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1 Part II: Introduction General Relativity (16
lectures)

1.1 Pre-requisites

Part IB Methods and Special Relativity are essential and Part II Classical Dy-
namics is desirable. You are particularly advised to revise Cartesian tensors,
the Einstein summation convention and the practice of ‘index-shuffling’.

The ensuing notes are designed to cover almost all the material in the course
and a small amount of additional illustrative material not included in the sched-
ules, and which will not be lectured, but which is accessible using the techniques
you should have mastered by the end of it. This material is enclosed in *aster-
isks*. The material will be lectured in the order given in the schedule, which
reads as follows.

1.2 The Schedule

Curved and Riemannian spaces. Special relativity and gravitation, the Pound-
Rebka experiment. Introduction to general relativity: interpretation of the
metric, clock hypothesis, geodesics, equivalence principles. Static spacetimes,
Newtonian limit. [4]

Covariant and contravariant tensors, tensor manipulation, partial derivatives
of tensors. Metric tensor, magnitudes, angles, duration of curve, geodesics.
Connection, Christoffel symbols, absolute and covariant derivatives, parallel
transport, autoparallels as geodesics. Curvature. Riemann and Ricci tensors,
geodesic deviation. [5]

Vacuum field equations. Spherically symmetric spacetimes, the Schwarzschild
solution. Rays and orbits, gravitational red-shift, light deflection, perihelion ad-
vance. Event horizon, gravitational collapse, black holes. [5]

Equivalence principles, minimal coupling, non-localisability of gravitational
field energy. Bianchi identities. Field equations in the presence of matter,
equations of motion. [2]

There will be three example sheets.

1.3 Units

In order not to clutter up formulae, for the most part, units will be used in
which the velocity of light, c, and Newton’s constant of Gravitation, G, are
set to unity. When required they may, and will, be restored using elementary
dimensional analysis.

1.4 Signature Convention

Beginners often find remembering various notational conventions which abound
in the subject confusing. The best strategy is to cultivate the ability to switch

4
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as desired, specially as no physical statement can depend on such arbitrary
conventions. Some hints to facilitate changing conventions are given below;
however you are advised not to do so in the middle of a formula. The signature
convention I will use is (+++−) and spacetime indices (which run over 4 values)
will be denoted by lower case latin letters (rather than say Greek, Cyrillic or
Hebrew) usually taken from the beginning of the alphabet. Space indices will
be denoted by i, j, k and will take values from 1 to 3. If you need to change
the signature conventions (for example to consult a textbook which uses the
opposite one), it suffices to replace the metric gab by −gab.

1.5 Curvature Conventions

The curvature and Ricci tensor conventions (whose meaning will be explained
later in the course) are ∇a∇bV

c − ∇b∇aV c = Rc
dabV

d, Rdb = Rc
dcb. If the

signature convention is switched to the opposite one, keeping the curvature
and Ricci tensor conventions unchanged, then the Christoffel symbols

{

a
b

c

}

,
affine connection components Γa

b
c , curvature tensor Rc

dab and Ricci tensor
Rdb = Rc

bcd are unchanged. The Ricci-scalar R = gabRab changes sign.

1.6 Other miscellaneous conventions

A comma followed by a subscript ,a after a tensor means the same as ∂a in
front of the tensor and denotes partial derivative. A semi-colon followed by a
subscript after a tensor ;a or ∇a in front of a tensor denotes covariant derivative.
The symbol ±(a ↔ b) after a tensorial expression containing the index pair ab

means add or subtract the same expression with a and b interchanged. Round
brackets will be used to denote symmetrization and square brackets to denote
anti-symmetrization, thus S(ab) = 1

2

(

Sab + Sab

)

and A[ab] = 1
2

(

Aab − Aab

)

.

1.7 Appropriate books

The following are listed in the schedules.
C. Clarke, Elementary General Relativity. Edward Arnold 1979 (out of

print)
J B Hartle, Gravity Addison Wesley
L.P. Hughston and K.P. Tod An Introduction to General Relativity. London

Mathematical Society Student Texts no. 5, Cambridge University Press 1990
(+ −−−)(R)

† R. d’Inverno Introducing Einstein’s Relativity. Clarendon Press 1992 (+−
−−)(R)

W. Rindler Relativity: Special, General and Cosmological Oxford University
Press 2001

B.F. Schutz A First Course in General Relativity. Cambridge University
Press 1985

5



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

H. Stephani General Relativity 2nd edition. Cambridge University Press
1990 (+ + +−)(R).

In addition, the following more advanced books contain much useful material
at about the level of the present course. They should all be available in college
libraries.

