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Logarithm

Concave function

2 4 6 8 10
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Information theory:

Entropy H(p) = −
∑n

i=1 pi log pi (Concave).
Kullback-Leibler divergence (or relative entropy)

D(p‖q) =
n∑

i=1

pi log(pi/qi )

Convex jointly in (p, q).
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Matrix logarithm function

X symmetric matrix with positive eigenvalues (positive definite)

X = U

(
λ1

. . .
λn

)
U∗ → log(X ) = U

(
log(λ1)

. . .
log(λn)

)
U∗

where U orthogonal.

von Neumann Entropy of X : H(X ) = −Tr[X logX ]. Concave in X .

Quantum relative entropy:

D(X‖Y ) = Tr[X (logX − logY )]

Convex in (X ,Y ) [Lieb-Ruskai, 1973].
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Concavity of matrix logarithm

Striking property of the matrix logarithm (operator concavity):

log(λA + (1− λ)B) � λ log(A) + (1− λ) log(B)

where

A,B � 0 and λ ∈ [0, 1]

“X � Y ” means X − Y positive semidefinite (Löwner order)
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Convex optimisation

How can we solve convex optimisation problems involving matrix logarithm?

Even for scalar logarithm, things are not so simple
(solvers for exponential cone are not as well-developed as solvers for symmetric cones)

CVX modeling tool developed by M. Grant and S. Boyd at Stanford
% Maximum entropy problem

cvx_begin

variable p(n)

maximize sum(entr(p))

subject to p >= 0; sum(p) == 1;

A*p == b;

cvx_end

CVX uses a successive approximation heuristic. Works good in practice
but:

sometimes fails (no guarantees)
slow for large problems
does not work for matrix logarithm.
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Semidefinite programming

This talk:

New method to treat matrix logarithm and derived functions using
symmetric cone solvers (semidefinite programming)

Based on accurate rational approximations of logarithm

Much faster than successive approximation heuristic

Works for matrix logarithm

6/24



Outline

Semidefinite representations

Approximating matrix logarithm

Numerical examples, comparison with successive approximation (for
scalars) and other matrix examples
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Semidefinite programming

minimize
X∈Sn

〈C ,X 〉 s.t. A(X ) = b, X � 0

Problem data: C ,A, b

Available solvers: SeDuMi, SDPT3, Mosek, SDPA, etc. (e.g.,
sedumi(A,b,C))

Generalization of linear programming where

x ∈ Rn ↔ X ∈ Sn x ≥ 0↔ X � 0
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+

A(X) = b



Semidefinite formulation

Not all optimisation problems are given in semidefinite form...

Example:
maximise

x,y∈R
2x + y s.t. x2 + y2 ≤ 1

Formulate as semidefinite optimisation using the fact that:

x2 + y2 ≤ 1 ⇔
[

1− x y
y 1 + x

]
� 0
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Examples of semidefinite formulation

√
x ≥ t ⇔

[
x t
t 1

]
� 0

t

x

1

x
≤ t ⇔

[
x 1
1 t

]
� 0

t

x
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Semidefinite representations

Concave function f has a semidefinite representation if:

f (x) ≥ t ⇐⇒ S(x , t) � 0

for some affine function S : Rn+1 → Sd

Key fact: if f has a semidefinite representation then can solve optimisation
problems involving f using semidefinite solvers.

Book by Ben-Tal and Nemirovski gives semidefinite
representations of many convex/concave functions.

Helton-Nie conjecture: “Any convex semialgebraic function
has a semidefinite representation” (caveat: size of

representation may be very large!)

11/24



Semidefinite representations

Concave function f has a semidefinite representation if:

f (x) ≥ t ⇐⇒ ∃u ∈ Rm : S(x , t, u) � 0

for some affine function S : Rn+1+m → Sd

Key fact: if f has a semidefinite representation then can solve optimisation
problems involving f using semidefinite solvers.

Book by Ben-Tal and Nemirovski gives semidefinite
representations of many convex/concave functions.

Helton-Nie conjecture: “Any convex semialgebraic function
has a semidefinite representation” (caveat: size of

representation may be very large!)

