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A deep neural network algorithm that

Reduces product development costs

Accelerates product to market

Generic with proven applications in materials discovery 
and drug design
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Neural networks: then predict

Intellegens Artificial
intelligence

Intellegens



Unique neural network: train on fragmented data

Neural
network

Artificial
intelligence

Neural
network



Unique neural network: predict on fragmented data
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Neural networks for materials design
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Combine databases with neural networks
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Combine databases with neural networks
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Combining likelihood
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Schematic of an engine



Target properties

Cost < 33.7 $kg-1

Density < 8281 kgm-3

γ’ content < 50.4 vol%

Phase stability > 99.0 vol%

Fatigue life > 103.9 cycles

Yield stress > 752.2 MPa

Ultimate tensile strength > 960.0 MPa

300hr stress rupture > 674.5 MPa

Cr activity > 0.14

γ’ solvus > 983ºC

Tensile elongation > 11.6%



Proposed alloy

Cr:15.8 Co: 20.0 Mo: 0.5 W: 0.5 Ta: 4.9 Nb: 1.1 Al: 2.4

Ti: 3.0 Fe: 3.9 Mn: 0.2 Si: 0.2 C: 0.02 B: 0.06 Zr: 0.18

Ni: 47.2 900ºC 30 hours



Microstructure



Testing the yield stress
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Testing the oxidation resistance
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High temperature alloys discovered

Cr-Cr2Ta alloys
Intermetallics, 48, 62

Discovery algorithm
EP14153898
US 2014/177578 

RR1000 grain growth
Acta Materialia, 61, 3378

Mo-Hf forging alloy
EP14161255
US 2014/223465 

Mo-Nb forging alloy
EP14161529
US 2014/224885 

Ni disc alloy
EP14157622
US 2013/0052077 A2 

Combustor alloy
GB1408536

Ni alloy
Materials & Design, 131, 258

Ni alloy for additive
manufacture



Protein activity database

Database contains 10,000 proteins and 2,000,000 compounds
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Protein activity data

Database has protein activity for 0.1% of entries
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Protein activity data

Filled in 32% of the data points with 75% accuracy
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Drug discovery

Data for protein activity with compound
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Drug discovery

Data for protein activity with compound

Include additional information about drug structure

Increased drug data available 400-times,
saving $1billion in experimental costs

Artificial
intelligence



Materials design

3D printed alloy
for combustors
Designed from
7 data points

Materials databases
Found 792 errors



Materials design

Battery design
with DFT and
experimental data

Designing lubricants
with DFT and
experimental data

Low temperature 
thermometer



Yang’s research: motivation

Current first principles computational input to our neural networks 
is Density Functional Theory

Local density approximation for the energy



Yang’s research: the problem

Diffusion Monte Carlo delivers the true ground state electronic 
wave function, so captures the van der Waals dispersion force

Cannot calculate d2E/dX2 so cannot calculate atomic separation 
and vibrations

X



Yang’s research: the solution

Implemented the expectation value 〈 d2H/dX2 〉 . Can calculate 
atomic separation, vibrational modes, and phonon modes

X



Yang’s research: model interatomic bonds as springs

Ions repel like springs to give harmonic vibrations



Yang’s research: contributions to interatomic bonds

〈 d2H/dX2 〉 = 
〈 d2Vion-ion/dX2+d2Velec-ion/dX2+2dVelec-ion/dXdψ/dX〉



Yang’s research: surprising insight about phonons

d2Vion-ion/dX2=0 in simple cubic, FCC, BCC, wurtzite, diamond 
structures



Yang’s research: stability of crystals

d2Vion-ion/dX2=0 in simple cubic, FCC, BCC, wurtzite, diamond 
structures

In tight binding systems 〈 dVelec-ion/dXdψ/dX〉 is small and 
〈 d2Velec-ion/dX2=-Ar2 〉 , an instability



Yang’s research: stability of crystals

d2E/dX2<0 in tight binding simple cubic, FCC, BCC, wurtzite, 
diamond structures



Summary

Apply deep learning to high-value fragmented data

Cut costs by reducing need for expensive experiments

Discovery and verification in materials and drug discovery

Merge experiments and simulations into holistic design tool

Worked with 7 companies, founded startup intellegens 
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