C. W. Misner, K.S. Thorne and J.A. Wheller, Gravitation. W.H. Freeman
(− + ++)(G)

S. Weinberg, Gravitation and Cosmology (Wiley) (− + ++)(G)
L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Perga-

mon) (+ −−−)(R)
J.M. Stewart, Advanced General Relativity (Cambridge University Press) (+−

−−)(G)
R.M. Wald, General Relativity (Chicago University Press)(− + ++)(R)

The third covers both Electrodynamics at a level suitable for the Part II
course and then develops General Relativity. The first book contains a useful
summary of the various conventions used in some of the better known textbooks.
(R) means spactime indices are Roman, (G) means that they are Greek.

Recently an outstanding new textbook book came out which I strongly rec-
ommend for the physical side of GR. It is designed as an undergraduate text
for American physics students but it is completely up-to-date and carries the
mathematics quite far, almost as far as is done in the course. However it carries
the applications much further. It is

J. B. Hartle, Gravity : An Introduction to Einstein’s General Relativity
(Addison Wesley) £35.99

2 Scope and Validity of the Theory

General Relativity results from ‘unifying’, or making compatible, Newtonian
Gravity and Special Relativity. In particular it must give a fully consistent
account of the motion of light moving in a gravitational field. Since we know
from Quantum Mechanics that light, and indeed all matter, has both particle
and wave aspects, a successful theory should allow a description of light both
as particles and as waves.

Newton’s Laws of Gravity are expressed using Newtons’ constant of Gravi-
tation G and of course Special Relativity introduces the velocity of light c. In
general, formulae in General Relativity involve both.

• Gravity is important if the typical velocities v, induced by a mass M inside a
radius R satisfy

v2 ≈ GM

R
. (1)

• Relativity is important if

v2 ≈ c2

6
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• General Relativity is important if

2GM

c2
≈ 1 . (2)

In other words if

R ≈ RS =
2GM

c2
, (3)

where RS is called the Schwarzschild radius of the body. If the radius of a body
is comparable with its Schwarzschild radius, then

escape velocity ≈ light velocity (4)

or
restmass energy ≈ gravitational potential energy. (5)

In other words the body is close to or actually is a Black Hole, a phenomenon
predicted by John Michell, on the basis of the ‘Ballistic theory of Light ’in 1784
and later taken up by Laplace. The name ‘Black Hole’was coined by John
Wheeler in the late 1960’s.

According to the Ballistic Theory, light is made up of particles whose speed
in the absence of gravity is c. According to Newtonian mechanics, such particles
should suffer a deflection

δ =
2GM

c2b
, (6)

when scattered with impact parameter b. In fact according to Einstein’s theory,
as we shall see later in the course, the exact answer is, for impact parameters
large compared with the Schwarzshcild radius, twice as large

δ =
4GM

c2b
=

2RS

b
. (7)

The dimensionless number
2GM

c2R
=

RS

R
(8)

is thus a measure of how large general relativistic effects are.
General Relativity breaks down when relativistic quantum effects become

important. This happens when, if we probe a system of size R with light for
example of angular frequency ω and wavelength λ we need an amount of energy
~ω comparable with the rest mass energy Mc2 we are examining. To localize
the system we need

λ

2π
≤ R, (9)

and hence, by Planck’s relation an energy ~ω at least comparable with the rest
mass energy Mc2 of the system will be needed if R is smaller than

R ≈ RC =
~

Mc
, (10)

7
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where RC is called the Compton radius. If we try to localize a particle to better
than R ≈ Rc we need so much energy that we run the risk of creating more
particles. At this point we have to use quantum field theory which is designed
to describe systems with an indefinite number of particles because our body will
behave more like an ‘elementary particle ’than a macroscopic body. Thus the
realm of classical Newtonian gravity is bounded by R > RS and non-relativistic
quantum mechanics by R > RC . These two realms intersect at the Planck scale
which is the domain of Quantum Gravity. Since very little is known about what
happens there we shall say no more about it in this course except to point out
that associated with it are an absolute or fundamental system of physical units of
mass length and time, independent of any man-made conventions, called Planck
units, characterizing the relevant scale. They work out to be

PlanckMass MP =
(c~

G

)
1
2 ≈ 2 × 10−5g ≈ 1019GeV (11)

PlanckLength LP =
(G~

c3

)
1
2 ≈ 1.6 × 10−33cm (12)

PlanckTime TP =
(G~

c5

)
1
2 ≈ 4 × 10−44s. (13)

2.1 Example

Long before Planck, Johnstone Stoney, the first person to recognize that nature
admits a fundamental unit of electric charge and the man who invented the
name ‘electron’constructed an absolute or fundamental system of units using G,
and c but not using ~. How did he do it? How are his units related to Planck
units?

