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Abstract

This paper describes a form of discrete wavelet transform, which generates complex coeffi-
cients by using a dual tree of wavelet filters to obtain their real and imaginary parts. This
introduces limited redundancy (2™:1 for m-dimensional signals) and allows the transform
to provide approximate shift invariance and directionally selective filters (properties lacking
in the traditional wavelet transform) while preserving the usual properties of perfect recon-
struction and computational efficiency with good well-balanced frequency responses. Here
we analyse why the new transform can be designed to be shift invariant, and describe how
to estimate the accuracy of this approximation and design suitable filters to achieve this.
We discuss two different variants of the new transform, based on odd/even and quarter-
sample shift (Q-shift) filters respectively. We then describe briefly how the dual tree may be
extended for images and other multi-dimensional signals, and finally summarize a range of
applications of the transform that take advantage of its unique properties.
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Complex Wavelets for Shift Invariant
Analysis and Filtering of Signals

1 Introduction

Signal compression (coding) has for some time been a very active area for signal processing
research, and the wavelet transform has established an impressive reputation as a tool for
this, especially for images and motion video. Many researchers have also tried to use wavelets
for signal analysis and reconstruction but the results have tended to be disappointing. Here
we consider possible reasons for this and propose the dual-tree complexr wavelet transform
as a useful tool for overcoming some of these problems.

The Discrete Wavelet Transform (DWT) is most commonly used in its maximally
decimated form (Mallat’s dyadic filter tree [1]). This works well for compression but its use for
other signal analysis and reconstruction tasks has been hampered by two main disadvantages:

e Lack of shift invariance, which means that small shifts in the input signal can cause
major variations in the distribution of energy between DW'T coefficients at different
scales.

e Poor directional selectivity for diagonal features, because the wavelet filters are sepa-
rable and real.

A well-known way of providing shift invariance is to use the undecimated form of the
dyadic filter tree, which is implemented most efficiently by the algorithme a trous, 2] sec-
tion 5.5.2. However this still suffers from substantially increased computation requirements
compared to the fully decimated DWT and also exhibits high redundancy in the output
information, making subsequent processing expensive too.

In [10, 11], we introduced a more computationally efficient approach to shift invari-
ance, the Dual-Tree Complex Wavelet Transform (DT CWT). Furthermore the DT CWT
also gives much better directional selectivity when filtering multidimensional signals. In
summary, it has the following properties:

e Approximate shift invariance;

e Good directional selectivity in 2-dimensions (2-D) with Gabor-like filters (also true
for higher dimensionality, m-D);

e Perfect reconstruction (PR) using short linear-phase filters;
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2-band reconstruction block

Figure 1: The Dual-Tree Complex Wavelet Transform (DT CWT), comprising two trees of
real filters, a and b, which produce the real and imaginary parts of the complex coefficients.
Odd and even length biorthogonal linear-phase filters are placed as shown to achieve the
correct relative signal delays.
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e Limited redundancy, independent of the number of scales, 2 : 1 for 1-D (2™ : 1 for
m-D);

e Efficient order-N computation — only twice the simple DWT for 1-D (2™ times for
m-D).

In [12] we proposed a way of analyzing the shift invariant properties of the DT CWT
and here we expand on these basic ideas and develop them somewhat further.

Another approach both to shift invariance and to directional selectivity was pioneered
by Simoncelli et al. [4], and was based on Laplacian pyramids and steerable filters, designed
in the frequency domain. The complex wavelet methods, presented here, are believed to offer
some useful alternative properties to these — principally perfect reconstruction and greater
directional selectivity.
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2 The Dual Filter Tree

Our work with complex wavelets for motion estimation [7] showed that complex wavelets
could provide approximate shift invariance. Unfortunately we were unable to obtain PR and
good frequency characteristics using short support complex FIR filters in a single tree (eg.
fig. 1 Tree a).

However we observed that we can also achieve approximate shift invariance with a
real DW'T, by doubling the sampling rate at each level of the tree. For this to work, the
samples must be evenly spaced. One way to double all the sampling rates in a conventional
wavelet tree, such as Tree a of fig. 1, is to eliminate the down-sampling by 2 after the level 1
filters, Hy, and Hy,. This is equivalent to having two parallel fully-decimated trees, a and b
in fig. 1, provided that the delays of filters Hy, and Hy;, are one sample offset from the delays
of Hy, and H,,, which ensures that the level 1 downsamplers in tree b pick the opposite
samples to those in tree a. We then find that, to get uniform intervals between samples from
the two trees below level 1, the filters in one tree must provide delays that are half a sample
different (at each filter’s input rate) from those in the opposite tree. For linear phase filters,
this requires odd-length filters in one tree and even-length filters in the other.