11/24



Semidefinite representations

Concave function f has a semidefinite representation if:

f (x) ≥ t ⇐⇒ ∃u ∈ Rm : S(x , t, u) � 0

for some affine function S : Rn+1+m → Sd

Key fact: if f has a semidefinite representation then can solve optimisation
problems involving f using semidefinite solvers.

Book by Ben-Tal and Nemirovski gives semidefinite
representations of many convex/concave functions.

Helton-Nie conjecture: “Any convex semialgebraic function
has a semidefinite representation” (caveat: size of

representation may be very large!)

11/24



Back to logarithm function

Goal: find a semidefinite representation of logarithm.

log(x) ≥ t

t

x

Logarithm is not semialgebraic! We have to resort to approximations.
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Integral representation of log

Starting point of approximation is:

log(x) =

∫ 1

0

x − 1

1 + s(x − 1)
ds

Key fact: integrand is concave and semidefinite rep. for any fixed s!

x − 1

1 + s(x − 1)
≥ t ⇔

[
1 + s(x − 1) 1

1 1− st

]
� 0

Get semidefinite approximation of log using quadrature:

log(x) ≈
m∑
j=1

wj
x − 1

1 + sj(x − 1)

Right-hand side is semidefinite representable
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Rational approximation

log(x) ≈
m∑
j=1

wj
x − 1

1 + sj(x − 1)︸ ︷︷ ︸
rm(x)

rm = m’th diagonal Padé approximant
of log at x = 1 (matches the first 2m
Taylor coefficients).

5 10 15 20

-1

1

2

3

Log

m=3

Improve approximation by bringing x closer to 1 and using
log(x) = 1

h log(xh) (0 < h < 1):

rm,h(x) :=
1

h
rm(xh)

Remarkable fact: rm,h is still concave and semidefinite representable!
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Quadrature + exponentiation

rm,h(x) :=
1

h
rm(xh)

Semidefinite representation of rm,h (say h = 1/2 for concreteness):

rm,1/2(x) ≥ t ⇐⇒ ∃y ≥ 0 s.t.

{
x1/2 ≥ y

rm(y) ≥ t/2

Uses fact that rm is monotone and x1/2 is concave and semidefinite rep.

Can do the case h = 1/2k with iterative square-rooting.

15/24



Approximation error

Approximation error ‖rm,h − log ‖∞ on [1/a, a] (h = 1/2k):
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m=2, k=2

m=3, k=3

m=4, k=4

Recap: Two ingredients

Rational approximation via quadrature

Use log(x) = 1
h log(xh) with small h to bring x closer to 1.

Key fact: resulting approximation is concave and semidefinite representable.

16/24



Approximation error

Approximation error ‖rm,h − log ‖∞ on [1/a, a] (h = 1/2k):

101 102 103 104 105

a

10-12

10-10

10-8

10-6

10-4

10-2

100

102

A
p

p
ro

xi
m

a
tio

n
 e

rr
o

r

m=2, k=2

m=3, k=3

m=4, k=4

Recap: Two ingredients

Rational approximation via quadrature

Use log(x) = 1
h log(xh) with small h to bring x closer to 1.

Key fact: resulting approximation is concave and semidefinite representable.

16/24



Matrix logarithm

What about matrix logarithm?

Integral representation is valid for matrix log as well:

log(X ) =

∫ 1

0

(X − I )(I + s(X − I ))−1ds

Key fact: integrand is operator concave and semidefinite rep. for any
fixed s (use Schur complements)

(X − I )(I + s(X − I ))−1 � T ⇔
[
I + s(X − I ) I

I I − sT

]
� 0

Get semidefinite approximation of matrix log using quadrature:

log(X ) ≈
m∑
j=1

wj
X − 1

1 + sj(X − 1)

Right-hand side is semidefinite representable
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Exponentiation

Exponentiation idea also works for matrices:

rm,h(X ) :=
1

h
rm(X h) (0 < h < 1)

rm is not only monotone concave but operator monotone and operator
concave. Also X 7→ X h is operator concave and semidefinite rep.