3 Review of Newtonian Theory

It will prove useful to review Newtonian theory in a form which we can make
contact with in later work. A freely falling particle has the equation of motion,
in an inertial coordinate system, 1

mi

d2x

dt2
= mpg(x, t), (14)

where g is the “gravitational field, mi the inertial mass and mp the passive
gravitational mass. According to experiments of Galileo, Newton and Eötvös
we have Equality of Inertial and Passive Gravitational Mass, i.e.

mi = mp (15)

and thus
d2x

dt2
= g(x, t), (16)

1sometimes called an inertial reference frame.

8
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which implies the Universality of Free Fall, i.e. all particles fall with the same
acceleration in an external gravitational field. This allows us to pass to a new
(non-inertial) coordinate system

x̃ = x + b(t), (17)

in which
d2x̃

dt2
= g̃(x, t) = g(x, t) − b̈(t). (18)

We observe that ( cf. Einstein’s Lift)

i) By choosing (t) suitably we can set g̃ = 0 along the path of a single particle.
Thus a uniform gravitational field (i.e. one for which g(x, t) is independent x)
is unobservable: it can always be eliminated by passing to a suitable frame.

ii) The gravitational field g (i.e. the local value of the acceleration due to
gravity) is not a physical variable because Newton’s equations of motion admit
a larger symmetry group (in fact infinite dimensional) than just the Galilei
group.

Following Dicke’s refinement of Einstein’s original analysis it is customary
to describe this situation in terms of the

Weak Equivalence Principle: All freely falling bodies with negligible gravita-
tional self interactions follow the same path, if they have the same initial veloc-
ity.

This idea is very old, and goes back at least to John Philoponus, a passionate
critic of Aristotle, and who wrote around 500 A.D.

For if you take two weights differing from each other by a very wide
measure, and drop them from the same height, you will see that the
ratio of the times of their motion does not correspond with the ratio
of their weights, but the difference between the times is much less.
Thus if the weights did not differ by a wide measure, but if one were,
say double, and the other half, the times will not differ at all from
each other, or if they do, it will be by an imperceptible amount,
although the weights did not have that kind of difference between
them, but differed in the ratio two to one.

Galileo checked this by timing a ball rolling down an inclined plane and, by
repute, dropping balls from the Leaning Tower of Pisa. Newton made a more
qualitative check by showing that the periods of two simple pendula whose
bobs are made from different materials are equal to better than one part in
a million. Baron Eötvös showed the sun does not exert a periodic torque on
the arm of a torsion balance from which are suspended two weights of different
materials. Experiments by Dicke and others have used this method to test the
weak equivalence principle by showing that everything on earth falls towards the
sun with the same acceleration with a precision of one part in a million million
(1012). There are currently plans by NASA and ESA to fly a drag-free satellite

9
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(one satellite inside a larger evacuated satellite which has sensors and rockets
to ensure that the inner satellite is in free fall.) using this the proposers plan
to check Philoponus’ claim to one part in 1017. If his claim fails at this level, a
possible explanation would be that in addition to the four forces we are familiar
with (electro-magnetic, weak nuclear, strong nuclear and gravitational) there
may be an additional and so far purely hypothetical long range field responsible
for a fifth force. Since there is no evidence for such a force we shall, in this
course, assume the unrestricted validity of the weak equivalence principle.

By contrast non-uniform gravitational fields are observable. To see how, look
at the motion of two neighbouring particles with positions x and x̃ = x + N.

d2x

dt2
= g(x, t), (19)

d2x̃

dt2
= g(x + N) (20)

and so
d2N

dt2
= (N.grad)g + (O)(N2) (21)

or to the lowest order
d2Ni

dt2
= (∂jgi)Nj . (22)

We write this as

d2Ni

dt2
+ EijNj = 0. Geodesic Deviation (23)

Eij = −∂jgi. Tidal Tensor (24)

Now the gravitational field is conservative, curlg = 0, and so we may introduce
the Newtonian Potential by

g = −gradU gi = −∂iU (25)

whence the tidal tensor is seen to be the Hessian of the Newtonian potential

Eij = ∂i∂jU = Eij . (26)

Now Poisson’s equation or Gauss’s Law relates the gravitational field to the
local density of active gravitational mass matter ρa:

divg = −4πGρa, (27)

thus
∇2U = 4πGρa.2 (28)

2You should check that you understand the signs in (27) and (28) and how and why they
differ from those in the analogous equations in electro-statics.