Greater symmetry between the two trees occurs if each tree uses odd and even filters
alternately from level to level, but this is not essential. In fig. 2a we show the positions of
the wavelet basis functions when the filters are arranged to be odd and even as in fig. 1.
Note the vertical alignment of these bases at each scale, such that the tree b scaling functions
interpolate midway between those of tree a, while the tree b wavelets are aligned with those
of tree a but with a quadrature phase shift in the underlying oscillation.

To invert the DT CWT, each tree in fig. 1 is inverted separately using biorthogonal
filters G, designed for perfect reconstruction with the corresponding analysis filters H _ in
the 2-band reconstruction block, shown lower right. Finally the two tree outputs are averaged
in order to obtain an approximately shift invariant system. This system is a wavelet frame [2]
with redundancy two; and if the filters are designed such that the analysis and reconstruction
filters have very similar frequency responses (i.e. are almost orthogonal, as is the case for
the filters given later in Table 1), then it is an almost tight frame, which means that energy
is approximately preserved when signals are transformed into the DT CWT domain. The
basis functions in fig. 2a were obtained by injecting unit pulses separately into the inverse
DT CWT at each scale in turn. The real and imaginary parts were obtained by injecting

the unit pulses into trees a and b in turn.
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Figure 2: (a) Basis functions (reconstruction impulse responses) of the odd and even filters
in fig. 1 for levels 1 to 3. Tree a bases are shown in red and tree b in blue. The magnitudes
of the complex bases, formed by combining the two trees, are shown in green. The bases
for adjacent sampling points are shown dotted. (b) Equivalent bases for the Q-shift tree of
fig. 3.

3 The Q-shift Dual-Tree Filters

Unfortunately there are certain problems with the odd / even filter approach:

e The sub-sampling structure is not very symmetrical (fig. 2a shows that the wavelet
and scaling functions at a given scale are not well aligned);

e The two trees have slightly different frequency responses;

e The filter sets must be biorthogonal, rather than orthogonal, because they are linear
phase.

The latter two problems can be largely overcome with relatively long filters (13 to
19 taps), but there is then a computation penalty. The first problem is more fundamental
and has implications for subsequent hierarchical algorithms, such as hidden Markov trees
(16, 18].

To overcome all of the above, we now propose a @-shift dual tree, as in fig. 3, in
which all the filters beyond level 1 are even length, but they are no longer strictly linear
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Figure 3: The Q-shift version of the DT CW'T, giving real and imaginary parts of complex
coefficients from tree a and tree b respectively. Figures in brackets indicate the delay for
each filter, where ¢ = % sample period.

phase. Instead they are designed to have a group delay of approximately i sample (+¢q).
The required delay difference of % sample (2q) is then achieved by using the time reverse of
the tree a filters in tree b so that the delay then becomes 3¢ (assuming that all length-2n
filters have coefficients from 2"~! to z=™). Furthermore, because the filter coefficients are
no longer symmetric, it is now possible to design the perfect-reconstruction filter sets to
be orthonormal (like Daubechies filters), so that the reconstruction filters are just the time
reverse of the equivalent analysis filters in both trees. Hence all filters beyond level 1 are
derived from the same orthonormal prototype set. The design of Q-shift filters is discussed
later in section 6.

The improved sampling symmetry of the Q-shift filters is shown by the basis functions
in fig. 2b. Note that for the Q-shift CWT each complex wavelet basis is centred on the
equivalent complex scaling function basis, and that each of these is centred between a pair
of adjacent complex bases from the previous (finer) level. In this way, each complex wavelet
coefficient at level k has two complex children located symmetrically above it at level k — 1.
For the odd/even DT CWT, such symmetries do not occur.
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4 Shift Invariance

In order to examine the shift invariant properties of the dual tree in either the odd/even or
Q-shift forms, consider what happens when we choose to retain the coefficients of just one
type (wavelet or scaling function) from just one level of the dual tree. For example we might
choose to retain only the level-3 wavelet coefficients g1, and xgo1p, and set all others to zero.
If the signal y, reconstructed from just these coefficients, is free of aliasing then we define
the transform to be shift invariant at that level. This is because absence of aliasing implies
that a given subband has a unique z-transfer function and so its impulse response is linear
and time (shift) invariant. In this context we define a subband as comprising all coefficients
from both trees at a given level and of a given type (either wavelet or scaling function).

Fig. 4 shows the simplified analysis and reconstruction parts of the dual tree when
coefficients of just one type and level are retained. All down-sampling and up-sampling
operations are moved to the outputs of the analysis filter banks and the inputs of the re-
construction filter banks respectively, and the cascaded filter transfer functions are com-
bined. M = 2™ is the total down/up-sampling factor. For example if xgp1, and xgo1p
from fig. 1 are the only retained coefficients, then the sub-sampling factor M = &8, and
A(2) = Hoo(2) Hooa(2?) Hoora(2%), the transfer function from x to xgg1,. The transfer func-
tion B(z) (from x to xg1p) is obtained similarly using H_,(z); as are the inverse functions
C(z) and D(z) from G_,(z) and G_(z) respectively.

