix logarithm function

- X symmetric matrix with positive eigenvalues (positive definite)

$$
X=U\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& \ddots & \lambda_{n}
\end{array}\right) U^{*} \quad \rightarrow \quad \log (X)=U\left(\begin{array}{lll}
\log \left(\lambda_{1}\right) & & \\
& \ddots & \\
& & \log \left(\lambda_{n}\right)
\end{array}\right) U^{*}
$$

where U orthogonal.

Matrix logarithm function

- X symmetric matrix with positive eigenvalues (positive definite)

$$
X=U\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& \ddots & \lambda_{n}
\end{array}\right) U^{*} \quad \rightarrow \quad \log (X)=U\left(\begin{array}{lll}
\log \left(\lambda_{1}\right) & & \\
& \ddots & \\
& & \log \left(\lambda_{n}\right)
\end{array}\right) U^{*}
$$

where U orthogonal.

- von Neumann Entropy of $X: H(X)=-\operatorname{Tr}[X \log X]$. Concave in X.
- Quantum relative entropy:

$$
D(X \| Y)=\operatorname{Tr}[X(\log X-\log Y)]
$$

Convex in (X, Y) [Lieb-Ruskai, 1973].

Concavity of matrix logarithm

Striking property of the matrix logarithm (operator concavity):

$$
\log (\lambda A+(1-\lambda) B) \succeq \lambda \log (A)+(1-\lambda) \log (B)
$$

where

- $A, B \succ 0$ and $\lambda \in[0,1]$
- " $X \succeq Y$ " means $X-Y$ positive semidefinite (Löwner order)

Convex optimisation

- How can we solve convex optimisation problems involving matrix logarithm?
- Even for scalar logarithm, things are not so simple (solvers for exponential cone are not as well-developed as solvers for symmetric cones)
- CVX modeling tool developed by M. Grant and S. Boyd at Stanford

```
% Maximum entropy problem
    cvx_begin
        variable p(n)
        maximize sum(entr(p))
        subject to p >= 0; sum(p) == 1;
        A*p == b;
    cvx_end
```

- CVX uses a successive approximation heuristic. Works good in practice but:
- sometimes fails (no guarantees)
- slow for large problems
- does not work for matrix logarithm.

Semidefinite programming

This talk:

- New method to treat matrix logarithm and derived functions using symmetric cone solvers (semidefinite programming)
- Based on accurate rational approximations of logarithm
- Much faster than successive approximation heuristic
- Works for matrix logarithm

Outline

- Semidefinite representations
- Approximating matrix logarithm
- Numerical examples, comparison with successive approximation (for scalars) and other matrix examples

Semidefinite programming

$$
\underset{X \in \mathbf{S}^{\boldsymbol{n}}}{\operatorname{minime}}\langle C, X\rangle \quad \text { s.t. } \quad \mathcal{A}(X)=b, X \succeq 0
$$

- Problem data: C, \mathcal{A}, b
- Available solvers: SeDuMi, SDPT3, Mosek, SDPA, etc. (e.g., sedumi (A,b,C))
- Generalization of linear programming where

$$
x \in \mathbb{R}^{n} \leftrightarrow X \in \mathbf{S}^{n} \quad x \geq 0 \leftrightarrow X \succeq 0
$$

Semidefinite formulation

- Not all optimisation problems are given in semidefinite form...
- Example:

$$
\underset{x, y \in \mathbb{R}}{\operatorname{maximise}} 2 x+y \quad \text { s.t. } \quad x^{2}+y^{2} \leq 1
$$

Semidefinite formulation

- Not all optimisation problems are given in semidefinite form...
- Example:

$$
\underset{x, y \in \mathbb{R}}{\operatorname{maximise}} 2 x+y \quad \text { s.t. } \quad x^{2}+y^{2} \leq 1
$$

Formulate as semidefinite optimisation using the fact that:

$$
x^{2}+y^{2} \leq 1 \quad \Leftrightarrow \quad\left[\begin{array}{cc}
1-x & y \\
y & 1+x
\end{array}\right] \succeq 0
$$