10
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Now experiment reveals the remarkable fact that the gravitational field gen-
erated by a body depends only on its total inertial mass which in turn equals, as
we have seen, its passive gravitational mass. This fact is sometimes known as the
principal of Identity of Active and Passive Gravitational Mass, or sometimes the
Strong Equivalence Principle, since it implies that the Weak Equivalence Prin-
ciple will hold even for bodies with significant gravitational self-interactions. In
Newtonian theory this follows from Newton’s Third Law that action and reac-
tion should be equal and opposite The force F(21) exerted by body 1 on body 2
is

F(21) = Gm(2)
p m(1)

a

r(1) − r(2)

|r(1) − r(2)|3
, (29)

where m
(2)
p is the passive gravitational mass of body 2 and m

(1)
a is the active

gravitational mass of body 2. Now Newton’s Third Law, F(21) = −F(12) requires

m
(1)
a

m
(1)
p

=
m

(2)
a

m
(2)
p

. (30)

If we require that this equation is true for all possible pairs of bodies, we see
that, by choosing out units sensibly, that active and passive masses must be
equal.

In Newtonian theory it then follows that the law of conservation of momen-
tum, angular momentum and of the existence of a potential function such that
energy is conserved will all hold. To some extent the converse holds, if the Third
Law did not hold these conservation laws would not necessarily hold.

One simple way to check the Strong Equivalence Principle is by looking at
the motion of the moon. The last astronauts to visit left behind some corner
reflectors, i.e. three plane mirrors meeting mutually at right angles. A laser
pulse sent from earth to the moon and into one of these corners is reflected back
in precisely the opposite direction3 and by timing how long the pulse takes to
get back the orbit the earth moon distance is known to better than a centimetre
or so. If the Strong Equivalence principle did not hold one would expect the
centre of mass of the earth moon system to oscillate with the lunar period. No
such effect is seen.

Given the identity of inertial, active gravitational and passive gravitational
mass we can drop the subscript and write Poissons’s equation as

Eii = 4πGρ Field Equation. (31)

Finally, because Eij = −∂jgi we have ∂kEij = ∂iEkj or

Ei[j,k] = 0. (32)

One should look upon (32) as an integrability condition for the existence of the
gravitational field vector gi. Similarly one should regard the symmetry condition

3You should be able to prove this

11
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(26) as an integrability condition for the existence of a Newtonian potential U .
Such integrability conditions are often called Bianchi Identities.

We are now in a position to summarize the basic equations and structure of
Newtonian Gravity

1)
d2Ni

dt2
+ EijNj = 0 Geodesic Deviation

2) Eij = Eji Bianchi Identity

3) Ej[i,k] = 0 Bianchi Identity

4) Eii = 4πGρ Field Equation.

One has that 3) ⇒ Ejk = −∂gj , 3) and 4) ⇒ gi = −∂iU ⇒ Eij = ∂i∂jU

and 4) ⇒ ∇2U = 4πGρ.

3.1 Example

Calculate the tidal tensor due to a spherically symmetric star. The sun and
the moon subtend approximately the same angle (about half a degree) in the
sky. They also raise approximately the same tide on earth. Given that tides
are produced by gravity gradients, what can you say about the mean densities
of the moon and the sun?

4 Review of Special Relativity

I will usually adopt xa = (xi, x4), i = 1, 2, 3, a = 1, 2, 3, 4 as inertial spacetime
coordinates, but sometimes I will call x4 x0 and make the attendent changes of
conventions without further comment. Note that from now indices on coordi-
nates will always be “upstairs”. The interval between neighbouring spacetime
points is

ds2 = dx2 − dt2 = ηabdxadxb, (33)

with ηab = diag(1, 1, 1,−1). In other words we use the “mainly plus” signature
convention. The interval is invariant under Lorentz transformations

xa → x̃a = Λa
bx

b, (34)

where
ηabΛ

a
cΛ

b
d = ηcd (35)

or in matrix notation
ΛtηΛ = η, (36)

where t denotes matrix transpose. The index positions on the matrices may
look unfamiliar, but are consistent with the usual conventions. The first, upper,
index labels rows and the second lower index labels columns, and they should be
thought of as acting on column vectors xa, where the index labels rows. Strictly
speaking, Λ is an endomorphism while η is a quadratic form, and for that reason,

12
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both of its indices are lowered. For this reason it makes basis independent sense
to say that it is symmetric, ηab = ηba.

The Clock Postulate states that a clock moving along a world line xa = xa(λ)
with λ some parameter along the curve measures elapsed proper time

τ =

∫

√

−ηabẋaẋbdλ. (37)

Note that τ is independent of the choice of parameter because if we replace

λ by λ̃ = f(λ) , dxa

dλ
= f ′ dxa

dλ̃
, with f ′ = dλ̃

dλ
but

√

−ηab

dxa

dλ

dxb

dλ
dλ =

√

−ηab

dxa

dλ̃

dxb

dλ̃
dλ̃ (38)

We say that τ is reparametrization invariant.

