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Abstract . An accurate numerical method for the solution of the second
moment equation is presented . This may be applied to scalar wavefields in a wide
variety of scattering regimes and inhomogeneous waveguides, for many of which
explicit analytical solutions cannot be obtained . The method is applied here to the
solution of a waveguide similar to the acoustic near-surface ocean channel . For
the case of a Gaussian beam in a parabolic channel the method yields the
asymptotic behaviour of focusing with increasing scattering, expressed as
functional laws.

1 . Introduction
Waves propagating in waveguides with random variations of refractive index

occur in many applications and have been studied extensively. Of principal interest
are the moments of the wavefield, which describe average quantities such as the
scintillation index, and are governed by differential equations . Analytical solutions
are known for the second moment with no channelling, and in special cases such as a
parabolic waveguide [1, 2] ; approximate solutions are now well-established for the
more difficult fourth moment in the absence of channelling (e .g . [3, 4]), although the
numerical approach is still the more accurate over a wide range of scattering
strengths [5] . However in many realistic applications in optics and acoustics explicit
analytical solutions cannot be obtained even for the second moment; the problem
becomes intractable for any refractive index profile which has no simple algebraic
form, and is further complicated when the source intensity varies in the transverse
direction .

The main purpose of this paper is to describe an accurate numerical solution of
the second moment which can be applied in a great variety of realistic scattering
regimes, including those in which the profile is known only from data . As an
illustration the paper applies the method to a Gaussian beam propagating in a
random medium whose average profile is similar to the near surface acoustic channel
found in the ocean, and results of this study are presented . In addition scaling laws
are obtained describing the behaviour of intensity peaks with scattering strength in a
parabolic channel . The method is by means of operator splitting techniques, similar
to those already widely used for the simulation of wave propagation [6], and more
recently with great success for the solution of the fourth moment equation [5] . The
second moment equation is written in terms of sum and difference coordinates, and
operator splitting is applied to the transformed equation . The accuracy of the
solution, which is quantified using existing analysis, is confirmed by application to
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cases for which exact theory is available . Although the numerical solution here is
described for wave propagation in a channel or waveguide, it is easy to extend the
scheme to more general regimes provided the incident wave is of finite spatial extent .

In Section 2 the second moment equation and other theoretical preliminaries are
given. The formal and numerical solutions are described in Section 3, and in Section
4 numerical results are compared with existing theory, the scaling laws are found,
and an illustrative example is presented for propagation in a more general
waveguide .

2 . Second moment equation
The treatment here is confined to a monochromatic scalar wave of wave-number

k, propagating in a two-dimensional random medium which occupies the half-space
z> 0 of the Cartesian plane (x, z) . The refractive index n(x, z) in the medium varies
randomly as a function of both coordinates, and we write

n(x, z) = n o + n g(x, z) + nr(x, z), (1)

where no is a fixed reference value, and n $ and n,, are the systematic and stochastic
variation of n about this value respectively . Thus n, has mean zero, and

ns = <n> - no , n,=n-<n>,

where the angled brackets denote the ensemble average . It will be assumed here that
n$ and nr are small and vary slowly with range, so that they result in weak scattering .
The constant n o will for convenience be set to unity . The r.m.s . (<n, >) 1 "2 of refractive
index fluctuations will be denoted by µ, and the autocorrelation function
<n r(xl, z1)n1(x 2i z2)>1µ 2 by p o , which is assumed to be a function of spatial
separations x, _X2 and C=z 1 -z 2 only. The projected autocorrelation function f12 is
defined by

f12= f~ Po(x1,x2,S)dS,
00

and we write fo =f11 .
We will consider a wave propagating mainly in the forward z direction in this

medium, with slowly-varying component E(x, z) which is well-described by the
parabolic wave equation .

Denote by m the second moment

m(x1, x2, z)=<E(xl, z)E''(x2, z)>

of the complex field. Then the propagation of m and its dependence upon the
medium and range is described by the partial differential equation

am

	

i (a2 02

ax

	

2k ax2 axe
m-ik(ns1 -ns2)m-P[1-p(x 1 ,x 2)]m .

	

(2)

Here fi is given by k2a2fo and p(x1,x2)=f12/f0 . In what follows p is written as a
function of separation only and is assumed to have a length scale L .
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The equation above holds for any incident wavefield in which the energy
propagates predominantly in the z direction . In this paper this is assumed to be a
Gaussian beam, which may travel at a small angle 0 to the horizontal :

z
E(x,0)=E° exp - x-x0 -ikS(x-x° ) I ,

W

where S= sin (0) .