It is a standard result of multi-rate analysis that a signal U(z), which is down-
sampled by M and then upsampled by the same factor (by insertion of zeros), becomes
LML U(WE2), where W = e72™/M - Applying this result to fig. 4 gives:

1 M—-1

Y(2) = Ya(2) + Yo(2) = 5 ]; X(WF2)[A(W*z2) C(2) + B(W*z2) D(2)] (1)

The aliasing terms in this summation correspond to those for which £ # 0, because only
the term in X(z) (when k = 0 and W* = 1) corresponds to a linear time (shift) invariant
response. For shift invariance, the aliasing terms must be negligible, so we must design
A(W*2)C(z) and B(W*z) D(z) either to be very small or to cancel each other when k # 0.
Now W* introduces a frequency shift equal to kf,/M to the filters A and B (f; is the input
sampling frequency), so for larger values of k the shifted and unshifted filters have negligible
passband overlap and it is quite easy to design the functions B(W*z) D(z) and A(W*z) C(z)
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to be very small over all frequencies, 2 = /. But at small values of k (especially k = +1) this
becomes virtually impossible due to the significant transition band widths of short-support
filters. Here it is necessary to design for cancellation when the two trees are combined, and
separate strategies are required depending on whether the filters are lowpass (for scaling
functions) or bandpass (for wavelets).

First consider the scaling function (lowpass) filters. At level m in the dual tree, the
lowpass filters have passbands {—f,/2M « f,/2M}. The W* terms in equation (1) shift
the passbands in multiples of f,/M. If A(z) and C(z) have similar frequency responses
(as required for near-orthogonal filter sets) and significant transition band widths, it is not
possible to make A(W*12)C(z) small at all frequencies 2 = ¢/, because the transition
bands of the shifted analysis filter A(W=*!2) overlap with those of the reconstruction filter
C(z) as shown in fig. 5a. However we can quite easily make A(W=*22) C(z) small since the
frequency shift is twice as great. Hence for the lowpass case, we design B(W¥*z) D(z) to
cancel A(W*2)C(z) when k is odd by letting:

B(z) = M2 A(2) and D(z) = 2TM2C(2) (2)

so that B(W*2) D(z) = (=1)* A(W*2) C(z). The effect of this cancellation is shown in fig. 5c
and is equivalent to halving the down-sampling factor M.

Now consider the wavelet (bandpass) filters. Here we find that the edges of the
negative frequency (lower) passband of C, covering the range {—f/2M < —f,/M} as shown
in fig. 5b, will tend to overlap with the edges of the positive frequency (upper) passband of
A, that gets shifted either to {0 < —f;/2M} or to {—fs/M < —3f;/2M} when k = —1
or —2 respectively. Similarly the upper passband of C will overlap the lower passband of
A when k = +1 or +2 . The filters D and B, which are designed to have almost the same
responses as C' and A will behave in the same way. Since the aliasing terms are always
caused by the overlap of opposing-frequency passbands, whereas the wanted terms (k = 0)
are produced by overlap of same-frequency passbands, the solution here is to give B and D
upper and lower passbands of opposite polarity while A and C' have passbands of the same
polarity (or vice versa). The need to discriminate between positive and negative frequency
components in this way suggests the use of complex filters!

Suppose that we have prototype complex filters P(z) and Q(z), each with just a single
passband {fs/2M < f;/M} and negligible gain at all negative frequencies, and that we let:

A(z) = 2R[P(z)] = P(2) + P*(2)

B(z) = 23[P(2)] = —jlP(z) = P*(2)]

Clz) = 2R[Q(2)] = Q(2)+Q*()

D(z) = =23[Q(z)] = jlQ(z) - Q"(2)] (3)

where R[ | and [ | take real and imaginary parts, and conjugation is given by P*(z) =
>, prz~". The process of conjugating a filter that has a positive frequency passband pro-
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Real DWT lowpass frequency responses at level 3
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Real DWT highpass frequency responses at level 3
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Figure 5: Frequency responses of analysis and reconstruction filters (from Table 1) at level
3, showing aliasing terms. Plots (a) and (b) show the responses of the lowpass and bandpass
filters in a single wavelet tree, while (c¢) and (d) show the equivalent responses for the dual
tree and demonstrate the reduced overlap of the reconstruction filters with the frequency-
shifted (aliased) analysis filters. The horizontal axes are in units of f;/M where M = 8 for
level 3. The reconstruction responses are offset vertically by -1.5 to avoid confusion.
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duces one with an equivalent negative frequency passband. Hence P and () are filters cor-
responding to the upper passbands of A and C' while P* and Q* correspond to their lower
passbands. This also applies to filters B and D, except that their lower passbands are
negated. Additionally we may observe that the (real) impulse responses of B and D are the
Hilbert transforms of those of A and C.