The Geodesic Postulate states that free particles move on straight lines

d2xa

dλ2
= 0 ⇔ xa = xa(0) + λua, (39)

where ua is a constant vector. If the world line is timelike we can normalize ua

by choosing λ to be proper time

λ = τ ⇒ dxa

dλ

dxb

dλ
ηab = ηabu

aub = −1. (40)

For light rays this cannot be done and λ is arbitrary up to an affine transforma-
tion

λ → aλ + b a, b ∈ R. (41)

We call λ an affine parameter.
Free motion can be described using a Variational Principle in at least two

ways:

Method I works only for timelike (or spacelike) curves. We vary the action
functional

S[xa(λ)] = −m

∫

√

−ηab

dxa

dλ

dxb

λ
dλ = −mτ = −m

∫

√

−ηabẋaẋbdλ. (42)

Note that

i) the action functional S is reparametrization invariant,

ii) Choosing λ = t = x4, we get

S = −m

∫

dt

√

1 −
(dx

dt

)2
(43)

13



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

which coincides at small velocities, up to an irrelevant additive piece 4, to
the standard non-relativistic expression. We use the associated Euler-Lagrange
equations

d

dλ

( ∂L

∂ẋa

)

=
∂L

∂xa
(44)

with L = −
√

−ηabẋaẋb ⇒ ∂L
∂xa = 0. Now

∂L

∂ẋa
= − 1

L
ηab

dxb

dλ
= −ηab

dxb

dτ
(45)

The equation of motion becomes

d

dλ

(

ηab

dxb

dτ

)

= 0 ⇒ d2xa

dτ2
= 0. (46)

Method II is rather quicker. We take as action functional

S =

∫

ηab

dxa

dλ

dxb

dλ
dλ, (47)

L = ηab
dxa

dλ
dxb

dλ
. Note that this action is not reparametrization invariant. The

Euler-Lagrange equations are

d

dλ

(

ηab

dxb

dλ

)

= 0. (48)

Now
∂L

∂λ
= 0, (49)

and so by Noether’s theorem 5

ηab

dxa

dλ

dxb

dλ
= constant. (50)

If the constant is negative we choose it to be −1 and find that we can choose
the additive constant in τ so that λ = τ . In this way we recover our previous
result for timelike curves. If the constant is zero, we obtain equations which are
valid for light rays or other massless particles.

It turns out that both Method I and Method II can readily be extended to
curved spacetimes. In practice, Method II is usually more convenient.

It may seem strange that there is no unique action principle for the motion
of a particle, but this becomes less so if one reflects that from an abstract point

4You should be able to explain why it is irrelevant.
5Check this. You should also check that you understand that there are two cases of

Noether’s theorem, one when the Lagrangian does not depend on the independent variable
which we are using here and the other when the Lagrangian does not depend upon a dependent
variable, which we will be using shortly. For clarity they should perhaps be called Noether’s
first and second theorem respectively, but this terminology is not universal.

14
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of view we are characterizing the motion as stationary point of a functional, i.e
of a function of infinitely many variables. We are familiar with the fact that,
in finite dimensions, a given point may be a stationary point of many different
functions. To rub home the point you may like to verify that we get the same
equations of motion if we take

L = f(ηab

dxa

dλ

dxb

dλ
), (51)

where f() is almost any function of its argument.

5 Curved Spacetime

Because of theUniversality of Free Fall the motion is independent of mass, and
so it is an attractive idea to ascribe the curvature of the paths of freely falling
particles to the curvature of spacetime. We assume that the constant spacetime
metric ηab is replaced by a general space and time dependent curved metric
gab(x) such that the interval is given by

ds2 = gab(x)dxadxb, gab = gba. (52)

The Clock and Geodesic Postulates now read as before but with ηab replaced by
gab. Thus

τ =

∫

√

−gabẋaẋbdλ. (53)

Using Method I we have set L =
√

−gabẋaẋb, and the Euler Lagrange equa-
tions are

− d

dλ

( 1

L

gabdxb

dλ

)

= − 1

2L

(∂gcd

∂xa

)dxc

dλ

dxd

dλ
, (54)

or, since L = 1 if λ = τ ,

d

dτ

(gabdxb

dτ

)

=
1

2

(∂gcd

∂xa

)dxc

dτ

dxd

dτ
. (55)

This maybe re-written

gab

d2xb

dτ2
+

∂gab

∂xc

dxc

dτ

dxb

dτ
− 1

2

∂gcd

∂xa

dxc

dτ

dxd

dτ
= 0, (56)

or, relabelling dummy indices,

gab

d2xb

dτ2
+

1

2

(∂gad

∂xc
+

∂gac

∂xd
− ∂gcd

∂xa

)dxc

dτ

dxd

dτ
= 0. (57)

We define the inverse metric by

gab = (g−1)ab = gba (58)

15
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so that
gacgcb = δa

b , (59)

where δa
b is the Kronecker delta and equal to 1 if a = b and zero otherwise.