Examples of semidefinite formulation

$$
\sqrt{x} \geq t \quad \Leftrightarrow\left[\begin{array}{ll}
x & t \\
t & 1
\end{array}\right] \succeq 0
$$

Examples of semidefinite formulation

$$
\sqrt{x} \geq t \quad \Leftrightarrow\left[\begin{array}{ll}
x & t \\
t & 1
\end{array}\right] \succeq 0
$$

$$
\frac{1}{x} \leq t \quad \Leftrightarrow \quad\left[\begin{array}{ll}
x & 1 \\
1 & t
\end{array}\right] \succeq 0
$$

Semidefinite representations

- Concave function f has a semidefinite representation if:

$$
f(x) \geq t \quad \Longleftrightarrow \quad \mathcal{S}(x, t) \succeq 0
$$

for some affine function $\mathcal{S}: \mathbb{R}^{n+1} \rightarrow \mathbf{S}^{d}$

- Key fact: if f has a semidefinite representation then can solve optimisation problems involving f using semidefinite solvers.

Semidefinite representations

- Concave function f has a semidefinite representation if:

$$
f(x) \geq t \quad \Longleftrightarrow \exists u \in \mathbb{R}^{m}: \mathcal{S}(x, t, u) \succeq 0
$$

for some affine function $\mathcal{S}: \mathbb{R}^{n+1+m} \rightarrow \mathbf{S}^{d}$

- Key fact: if f has a semidefinite representation then can solve optimisation problems involving f using semidefinite solvers.

Semidefinite representations

- Concave function f has a semidefinite representation if:

$$
f(x) \geq t \quad \Longleftrightarrow \exists u \in \mathbb{R}^{m}: \mathcal{S}(x, t, u) \succeq 0
$$

for some affine function $\mathcal{S}: \mathbb{R}^{n+1+m} \rightarrow \mathbf{S}^{d}$

- Key fact: if f has a semidefinite representation then can solve optimisation problems involving f using semidefinite solvers.
- Book by Ben-Tal and Nemirovski gives semidefinite representations of many convex/concave functions.
- Helton-Nie conjecture: "Any convex semialgebraic function has a semidefinite representation" (caveat: size of representation may be very large!)

Back to logarithm function

Goal: find a semidefinite representation of logarithm.

$$
\log (x) \geq t
$$

Logarithm is not semialgebraic! We have to resort to approximations.

Integral representation of \log

Starting point of approximation is:

$$
\log (x)=\int_{0}^{1} \frac{x-1}{1+s(x-1)} d s
$$

Integral representation of log

Starting point of approximation is:

$$
\log (x)=\int_{0}^{1} \frac{x-1}{1+s(x-1)} d s
$$

- Key fact: integrand is concave and semidefinite rep. for any fixed s !

$$
\frac{x-1}{1+s(x-1)} \geq t \quad \Leftrightarrow \quad\left[\begin{array}{cc}
1+s(x-1) & 1 \\
1 & 1-s t
\end{array}\right] \succeq 0
$$

Integral representation of log

Starting point of approximation is:

$$
\log (x)=\int_{0}^{1} \frac{x-1}{1+s(x-1)} d s
$$

- Key fact: integrand is concave and semidefinite rep. for any fixed s !

$$
\frac{x-1}{1+s(x-1)} \geq t \quad \Leftrightarrow \quad\left[\begin{array}{cc}
1+s(x-1) & 1 \\
1 & 1-s t
\end{array}\right] \succeq 0
$$

- Get semidefinite approximation of \log using quadrature:

$$
\log (x) \approx \sum_{j=1}^{m} w_{j} \frac{x-1}{1+s_{j}(x-1)}
$$

Right-hand side is semidefinite representable

Rational approximation

$$
\log (x) \approx \underbrace{\sum_{j=1}^{m} w_{j} \frac{x-1}{1+s_{j}(x-1)}}_{r_{m}(x)}
$$

$r_{m}=m$ 'th diagonal Padé approximant of log at $x=1$ (matches the first $2 m$ Taylor coefficients).