Returning to fig. 5b, the main overlap terms are due to opposing frequency passbands
of the form Q*(z) P(W*z) for k = —1,—2 and Q(z) P*(W*z) for k = 1,2 . These cancel
when B(W*2) D(z) is added to A(W*2) C(2) in (1), because, for all k:

AWF2) C(2) + BW*2) D(2) = [P(W"2) + P*(W*2)] [Q(2) + Q" (2)] +
(=)[P(WFrz) = P*(WF2)] j[Q(2) — Q*(2)]
= 2P(W"2) Q(z) 4+ 2P*(W"2) Q*(2) (4)

Hence we now need only design the filters such that the positive frequency complex filter Q(z)
does not overlap with shifted versions of the similar filter P(z). This is quite easy since the
filter bandwidths are only f;/2M while the shifts are in multiples of f;/M. For octave band
filters in which the upper transition band is twice as wide as the lower transition band, this is
satisfied if the pass and transition bands lie within the frequency range {fs/3M « 4f;/3M}.
Figure 5d shows the frequency responses of P(W¥*z) and Q(z) from the right side of equation
(4) and demonstrates that negligible overlap of the responses occurs for k # 0, as long as
the pass and transition bands of P and () are constrained to lie within the two vertical lines
at fs/3M and 4f,/3M. The second term on the right side of equation (4) involves P*(W*z)
and Q*(z), which will just give the mirror image of the responses in fig. 5d, and hence the
same amount of overlap.

The formulations in equations (3) show that the bandpass filter responses for trees a
and b (A, B for analysis; C, D for reconstruction) should be regarded as the real and imagi-
nary parts of complex responses (P for analysis; ) for reconstruction) that have passbands
only on one side of zero frequency. This is the key justification for using complex wavelets
to achieve shift invariance for the wavelet coefficients.

It turns out that we may regard the pairs of scaling function coefficients from the
two trees as real and imaginary parts too, although there is the alternative option of simply
regarding the scaling function coefficients from tree b as interpolating mid-way between the
corresponding ones from tree a, which for some applications turns out to be more useful and
is the most natural interpretation of equations (2).

In practice, filters with compact support will not have zero gain in their stop bands
and the aliasing terms in equation (1) will not be zero. Furthermore for the odd/even filters
the cancellation of other unwanted terms, when the two trees are combined, will not be
exact because the odd-length filters cannot have precisely the same frequency responses as
the even-length ones. So a typical DT CWT will only be approzimately shift invariant.
However we shall show that good performance is possible with quite low complexity filters.
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A useful way of quantifying the shift dependence of a transform is to examine equation
(1) and determine the ratio of the total energy of the unwanted aliasing transfer functions
(the terms with & # 0) to the energy of the wanted transfer function (when k£ = 0), as given
by:
_ Tl E{A(WR) C(2) + B(W"2) D(2)} (5)
N E{A(2) C(2) + B(2) D(2)}
where E{U(2)} calculates the energy, 3, |u,|?, of the impulse response of a z-transfer func-
tion, U(z) = >, u,2~". Of course, E{U(z)} may also be calculated as the integral of the
squared magnitude of the frequency response, 5- [T |U(e?)|? df from Parseval’s theorem,
which links more naturally with the interpretation in fig. 5.

R,

5 0Odd/even filter design method

We first suggest a way to design filters for the odd/even DT CWT which achieve good shift
Invariance.

For the lowpass filters, equation (2) implies that the tree b samples should interpolate
midway between the tree a samples, effectively doubling the sampling rate, as shown in fig 2.
This may be achieved by two identical odd-length lowpass filters at level 1, offset by 1 sample
delay, and then by pairs of odd and even length filters at further levels to achieve an extra
delay difference of M /4 samples, so as to make the total delay difference M/2 samples at
each level m, where M = 2™.

The responses of A(z) and B(z) also need to match, which can only be achieved
approximately for odd/even filters beyond level 1. We do this by designing the even-length
filter Hyo, to give minimum mean squared error in the approximation

272 Hoa(2) Hopa(2?) = Hop(2) Hogp(2?) (6)

where Hyq, is assumed to be the same odd-length design as the two level 1 filters, such that
Hoop(2) = Hoy(2) = 27 Hou(2). In this case solving for Hpg, is just a matrix pseudo-inverse
problem.

Then the highpass filter Hy, can be designed to form a perfect reconstruction set with
Hyo, such that the reconstruction filters Goo, and Gog, also match each other closely. Finally
the symmetry of the odd-length highpass filters and the anti-symmetry of the even-length
highpass filters produce the required phase relationships between the positive and negative
frequency passbands, and equations (3) are approximately satisfied too. These odd and even
length filters can then be used for all subsequent levels of the transform, in accordance with
fig. 1.