2 .1 . Transformation to sum and difference coordinates
In order to solve equation (2) it is convenient to write the equations in sum and

difference coordinates, using the transformations :

x 1 -x2
19 =

L '

X=
X1+x2
2L '

Z=z/kL2 .

Under this transformation the second moment may be written in operator form as

Z =(A+B)m(X, ~, Z),

	

(4)

where
i a 2

A=-2aXo '
and

B= -ik2L2(n„-na2)-T[1-p(~)],

in which T =AL2 and all functions are understood to be in the new coordinates . The
media in the examples which follow have either a Gaussian spectrum, whose
autocorrelation function is p(~)=exp (-1, 2 ), or a fourth-order power-law spectrum,
with p(~)=(1+I~I)exp(-1~1) . The initial condition must also be specified in these
coordinates. With 0=0 the function m at z=0 is :

-0
m(X, ~, 0) _- <E(xl, 0)E*`(xz, 0)) = E°2 exp

	

4X2 +~,2	
2a2

	

)]+4X°-8X°X
'

where a=w/L and X° =x °/L .

3. Numerical solution
3 .1 . Formal solution

If the mean variation n, in the medium is independent of range, then the
operators in (4) are also range-independent and over any distance AZ the equation
has the formal solution :

z+ezm(Z+AZ)=exp
1f

	

(A+B)dz m(Z),

	

(5)
z

(3)
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where f(A+B) dz here is simply AZ(A + B). If n s does vary with range then this is no
longer an exact solution of (4), but it remains a good approximation provided ng
changes slowly over a distance AZ. The error in this case can be expressed as a
function of the commutator [A, B]=AB-BA, and is of order (AZ) 3 (see [7] for
details) . Now, analytical solutions of the expression (5) cannot be found in general .
However when treated separately the terms involving the diffraction operator A and
the scattering operator B may be solved explicitly . This leads to the approximation of
(5) by operator splitting

m(Z+AZ)=exp (AZ A)exp
(J

B dz) m(Z) .

	

(6 a)

Operator splitting has long been used for simulations in random wave problems, and
more recently for the very effective solution of previously intractable fourth moment
problems [5] . Equation (6 a) has an error by comparison with (5) which is of order
(AZ) 2 [7], and is again a multiple of the commutator [A, B] . This error is easily
improved to (AZ) 3 by writing

m(Z+OZ) = exp
CL2

A) exp C J
B dz I exp

(AZ A)
m(Z),

	

(6 b)

which is known as Strang's splitting . (Although it is easy to formulate higher-order
schemes, there is little point in doing so because, firstly, refractive index profiles are
in practice not known exactly, and secondly the equation (5) is itself approximate
when the medium varies systematically with range .) Note that the commutator
[A, B] is in some sense small, and so the accuracy of equation ( 6) is better in practice
than is suggested by the quantity (AZ) 2 (see [8]) .

The change in m over a distance AZ can thus be found by successive application of
the operators exp (fA) and exp (JB), and this procedure repeated to find m at any
distance into the medium . The solution for each of these terms is described below .

3.2 . Numerical implementation of the solution
The numerical treatment of the above solution is now straightforward . Provided

the underlying wavefield is confined to a channel, as we assume, there is a
corresponding rectangular region of the (x 1 , x2) plane beyond which the second
moment is negligible for all z . If this is given, say, by x1, x2E(xmin, xmax) then in the
coordinates (X, ~) the second moment is again essentially confined to a fixed finite
region, bounded by Xmin =xmin/L, Xmax =xmaxlL,Smie =-2Xmax, bmax =- bmin-

The diffraction and scattering terms in equation (6) have formal solutions which
are easily implemented . The scattering term exp (JB dZ) is just a multiplication
operator. Since B is constant or varies slowly over a distance AZ its integral may be
accurately represented by the numerical integration over the interval [Z, Z + AZ] .
The solution for the diffraction term exp (AZA) is equivalent to solving (4) with the
scattering component suppressed . If F denotes the two-dimensional Fourier
transform with respect to X and ~, this gives

exp (AZA) m(Z+AZ) =F-1 [exp (ivxv4Z) F(m(Z))] .

In the numerical scheme F is replaced by the fast Fourier transform (FFT) .
Although the results here are presented for a completely channelled field, it is

easy to extend the method to a fully spreading beam by a simple adaptation of the
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grid, by allowing the grid-points to spread with the second moment . A more
sophisticated `adaptive grid' method could also be employed (see [9]) but would be
significantly more complicated in this case because the solution lacks coordinate
symmetry such as that of the standard fourth moment problem .

4 . Computational results
The accuracy of the numerical solution can first be confirmed by comparison

with cases for which analytical solutions have been found . For example the solution
to equation (2) for n, = 0 and plane wave initial conditions has the simple analytical
form (e.g. [10])

m(~)=exp {-FZ[1-p(~)]} .