Contraction of (57) gea and relabelling e → a now yields

d2xa

dτ2
+

{

c
a

d

}dxc

dτ

dxd

dτ
= 0, (60)

with
{

c
e

d

}

= 1
2gea

(

∂gad

∂xc + ∂gac

∂xd − ∂gcd

∂xa

)

. (61)

The rather strange collection of objects
{

c
a

d

}

are called Christoffel symbols.

We shall explore their mathematical properties shortly. For the time being, they
should just be thought of as an array of functions, and in fact, to anticipate what
follows, they are not the components of a tensor field.

We could have proceeded using Method II. A slightly shorter analogous

calculation using L = gab
dxa

dλ
dxb

dλ
yields

d2xa

dλ2
+

{

c
a

d

}dxc

dλ

dxd

dλ
= 0. (62)

Again we have ∂L
∂λ

= 0 and Noether’s theorem yields

gab

dxa

dλ

dxb

dλ
= constant. (63)

For massive particles, the constant is negative and we choose it to be −1 and
thus get λ = τ . We now obtain our previous equations. However, as in flat
spacetime, Method II also works for massless particles.

In the next section we shall apply the equations we have developed to some
examples.

6 Static and stationary metrics, Pound-Rebka
Experiment

A metric is called stationary if it is independent of time. This means that one
may introduce a privileged time coordinate t = x4 such ∂

∂t
(gab) = 0. Thus

ds2 = g44(x)dt2 + gij(x)dxidxj + 2g4i(x)dtdxi . (64)

A metric is called static if it is stationary and in addition invariant under
time-reversal, i.e. invariant under an involution T : t → −t. This implies that
g4i = 0 and that the metric may be cast in the form

ds2 = hij(x)dxidxj − e2U(x)dt2. (65)

As we shall see shortly, U(x) plays the role of the Newtonian potential.

16



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

6.1 The Gravitational Redshift

Suppose n pulses are sent from an emitter at xe to an observer at xo in coordi-
nate time ∆t. The emitted frequency will, by the clock postulate, be obatined
using the proper time, so

νe =
n

∆t
√

−g44(xe)
(66)

and similarly for the observed frequency

νo =
n

∆t
√

−g44(xo)
(67)

and hence the ratio

νe

νo

=

√

g44(x0)

g44(xe)
= exp

(

U(x0) − U(xe)
)

. (68)

Evidently if the emitter is at a lower value of the gravitational potential, U(xe) <

U(xo), the received frequency will be lower than the emitted frequency. This is
called a gravitational redshift and is quantified in terms of a quantity z given
by 1 + z = νe

νo
.

We remark that

i) A heuristic derivation of the gravitational redshift can also be given using
Planck’s relation E = hν and Einstein’s formula E = mc2. One sets up a cyclic
process in which a photon is sent from a lower to a higher potential, is absorbed,
the absorber slowly lowered to the starting point and the photon is then re-
emitted. Since energy can be obtained during the lowering process, because of
the extra weight due to the energy of the absorbed photon, unless the photon
loses precisely the predicted amount of energy climbing up the gravitational
well, one would be able to construct a perpetual motion machine of the second
kind which is impossible.

ii) The gravitational redshift is universal, the redshift experienced is the same

for all massless particles. Again this could also be proved using the impossibility
of perpetual motion machines along the lines given above.

iii) The gravitational redshift shows that as measured by physical clocks, space-
time really is curved. This statement is sometimes referred to as the Schild
argument.

iv) The gravitational redshift shows that time (i.e. as mesured by clocks) runs
at different rates at different places.

v) It is interesting to analyze the problem using the Ballistic Theory according
to which energy is also conserved. The speed of the ‘light particles’which have
to climb up the gravitational potential well is reduced. Thus according to the
Ballistic Theory, light coming from different sources will have different speeds.
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In fact in 1784 John Michell predicted precisely this would happen and suggested
an experiment with a prism to check it. But his prediction contradicts the
observed fact (which we use when setting up Special Relativity) that the speed
of light received here on earth is universal and independent of its source.