Good shift invariance (and wavelet smoothness) requires that frequency response side-
lobes of the cascaded multirate filters should be small. This is achieved if each lowpass filter
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has a stopband covering % to % of its sample rate, so as to reject the image frequencies due
to subsampling in the next lowpass stage. If the highpass filters then mirror this charac-
teristic, the conditions for no overlap of the shifted bandpass responses in equation (4) are
automatically satisfied.

To illustrate this process, we have designed two linear-phase PR biorthogonal filter
sets which meet the above conditions quite well and are also nearly orthogonal. For the odd-
length set, we designed (13,19)-tap filters using the (1-D) transformation of variables method
[8]. Then for the even-length set, we designed a (12,16)-tap even-length set to minimize the
error in equation (6). The analysis filter coefficients are listed in Table 1 (the reconstruction
filters are obtained by negating alternate coefficients and swapping bands). These filters may
be implemented efficiently using ladder structures, the odd filter pair requiring 4 multiplies
and 6 additions per input sample, and the even pair 7.5 multiplies and 7 additions. Fig. 6
shows the frequency responses of a 4-level reconstruction filter bank when the coefficients
from the two trees are combined to form complex coefficients (the scaling function coefficients
are also combined in this way). The analysis filters are very similar. Note the absence of
gain at negative frequencies. We have implemented these filters and have found them to be
good for many applications. However other options do exist, as any combination of odd-
length and even-length biorthogonal linear phase filters could in theory be used, although
with varying levels of shift invariance and wavelet smoothness.

6 Q-shift filter design method

The key to designing filters for the Q-shift version of the DT CWTT lies in finding a good even-
length lowpass filter with a delay of i sample which also satisfies the standard orthonormal
perfect reconstruction condition of two-band filter banks [6].

To achieve a lowpass filter Hy(z) of length 2n with a delay that approximates

1
sample, we find that the simplest approach is to design a linear-phase lowpass FIR filter
Hs(z) of length 4n with half of the desired bandwidth and twice the desired delay, and then

to select alternate filter coefficients to obtain H;. Hence, if
HLQ(Z) = HL(ZQ) -+ 2_1 HL(Z_2) (7)

where Hp(z) contains coefficients from 2"~! to 2", then Hp, automatically is linear phase
with a delay of % sample (see fig. 7). As long as Hyo(z) has very little gain above a quarter
of its sampling frequency, there will be negligible aliasing caused by the subsampling and
H(z) will have a delay closely approximating § sample.

We then adjust Hj, such that the squared gain of Hy, in a suitably chosen stopband
is minimized subject to Hy, satisfying the usual perfect reconstruction (PR) condition

Hp(z) Hp(>™") + Hp(=27") Hy(—2) =2 (8)
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Figure 7: Impulse and frequency responses of the oversampled filter Hys(z) for n = 5, 7 and 9.
The samples of H(2?) are shown as circles and those of 2 ' H (z72) as asterisks.

To achieve this, H; may be derived from a polyphase matrix [6], factorized into a cascade
of orthonormal rotations R(6;) and delays Z, such that

Hp(z) o 1
[z—lHL(—z—l)l —R(0,) ZR(0, 1) Z ... R(0:) [2_1] 9)
cosf; siné; 1z 0
where R(6;) = [_ sinf, cos 91] and Z = [O 2_1].
If Hp(z) is to have at least one zero at z = —1, the n rotations ¢; must sum to § (plus

kr). (To show this, set z = 1 and require that H;(—z"!) = 0 in equation (9).) This leaves
only n — 1 angles to optimize, instead of 2n coefficients of Hy, and it automatically satisfies
the PR condition. There are several standard methods, such as in [6], which can be used to
optimize 6; ...60,_1. We have found that a good criterion for the optimization is to minimize
the total energy of the frequency response Hrs(e’*) over the range 0.36m < w < 7. (The
lower limit of 0.367 is found by experiment to give an adequate filter transition bandwidth
above and below 7/4.)

An interesting case occurs for n = 5, because a good solution exists in which only 6
of the 10 coefficients of Hj are non-zero, yielding the following 6-tap filter:

Hip(z) = 0.035163842% — 0.0883294222 + 0.23389032z +
0.76027237 + 0.587518302 " — 0.114301842

This is obtained from 6§ = {0, 1.81, 0.81, —1.62, 0}x/4.

Smoother wavelets and scaling functions may be obtained if n is increased. For
n =5, 7 and 9, coefficients of Hy, that we have obtained are listed in table 2. The filters are
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normalized for unit energy and the dc gain is v/2. Even values of n are also valid, but seem
to offer slightly worse tradeoffs.

For all of the above cases, the filters after the first level in fig. 3 are given by Ho,(z) =
2 YHp(27Y), How(2) = Hp(—z), Hop(2) = Hp(z), and Hoyp(z) = 2 'Hp(—2z71). The
reconstruction filters are just the time reverses of these (i.e. trees a and b are swapped).