Rational approximation

$$
\log (x) \approx \underbrace{\sum_{j=1}^{m} w_{j} \frac{x-1}{1+s_{j}(x-1)}}_{r_{m}(x)}
$$

$r_{m}=m$ 'th diagonal Padé approximant of log at $x=1$ (matches the first $2 m$ Taylor coefficients).

- Improve approximation by bringing x closer to 1 and using $\log (x)=\frac{1}{h} \log \left(x^{h}\right)(0<h<1)$:

$$
r_{m, h}(x):=\frac{1}{h} r_{m}\left(x^{h}\right)
$$

Rational approximation

$$
\log (x) \approx \underbrace{\sum_{j=1}^{m} w_{j} \frac{x-1}{1+s_{j}(x-1)}}_{r_{m}(x)}
$$

$r_{m}=m$ 'th diagonal Padé approximant of \log at $x=1$ (matches the first $2 m$ Taylor coefficients).

- Improve approximation by bringing x closer to 1 and using $\log (x)=\frac{1}{h} \log \left(x^{h}\right)(0<h<1)$:

$$
r_{m, h}(x):=\frac{1}{h} r_{m}\left(x^{h}\right)
$$

- Remarkable fact: $r_{m, h}$ is still concave and semidefinite representable!

Quadrature + exponentiation

$$
r_{m, h}(x):=\frac{1}{h} r_{m}\left(x^{h}\right)
$$

- Semidefinite representation of $r_{m, h}$ (say $h=1 / 2$ for concreteness):

$$
r_{m, 1 / 2}(x) \geq t \quad \Longleftrightarrow \quad \exists y \geq 0 \text { s.t. }\left\{\begin{array}{l}
x^{1 / 2} \geq y \\
r_{m}(y) \geq t / 2
\end{array}\right.
$$

- Uses fact that r_{m} is monotone and $x^{1 / 2}$ is concave and semidefinite rep.
- Can do the case $h=1 / 2^{k}$ with iterative square-rooting.

Approximation error

Approximation error $\left\|r_{m, h}-\log \right\|_{\infty}$ on $[1 / a, a]\left(h=1 / 2^{k}\right)$:

Approximation error

Approximation error $\left\|r_{m, h}-\log \right\|_{\infty}$ on $[1 / a, a]\left(h=1 / 2^{k}\right)$:

Recap: Two ingredients

- Rational approximation via quadrature
- Use $\log (x)=\frac{1}{h} \log \left(x^{h}\right)$ with small h to bring x closer to 1 .

Key fact: resulting approximation is concave and semidefinite representable.

Matrix logarithm

What about matrix logarithm?

- Integral representation is valid for matrix log as well:

$$
\log (X)=\int_{0}^{1}(X-I)(I+s(X-I))^{-1} d s
$$

Matrix logarithm

What about matrix logarithm?

- Integral representation is valid for matrix log as well:

$$
\log (X)=\int_{0}^{1}(X-I)(I+s(X-I))^{-1} d s
$$

- Key fact: integrand is operator concave and semidefinite rep. for any fixed s (use Schur complements)

$$
(X-I)(I+s(X-I))^{-1} \succeq T \quad \Leftrightarrow\left[\begin{array}{cc}
I+s(X-I) & I \\
I & I-s T
\end{array}\right] \succeq 0
$$

Matrix logarithm

What about matrix logarithm?

- Integral representation is valid for matrix log as well:

$$
\log (X)=\int_{0}^{1}(X-I)(I+s(X-I))^{-1} d s
$$

- Key fact: integrand is operator concave and semidefinite rep. for any fixed s (use Schur complements)

$$
(X-I)(I+s(X-I))^{-1} \succeq T \quad \Leftrightarrow\left[\begin{array}{cc}
I+s(X-I) & I \\
I & I-s T
\end{array}\right] \succeq 0
$$

- Get semidefinite approximation of matrix log using quadrature:

$$
\log (X) \approx \sum_{j=1}^{m} w_{j} \frac{X-1}{1+s_{j}(X-1)}
$$

Right-hand side is semidefinite representable

Exponentiation

- Exponentiation idea also works for matrices:

$$
r_{m, h}(X):=\frac{1}{h} r_{m}\left(X^{h}\right) \quad(0<h<1)
$$

- r_{m} is not only monotone concave but operator monotone and operator concave. Also $X \mapsto X^{h}$ is operator concave and semidefinite rep.