6.2 Particle motion in Static Spacetimes

We have
L = e2U ṫ2 − hij ẋ

iẋj . (69)

In the timelike case we may choose λ = τ . The x4 equation of motion is

d

dτ

(

e2U dt

dτ

)

= 0. (70)

The xi equation of motion is

d

dτ

(

hij

dxj

dτ

)

+ e2U∂iU
( dt

dτ

)2
=

1

2
(∂ihjk)ẋj ẋk. (71)

Thus, comparing with 60
{

4
4

i

}

= ∂iU (72)

{

4
i
4

}

= −hij∂je
2U (73)

{

j
i

k

}

=
1

2
his

(∂hsk

∂xj
+

∂hsj

∂xk
− ∂hjk

∂xs

)

. (74)

Independence of t gives, from Noether’s theorem,

e2U dt

dτ
= E, (75)

where the constant E is the energy. Now gabẋ
aẋb = −1 (with λ = τ) gives

e2U
( dt

dτ

)2 − hij

dxi

dτ

dxj

dτ
= 1 = E2e−2U − hij

dxi

dτ

dxj

dτ
. (76)

6.3 The Newtonian Limit

In the above we have set c = 1. To understand this approximation we should
restore units and so t → ct. The quantity U is replaced by U

c2 .
Now we can now expand the metric in inverse powers of c:

g44 = −c2 + O(1) (77)

hij = δij + O(
1

c2
) . (78)

Now

e
2U

c2 = 1 +
2U

c2
+ . . . . (79)
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Thus, to the lowest non-trivial order, we put

ds2 ≈ −c2dt2(1 +
2U

c2
) + dx2

(

1 + O(
1

c2
)
)

. (80)

If we, in addition, assume that the particle is moving slowly, we may set
τ ≈ t, E = 1 + E . We find from (76)

1

2
v2 + U = E . (81)

Clearly, this is the equation of energy conservation for a non-relativistic particle
of energy per unit mass E moving in a Newtonian gravitational potential U .
This justifies our identification of the quantity 1

2 ln(−g44) as the Newtonian
potential.

In fact, using the Einstein field equations, which we have not yet met, it is
possible to improve (80) so that it is accurate to order 1

c4

ds2 ≈ −c2dt2(1 +
2U

c2
) +

(

1 − 2U

c2

)

dx2. (82)

We can now give the gravitational redshift suffered by a photon in the field
of a body of mass M in the Newtonian approximation

νo

νe

= GM(
1

re

− 1

ro

). (83)

For the Pound-Rebka experiment ro = re +h, where h is the height of the tower,
we obtain

δν

ν
=

gh

c2
. (84)

6.4 Motion of Light rays

Noether’s theorem gives

e2U dt

dλ
= E, (85)

and the fact that gabẋ
aẋb = 0 gives (cf. 76)

E2 = e2Uhij

dxi

dλ

dxj

dλ
, (86)

d2xi

dλ2
+

[{

j
i

k

}

+ hjkhis∂sU
]dxj

dλ

dxk

dλ
= 0. (87)

Because the affine parameter λ is defined only up to an overall multiple,
λ → aλ, so too is the ‘Energy’E. The equations are invariant under the rescaling
λ → aλ, E → E

a
. This means that, in a purely particle theory of light, only the

ratio of energies is well defined.
The interpretation of (87) will be given later in the course.
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6.5 Further Examples

6.5.1 The Schwarzschild Metric

You should now be in a good position to study the motion of particles moving
around a spherically symmetric static black hole or a star. Provided the orbiting
particle has a negligible effect on the spacetime geometry, which will be true if
it is very much less massive than the star or black hole, the metric is

ds2 =
dr2

1 − 2M
r

+ r2(dθ2 + sin2 θdφ2) −
(

1 − 2M

r

)

dt2. (88)

We will take a more detailed look at this later in the course.

6.5.2 The k = 0 Robertson-Walker Metric

Our universe is not static, but rather it is expanding. To a good approximation
the metric of our universe is given by 6

ds2 = −dt2 + a2(t)dx2. (89)

The function a(t) is called the scale factor. For a particle of mass m,
Noether’s theorem implies momentum conservation

ma2(t)
dx

dλ
= p, (90)

where p is a constant vector, but because of the time-dependence, energy

E = m
dt

dτ
(91)

is not conserved. In fact using the normalization of the 4-velocity one gets

E =

√

m2 +
p2

a2(t)
. (92)

Thus if the universe expands and the scale factor a(t) increases the energy E

decreases. The locally measured (so-called ‘peculiar’) velocity

v = a(t)
dx

dt
(93)

given by

v =
p

√

p2 + m2a2(t)
(94)

also decreases except in the limit of zero mass m when v is constant and of unit
magnitude |v| = 1. The energy of a massless particle decreases ∝ 1

a(t) , thus if a

photon is emitted at time te and received at time to the redshift is given by

E(te)

E(te)
= 1 + z =

a(to)

a(te)
. (95)

6In cosmology one studies a more general class of Robertson-Walker metrics in which the
spatial sections are curved.
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6.5.3 Example: End point variations and momentum conservation

If the end points of the world line from A to X are allowed to vary, the variation
of the action S(X,A) is

δS(X,A) =

∫ X

A

δxa
( ∂L

∂xa
− dpa

dλ

)

dλ +
[

paδxa
]X

A
, (96)

where the canonical momentum pa is defined by

pa =
∂L

∂ẋa
. (97)