Figure 7 shows the impulse and frequency responses of the length-4n linear-phase
filters Hps which result from the above design process. It is clear that the larger values of
n produce smoother filters with significantly lower sidelobes in the stopband (f > 0.18 or
w > 0.367) and with somewhat narrower transition bands.

Table 2: Filter coefficients of Hy(z) for n =5, 7 and 9.

6-tap Hip, 14-tap Hyp, 18-tap Hp,
-0.00228413

0.00120989

0.00325314 | -0.01183479

-0.00388321 | 0.00128346

0.03516384 | 0.03466035 | 0.04436522
0 -0.03887280 | -0.05327611
-0.08832942 | -0.11720389 | -0.11330589
0.23389032 | 0.27529538 | 0.28090286
0.76027237 | 0.75614564 | 0.75281604
0.58751830 | 0.56881042 | 0.56580807
0 0.01186609 | 0.02455015
-0.11430184 | -0.10671180 | -0.12018854
0 0.02382538 | 0.01815649

0 0.01702522 | 0.03152638
-0.00543948 | -0.00662879

-0.00455690 | -0.00257617

0.00127756

0.00241187

7 Shift invariant performance

Having designed a range of filters for both the odd/even and Q-shift forms of the DT CWT,
it is interesting to investigate their degrees of shift invariance, based on the aliasing energy
ratio R,, defined in equation (5) for the equivalent system in fig. 4.

For any given choice of filters, we may calculate R, for either the wavelet or scaling
functions at each level of the transform. We have chosen to show results for the following
combinations of filters:



Complex Wavelets — N Kingsbury 17

13,19)-tap and (12,16)-tap near-orthogonal odd/even filter sets.
13,19)-tap near-orthogonal filters at level 1, 18-tap Q-shift filters at levels > 2.

A (
B (
C (13,19)-tap near-orthogonal filters at level 1, 14-tap Q-shift filters at levels > 2.
D (9,7)-tap Antonini filters at level 1, 18-tap Q-shift filters at levels > 2.

E (9,7)-tap Antonini filters at level 1, 14-tap Q-shift filters at levels > 2.

F (9,7)-tap Antonini filters at level 1, 6-tap Q-shift filters at levels > 2.

G (5,3)-tap LeGall filters at level 1, 6-tap Q-shift filters at levels > 2.

Note that the A filters are for the odd/even dual tree, while filters B to G are for the Q-shift
dual tree, in order of decreasing complexity. The C filters are comparable in complexity to
the A filters.

For a given dual tree system, R, may be calculated when the retained coefficients
(discussed in section 4) are from any given level and of either bandpass (wavelet) or lowpass
(scaling function) type. Table 3 shows the results of calculating R, for each level of the DT
CWT from 1 to 5 and for both wavelet and scaling function signal paths. It is convenient
to represent R, in dB, using 10log,, [?,. Hence a value of —30dB in the table means that
the energy of all the aliased transfer functions is 0.1% of the energy of the main transfer
function. The final column of the table (DWT) shows the value of R, obtained with a
conventional fully-decimated discrete wavelet transform using just the (13,19)-tap filter set.
The approximate complexities of the one-dimensional versions of the dual-tree transforms,
relative to the (13,19)-tap DWT, are shown in the second row of the table. These are based
only on numbers of non-zero filter taps and not on efficient factorizations.

Table 3: Aliasing energy ratios, R, in dB, for filter types A to G over levels 1 to 5.

Filters: A B C D E F G DWT
Complexity: 2.0 2.3 2.0 1.9 1.6 1.0 0.7 1.0
Wavelet

Level 1 -00 -00 -00 -00 -00 -00 -00 -9.40
Level 2 -28.25 | -31.40 | -29.06 | -22.96 | -21.81 | -18.49 | -14.11 | -3.54
Level 3 -23.62 | -27.93 | -25.10 | -20.32 | -18.96 | -14.60 | -11.00 | -3.53
Level 4 -22.96 | -31.13 | -24.67 | -32.08 | -24.85 | -16.78 | -15.80 | -3.52
Level 5 -22.81 | -31.70 | -24.15 | -31.88 | -24.15 | -18.94 | -18.77 | -3.52
Scaling fn.

Level 1 -00 -00 -00 -00 -00 -00 -00 -9.40
Level 2 -29.37 | -32.50 | -30.17 | -24.32 | -23.19 | -19.88 | -15.93 | -9.38
Level 3 -28.17 | -35.88 | -29.21 | -36.94 | -29.33 | -21.75 | -20.63 | -9.37
Level 4 -27.88 | -37.14 | -28.57 | -37.37 | -28.56 | -24.37 | -24.15 | -9.37
Level 5 -27.75 | -36.00 | -28.57 | -36.01 | -28.57 | -24.67 | -24.65 | -9.37



18 Complex Wavelets — N Kingsbury

From the table we see that the longer filters do indeed provide improved shift invari-
ance, and that the complexity of the level 1 filters affects the shift invariance mostly at levels
2 and 3, while the remaining filters affect the shift invariance mostly beyond level 2. There
is no aliasing at level 1 for either form of the dual tree, because the two trees behave like a
single undecimated tree at this level. The DWT clearly exhibits much worse shift invariance
than any of the dual-tree transforms.