$$
X^{1 / 2} \succeq T \quad \Leftrightarrow \quad\left[\begin{array}{cc}
X & T \\
T & I
\end{array}\right] \succeq 0
$$

Exponentiation

- Exponentiation idea also works for matrices:

$$
r_{m, h}(X):=\frac{1}{h} r_{m}\left(X^{h}\right) \quad(0<h<1)
$$

- r_{m} is not only monotone concave but operator monotone and operator concave. Also $X \mapsto X^{h}$ is operator concave and semidefinite rep.

$$
X^{1 / 2} \succeq T \quad \Leftrightarrow \quad\left[\begin{array}{cc}
X & T \\
T & I
\end{array}\right] \succeq 0
$$

- Approximation $\log (X) \approx r_{m, h}(X)$ called inverse scaling and squaring method by Kenney-Laub, widely used in numerical computations.
- Remarkable that it "preserves" concavity and can be implemented in semidefinite programming.

From (matrix) logarithm to (matrix) relative entropy

$$
\log (x) \approx r_{m, h}(x)
$$

- Perspective transform (homogenization):
$f: \mathbb{R} \rightarrow \mathbb{R}$ concave $\Rightarrow g(x, y):=y f(x / y)$ also concave on $\mathbb{R} \times \mathbb{R}_{++}$

From (matrix) logarithm to (matrix) relative entropy

$$
\log (x) \approx r_{m, h}(x)
$$

- Perspective transform (homogenization):

$$
f: \mathbb{R} \rightarrow \mathbb{R} \text { concave } \Rightarrow g(x, y):=y f(x / y) \text { also concave on } \mathbb{R} \times \mathbb{R}_{++}
$$

- Perspective of \log is $(x, y) \mapsto y \log (x / y)$ related to relative entropy. Can simply approximate with the perspective of $r_{m, h}$:

$$
y \log (x / y) \approx y r_{m, h}(x / y)
$$

Semidefinite representation is obtained by homogenization (replace 1 by y).

From (matrix) logarithm to (matrix) relative entropy

$$
\log (x) \approx r_{m, h}(x)
$$

- Perspective transform (homogenization):

$$
f: \mathbb{R} \rightarrow \mathbb{R} \text { concave } \Rightarrow g(x, y):=y f(x / y) \text { also concave on } \mathbb{R} \times \mathbb{R}_{++}
$$

- Perspective of \log is $(x, y) \mapsto y \log (x / y)$ related to relative entropy. Can simply approximate with the perspective of $r_{m, h}$:

$$
y \log (x / y) \approx y r_{m, h}(x / y)
$$

Semidefinite representation is obtained by homogenization (replace 1 by y).

- What about for matrices? What is the perspective transform?

Matrix perspective

- Matrix perspective of f :

$$
g(X, Y)=Y^{1 / 2} f\left(Y^{-1 / 2} X Y^{-1 / 2}\right) Y^{1 / 2}
$$

- Theorem [Effros, Ebadian et al.]: If f operator concave then matrix perspective of f is jointly operator concave in (X, Y).

Matrix perspective

- Matrix perspective of f :

$$
g(X, Y)=Y^{1 / 2} f\left(Y^{-1 / 2} X Y^{-1 / 2}\right) Y^{1 / 2}
$$

- Theorem [Effros, Ebadian et al.]: If f operator concave then matrix perspective of f is jointly operator concave in (X, Y).
- For $f=\log$ matrix perspective is related to operator relative entropy

$$
D_{\mathrm{op}}(X \| Y)=-Y^{1 / 2} \log \left(Y^{-1 / 2} X Y^{-1 / 2}\right) Y^{1 / 2}
$$

- Approximate with the matrix perspective of $r_{m, h}$:

$$
D_{\mathrm{op}}(X \| Y) \approx-Y^{1 / 2} r_{m, h}\left(Y^{-1 / 2} X Y^{-1 / 2}\right) Y^{1 / 2}
$$