X 1/2 � T ⇔
[
X T
T I

]
� 0

Approximation log(X ) ≈ rm,h(X ) called inverse scaling and squaring
method by Kenney-Laub, widely used in numerical computations.

Remarkable that it “preserves” concavity and can be implemented in
semidefinite programming.
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From (matrix) logarithm to (matrix) relative entropy

log(x) ≈ rm,h(x)

Perspective transform (homogenization):

f : R→ R concave ⇒ g(x , y) := yf (x/y) also concave on R× R++

Perspective of log is (x , y) 7→ y log(x/y) related to relative entropy. Can
simply approximate with the perspective of rm,h:

y log(x/y) ≈ yrm,h(x/y)

Semidefinite representation is obtained by homogenization (replace 1 by y).

What about for matrices? What is the perspective transform?
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Matrix perspective

Matrix perspective of f :

g(X ,Y ) = Y 1/2f (Y−1/2XY−1/2)Y 1/2

Theorem [Effros, Ebadian et al.]: If f operator concave then matrix
perspective of f is jointly operator concave in (X ,Y ).

For f = log matrix perspective is related to operator relative entropy

Dop(X‖Y ) = −Y 1/2 log(Y−1/2XY−1/2)Y 1/2

Approximate with the matrix perspective of rm,h:

Dop(X‖Y ) ≈ −Y 1/2rm,h(Y−1/2XY−1/2)Y 1/2

Semidefinite representation obtained by homogenization
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Numerical experiments: maximum entropy problem

maximize −∑n
i=1 xi log(xi )

subject to Ax = b
x ≥ 0

(A ∈ R`×n, b ∈ R`)

CVX’s successive approx. Our approach m = 3, h = 1/8
n ` time (s) accuracy∗ time (s) accuracy∗

200 100 1.10 s 6.635e-06 0.88 s 2.767e-06
400 200 3.38 s 2.662e-05 0.72 s 1.164e-05
600 300 9.14 s 2.927e-05 1.84 s 2.743e-05
1000 500 52.40 s 1.067e-05 3.91 s 1.469e-04

∗accuracy measured wrt specialized MOSEK routine

CVX’s successive approx.: Uses Taylor expansion of log instead of Padé
approx + successively refine linearization point
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Geometric programming

Geometric program:

minimize f0(x)
subject to fj(x) ≤ 1, j = 1, . . . , `

x > 0

where f0, . . . , f` are posynomials (polynomials with nonnegative coeffs)

Important class of convex optimization problems (applications in circuit
design, communications, etc.)

CVX’s successive approx. Our approach m = 3, h = 1/8
n ` time (s) accuracy time (s) accuracy

100 200 7.60 s 1.853e-06 2.69 s 3.769e-06
200 200 7.47 s 2.441e-07 3.72 s 7.505e-07
200 400 42.71 s 3.666e-06 14.36 s 2.855e-06
200 600 184.33 s 7.899e-06 35.45 s 4.480e-06

22/24



Application in quantum information theory: relative
entropy of entanglement

Quantify entanglement of a bipartite state ρ

min D(ρ‖τ) s.t. τ ∈ Sep

n Cutting-plane
[Zinchenko et al.]

Our approach
m = 3, h = 1/8

4 6.13 s 0.55 s
6 12.30 s 0.51 s
8 29.44 s 0.69 s
9 37.56 s 0.82 s
12 50.50 s 1.74 s
16 100.70 s 5.55 s

cvx_begin sdp

variable tau(na*nb,na*nb) hermitian;

minimize (quantum_rel_entr(rho,tau));

subject to tau >= 0; trace(tau) == 1;

Tx(tau,2,[na nb]) >= 0; % Positive partial transpose constraint

cvx_end

23/24

Sep = “separable” states

ρ



Conclusion

Approximation theory with convexity

Approach extends to other operator concave functions via their integral
representation (Löwner theorem)

Our approximation for scalar log has size (second-order cone rep.)√
log(1/ε) where ε error on [e−1, e]. Is this best possible?

Paper soon to be posted on arXiV with Matlab code

Thank you!
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