The scaling function results tend to be several dB better than the equivalent wavelet
results. This is largely due to the lower residual overlap of the lowpass spectra in fig. 5¢
compared to the bandpass spectra in fig. 5d.

The degree of shift invariance of four of the above schemes is illustrated in fig. 8. In
each case, the input is a unit step, shifted to 16 adjacent sampling instants in turn. Each
unit step is passed through the forward and inverse version of the chosen wavelet transform.
The figure shows the input steps and the components of the inverse transform output signal,
reconstructed from the wavelet coefficients at each of levels 1 to 4 in turn and from the
scaling function coefficients at level 4. Summing these components reconstructs the input
steps perfectly. Good shift invariance is shown when all the 16 output components from a
given level are the same shape, independent of shift. It is clear that the DT CWT filters
of type B are the best, closely followed by type E. The imperfections of the simple type G
filters are fairly obvious in fig. 8c, while the severe shift dependence of the normal DWT is
shown in fig. 8d. These results follow closely those based on R, in table 3.

8 Extension to m-Dimensions

Extension of the DT CW'T to two dimensions is achieved by separable filtering along columns
and then rows. However, if column and row filters both suppress negative frequencies, then
only the first quadrant of the 2-D signal spectrum is retained. It is well known from 2-
D Fourier transform theory, that two adjacent quadrants of the spectrum are required to
represent fully a real 2-D signal. Therefore in the DT CWT we also filter with complex
conjugates of the row (or column) filters in order to retain a second (or fourth) quadrant
of the spectrum. This then gives 4 : 1 redundancy in the transformed 2-D signal. If the
signal exists in m dimensions, further conjugate pairs of filters are needed for each additional
dimension, leading to a redundancy of 2™ : 1. This process is discussed in more detail in
[13].

Complex filters in multiple dimensions can provide true directional selectivity, despite
being implemented separably, because they are still able to separate all parts of the m-D
frequency space. For example a 2-D CW'T produces six bandpass subimages of complex coef-
ficients at each level, which are strongly oriented at angles of £15°, +45° £75° as illustrated
by the level 4 impulse responses in fig. 9. In order to obtain these directional responses, it
is necessary to interpret the scaling function (lowpass) coefficients from the two trees as
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Figure 8: Wavelet and scaling function components at levels 1 to 4 of 16 shifted step responses
of the DT CWT (a, b and ¢) and real DWT (d).
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Figure 9: Impulse responses of 2-D complex wavelet filters (left), and of 2-D real wavelet
filters (right), all illustrated at level 4 of the transforms. The complex wavelets provide 6
directionally selective filters, while real wavelets provide 3 filters, only two of which have a
dominant direction.

complex pairs (rather than as purely real coefficients at double the rate) so that they can
be correctly combined with wavelet (highpass) coefficients from the other dimension, which
are also complex, to obtain the filters oriented at £15° and +75°. The type C wavelet filters
were used in this case.

It is interesting to note that m-dimensional CWTs will produce (4™—2")/2 directional
bandpass subbands at each level. In 3-D this gives 28 subbands at each level or scale, which
are selective to near-planar surfaces, corresponding to approximately equally spaced points
on the surface of a hemisphere.

In fig. 8, the shift-dependent properties of the DT CWT were compared with the
DWT for one-dimensional step functions. In fig. 10, a similar comparison is made in 2-D,
using the DT CWT filters of type C and the same DWT as in table 3. The input is now
an image of a light circular disc on a dark background. The upper row of images, from left
to right in fig. 10, show the components of the output image, reconstructed from the DT
CWT wavelet coefficients at levels 1, 2, 3 and 4 and from the scaling function coefficients at
level 4. The lower row of images show the equivalent components when the fully decimated
DWT is used instead. In the lower row, we see substantial aliasing artifacts, manifested as
irregular edges and stripes that are almost normal to the edge of the disc in places. Contrast
this with the upper row of DT CW'T images, in which artifacts are virtually absent. The
smooth and continuous images here demonstrate good shift invariance because all parts of
the disc edge are treated equivalently; there is no shift dependence. These images also show
good rotational invariance, because each image is using coefficients from all six directional
subbands at the given wavelet level. The only rotational dependence is a slight thinning of
the rings of the bandpass images near orientations of +£45° and +135°, due to the diagonal
subbands having higher centre frequencies than the others.
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Components of reconstructed 'disc’ images

DT CWT

DWT

wavelets: level 1 level 2 level 3 level 4 level 4 scaling fn.