- Semidefinite representation obtained by homogenization

Numerical experiments: maximum entropy problem

$$
\begin{array}{ll}
\operatorname{maximize} & -\sum_{i=1}^{n} x_{i} \log \left(x_{i}\right) \\
\text { subject to } & A x=b
\end{array} \quad\left(A \in \mathbb{R}^{\ell \times n}, b \in \mathbb{R}^{\ell}\right)
$$

Numerical experiments: maximum entropy problem

$$
\begin{array}{ll}
\operatorname{maximize} & -\sum_{i=1}^{n} x_{i} \log \left(x_{i}\right) \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array} \quad\left(A \in \mathbb{R}^{\ell \times n}, b \in \mathbb{R}^{\ell}\right)
$$

		CVX's successive approx.		Our approach $m=3, h=1 / 8$	
n	ℓ	time (s)	accuracy*	time (s)	accuracy* *
200	100	1.10 s	$6.635 \mathrm{e}-06$	0.88 s	$2.767 \mathrm{e}-06$
400	200	3.38 s	$2.662 \mathrm{e}-05$	0.72 s	$1.164 \mathrm{e}-05$
600	300	9.14 s	$2.927 \mathrm{e}-05$	1.84 s	$2.743 \mathrm{e}-05$
1000	500	52.40 s	$1.067 \mathrm{e}-05$	3.91 s	$1.469 \mathrm{e}-04$

*accuracy measured wrt specialized MOSEK routine

- CVX's successive approx.: Uses Taylor expansion of log instead of Padé approx + successively refine linearization point

Geometric programming

- Geometric program:

$$
\begin{array}{ll}
\underset{\operatorname{minimize}}{\operatorname{subject~to}} & f_{0}(x) \\
& f_{j}(x) \leq 1, \quad j=1, \ldots, \ell \\
& x>0
\end{array}
$$

where f_{0}, \ldots, f_{ℓ} are posynomials (polynomials with nonnegative coeffs)

- Important class of convex optimization problems (applications in circuit design, communications, etc.)

n	ℓ	CVX's successive approx. time (s) accuracy		Our approach time (s)	$m=3, h=1 / 8$ accuracy
100	200	7.60 s	1.853e-06	2.69 s	$3.769 \mathrm{e}-06$
200	200	7.47 s	$2.441 \mathrm{e}-07$	3.72 s	$7.505 \mathrm{e}-07$
200	400	42.71 s	3.666e-06	14.36 s	$2.855 \mathrm{e}-06$
200	600	184.33 s	$7.899 \mathrm{e}-06$	35.45 s	$4.480 \mathrm{e}-06$

Application in quantum information theory: relative entropy of entanglement

- Quantify entanglement of a bipartite state ρ

$$
\min D(\rho \| \tau) \text { s.t. } \tau \in \operatorname{Sep}
$$

n	Cutting-plane [Zinchenko et al.]	Our approach $m=3, h=1 / 8$
4	6.13 s	0.55 s
6	12.30 s	0.51 s
8	29.44 s	0.69 s
9	37.56 s	0.82 s
12	50.50 s	1.74 s
16	100.70 s	5.55 s

cvx_begin sdp
variable tau(na*nb, na*nb) hermitian;
minimize (quantum_rel_entr(rho,tau));
subject to tau $>=0$; trace (tau) $==1$;
$\operatorname{Tx}(t a u, 2$, [na nb]) $>=0 ; \%$ Positive partial transpose constraint
cvx_end

Conclusion

- Approximation theory with convexity
- Approach extends to other operator concave functions via their integral representation (Löwner theorem)
- Our approximation for scalar log has size (second-order cone rep.) $\sqrt{\log (1 / \epsilon)}$ where ϵ error on $\left[e^{-1}, e\right]$. Is this best possible?
- Paper soon to be posted on arXiV with Matlab code

Conclusion

- Approximation theory with convexity
- Approach extends to other operator concave functions via their integral representation (Löwner theorem)
- Our approximation for scalar log has size (second-order cone rep.) $\sqrt{\log (1 / \epsilon)}$ where ϵ error on $\left[e^{-1}, e\right]$. Is this best possible?
- Paper soon to be posted on arXiV with Matlab code

Thank you!