	

(8)
Comparison between this and the full numerical solution of (2) showed extremely
close agreement . In a typical case, for a Gaussian autocorrelation function with
F=50, differences were restricted to the fifth decimal place .

Analytical solutions in the presence of a waveguide exist [1, 2] for the case of a
parabolic profile,

Some features of these may be compared with the numerical solution, but they are
not strictly comparable except at F=0 because the analytical calculations are based

E

ns=-bx z .

0 .3
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z
Figure 1 . Mean intensity as function of scaled range on axis of parabolic channel, for F=0 to

1000 in powers of 10 . The amplitude decreases with increasing 1 .
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Figure 2 . The peak intensity at the first (•) and second (*) foci as a function of F, for (a) a
Gaussian spectrum and (b) a fourth order power law spectrum . Both axes are
logarithmic .
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on approximate forms of the transverse correlation function . One simple test of the
numerical method is its ability to capture the repeated focusing which occurs in a
homogeneous waveguide . The analytical solution for the waveguide (9) yields the
spacing between consecutive foci as

(2b)112

	

(10)

Figure 1 shows the mean intensity along the axis of a parabolic channel with
b=5 .7 x 10-"

m-z
from the numerical solution of (4) . Results are given for a

homogeneous waveguide (F=0) and for various degrees of inhomogeneity (up to
F=1000). The initial half-width of the Gaussian beam is a quarter of a correlation
length. The spacing of consecutive foci is 2942 m in unscaled coordinates, assuming
k =1 and L =100 m, in very close agreement with (10) .

A useful measure of the scattered wavefield is the peak intensity II(F) at the jth
focus. (This is taken relative to the peak intensity at zero range .) Figure 2 (a) shows
II(F) at the first and second focus (j = I and 2) as a function of r for a medium with a
Gaussian spectrum . The corresponding result for a medium with a fourth-order
power-law spectrum in shown in figure 2 (b) . In all cases the source was centred on
the axis of the waveguide . The behaviour clearly scales with F, asymptotically
approaching the behaviour

Ij(r) ~ a,1'-1/2

	

(11)
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Figure 3. Mean wave-speed profile as a function of the transverse coordinate x/L where Lis
the correlation length, with x = 0 at the surface .

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 2
3:

58
 1

1 
O

ct
ob

er
 2

01
3 



1 350

	

D. E. Reeve and M. Spivack

(a)

Above 0 . 90 0-40-0-50
0-80-0-90 0-30-0-40
0 .70-0-80 0.20-0-30
0-60-0-70 0-10-0-20
0-50-0-60 Below 0 . 10
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(b)
Figure 4 . Contour plot of mean intensity due to propagation in waveguide with mean profile

as in figure 3, as a function of depth (horizontal axis, increasing left to right) and range Z
(vertical, increasing upwards), for (a) F=0, and (b) F=100. (The slight irregularity of
some contours is an artifice of the plotting routine .)
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The values of aj depend upon j, the correlation function of irregularities, and the
exact form of the source . It is interesting that, as these results show, the asymptotic
behaviour (11) holds even for relatively low values of F. For the parabolic waveguide
the behaviour described by equation (11) may be inferred from approximate
analytical solutions (e .g . [1, 2]), for media with either Gaussian or power law spectra .

As an illustration of a realistic application the numerical scheme has been used to
calculate the mean acoustic intensity in a waveguide typical of those found in the
ocean. Figure 3 shows the profile of sound speed with depth, scaled by the correlation
length L. This is a fairly sharp axially asymmetric waveguide, incresing almost
linearly at larger depths. Such behaviour is well-known and has been repeatedly
observed experimentally (e.g. [11]) . Figure 4 shows the mean intensity field as a
function of longitudinal and transverse coordinates, for (a) F = 0 and (b) F=100. The
graph represents the axis ~ = 0 of the full second moment as a function of Z.
Propagation is upwards to a scaled distance of Z=0 .64, with a transverse extent of
about two correlation lengths. The mean pattern of intensity weaves back and forth
due partly to the asymmetric profile, and attenuates because of the decreased
coherence of the wavefield caused by repeated scattering .

5 . Summary
An accurate and efficient numerical scheme for solving the second moment

equation has been described . This allows mean spectra and intensities to be found for
propagation within inhomogeneous waveguides in a wide variety of scattering
regimes; such models exhibit behaviour due to both refraction and diffraction . In
addition functional laws governing the intensity peaks in a parabolic channel have
been obtained, for two different media. Analytical solutions are obtainable only for a
restricted class of problems, and the present numerical method thus considerably
increases the range of applications which can be studied .
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