Figure 10: Wavelet and scaling function components at levels 1 to 4 of an image of a light
circular disc on a dark background, using the 2-D DT CWT (upper row) and 2-D DWT
(lower row). Only half of each wavelet image is shown in order to save space.

The practical advantages of shift invariant transforms become more obvious if one
considers what happens to the reconstructed version of an image, such as the disc in fig. 10,
when some of the wavelet subbands are scaled differently from others. This may be a
reduction in gain to achieve denoising or an increase in gain to achieve deblurring. With
unity gain for all subbands, summation of either row of images in fig. 10 produces a perfectly
reconstructed disc; but with unequal gains, the artifacts of the lower row will tend to appear,
while the upper row will just result in uniform blurring or sharpening of edges. Furthermore,
by applying gain changes selectively to differently oriented subbands of the CWT, it is
possible, for example, to denoise along an edge while sharpening in a direction normal to it.
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9 Applications

We believe that the shift invariant and directionally selective features of the DT CW'T can
provide designers with increased flexibility for spatially adaptive filtering of multidimensional
signals without needing to worry about introduction of undesirable aliasing artifacts. This
is likely to be an important feature for many applications, some of which we now consider
briefly. In all cases the main signals are images, but may also be video sequences and general
3-D datatsets, such as medical scans and geological seismic data.

Motion estimation and compensation — When two frames of an image sequence are
analyzed by the CWT, the phase shifts of the complex coefficients from one frame to the
next tend to be proportional to the displacement or motion normal to the orientation
of each directional subband. Hence it is possible to determine the displacement vectors
at most points in the current frame [7]. Similar principles may also be used to achieve
sub-pixel motion compensation, although spline methods may be equally effective in
this case.

Denoising and deconvolution — It is well known that wavelet denoising methods such
as those of Donoho [9] perform better when implemented with a shift-invariant trans-
form such as the undecimated DWT (UWT). We have shown [11] that the DT CWT
performs at least as well as the UWT in this context, and with significantly lower
computational cost (3 times that of the basic DWT, compared with 3M times for an
M-level UWT). In fact the directional properties of the DT CWT allow it to outper-
form the UWT when the image contains significant diagonal edges. Choi et al. [16] have
incorporated the DT CWT with a Hidden Markov Tree (HMT) to achieve further im-
provements in denoising performance. In this case the HMT could be integrated easily
into the DT CWT framework (due to its simple parent-child structure), whereas this
is much more difficult for the UWT in which each child has multiple parents. Finally
it is straightforward to combine deconvolution with denoising, and Jalobeanu [19] has
shown one way of doing this, which involves the use of a packet DT CWT at levels 1
and 2 to give improved high frequency selectivity.

Texture analysis and synthesis — The multi-scale and directional properties of the DT
CWT make it well suited for texture analysis [14, 15]. In this context it behaves
similarly to a multi-scale Gabor filter bank, but is more efficiently implemented. Shift
invariance is important too, as it makes the texture feature vectors independent of
precise texture location, and Hill [20] has shown how to make the texture features
rotationally invariant. Finally the perfect reconstruction features of the DT CWT
allow iterative texture synthesis techniques to be used [10].

Segmentation and classification — Using the DT CW'T to give combined texture and
colour feature vectors at multiple scales, allows the development of effective hierarchical
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segmentation algorithms, which can then be applied to image classification [17, 21]. In
[18] Romberg et al. have shown how the HMT may be used effectively with the DT
CWT in this context, as well as for denoising.

Watermarking — Effective image watermarks must be approximately matched to the local
spectral characteristics of the image that is being marked, in order to make the mark
as invisible as possible (due to perceptual masking) and as robust as possible against
denoising attacks. In [22], we propose a system which achieves this by watermarking in
the complex wavelet domain, since it is very easy, using the DT CWT, to provide the
spatially varying spectral characteristics that are required for optimal watermarking.

Hence we see that the strengths of the DT CWT stem from its abilities (a) to analyse
multidimensional signals unambiguously at multiple scales and directions, and (b) to provide
spatially adaptive directional filtering which does not suffer from significant aliasing artifacts,
all at modest computational cost.

10 Conclusions

A method of analyzing the shift invariance of the Dual-Tree Complex Wavelet Transform
has been presented, based on the aliasing energy ratio R,. The DT CWT is shown to
possess good shift invariance properties, given suitably designed biorthogonal or orthogonal
wavelet filters. These properties extend to multiple dimensions, where either approximate
rotational invariance or good directional selectivity can also be provided. The computational
advantages of the complex wavelet approach over undecimated wavelets are particularly
significant with multidimensional signals. The filter design problem is also discussed and the
coefficients of suitable sets of filters for the DT CWT are provided.

A range of applications of the dual tree transform has been summarized and a bibli-
ography has been provided to papers describing these applications, a number of which may
be viewed at the author’s home page: www-sigproc.eng.cam.ac.uk/~ngk .
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