Now consider a 2-particle collison at X in which particle 1 with mass m1 starts
from A, particle two with mass m2 from B and after the collision particle 3
arrrives at C with mass m3 and particle 4 arrives at D with mass m4. We vary
the total action and demand that it vanish:

δS(C,X) + δS(D,X) + δS(X,A) + δS(X,B) = 0, (98)

where the points A,B,C,D are held fixed but X is allowed to vary. As well as
learning that AX, BX, XC and XD must be geodesics, we also discover from
the variation at X that momentum is conserved at the collision:

p1
a + p2

a = p3
a + p4

a, (99)

where

pi
a = migab

dxb

dτ
. (100)

7 Lengths, Angles and Conformal Rescalings

An important aspect of General Relativity is that locally the laws of Special
Relativity should hold. Thus if we work in a small neigbourhood of a point xa

in spacetime, we can use the metric gab to define an inner product

gabV
aU b (101)

on infinitesimal vector displacements V a, Ua and define the length of a vector
V a by

|V a| =
√

|gabV aV b|. (102)

If the two vectors are spacelike, the angle θ between them is given by

cos θ =
gabU

aV b

|Ua||V b| . (103)

If the two vectors are timelike, and both are future directed, the rapidity θ

between them is given by

cosh θ = −gabU
aV b

|Ua||V b| . (104)
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If we change the metric by multiplying by a positive function (a process
called Weyl-rescaling):

gab → Ω2(x)gab = g̃ab (105)

we find that all lengths rescale

|V a| → Ω|V a|, (106)

but angles and rapidities are unchanged

θ → θ. (107)

For this reason Weyl-rescalings are also called Conformal Rescalings. An im-
portant example is provided by the time-dependent Robertson-Walker metric
of an expanding universe

ds2 = −dt2 + a2(t)dx2 = a2(t)
(

−dη + dx2
)

(108)

which is obtained by a conformal rescaling of the flat and static Minkowski
metric inside the bracket. The coordinate η is defined by

η =

∫

dt

a(t)
, (109)

and Ω(x) = a(t). As we shall see later, the null geodesics of two conformally
related metrics coincide. It follows that the angles made by system of light
rays in this type of expanding universe are the same as they would be in flat
spacetime.

For example, a galaxy emitting light of intrinsic proper size d at time te has
size d

a(te) in the conformally related Minkowski metric and thus subtends an

angle (assumed very small) at time to given by

∆θ =
d

a(te)(ηo − ηe)
, (110)

where

ηo − ηe =

∫ to

te

dt

a(t)
. (111)

The formula (110) has an amusing consequence. If we consider a family
of galaxies, all of the same intrinsic size, at greater and greater distances, or
equivalently greater and greater redshifts, the apparent angular size at first de-
creases, as we should expect in flat spacetime, and then increases. For example,
if a(t) ∝ tp, with 0 < p < 1 a short calculation, which you should check, shows
that the apparent angular size is least at a redshift

1 + z =
(1

p

)

p

1−p . (112)
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Which metric is the ‘correct’metric depends upon our measuring instru-
ments. If we use conventional measuring instruments, built say of ordinary
atoms, we find that they measure lengths as given by the Roberston-Walker
metric, and relative to them the universe expands. Of course it is always possi-
ble to maintain, rather as one imagines Alice would have, that the universe is
not expanding but it is we who are getting smaller, but if she had she would
have also have had to agree that the atoms of which she is made are also getting
smaller. If one really wishes to maintain that the flat Minkowski metric is the
‘correct’one, one should provide a set of instruments which measure it.

It is perhaps striking that philosophical speculations about what would hap-
pen if the universe doubled in size overnight and whether we would notice were
quite frequent towards the end of the nineteenth century, long before Einstein
formulated General Relativity. Only later in the 1920’s with Hubble’s discovery
of the expansion of the universe did they become relevant for physics.

8 Tensor Analysis

One can only get so far using just geodesics. To make further progress and to
be able to write down the analogue of Poisson’s equation, i.e. Einstein’s field
equations, we need to develop some more geometry. In this introductory course
we shall proceed at what is mathematically a relatively unsophisticated level.
Much deeper accounts of differentiable manifolds can of course be given, but
for practical purposes they are much less relevant than a good understanding
of what has become a standard part of Mathematical Physics.

Our analysis of the Weak Equivalence Principle shows that privileged global
inertial coordinates cease to exist in a general curved spacetime. Our formalism
must therefore allow the use of arbitrary coordinate systems. This desire is
formalized in the

Principle of General Covariance which states that one should be able to write
down the equations of physics in a way which is valid in all coordinate systems.

Such equations are said to be covariant or sometimes form-invariant since they
should take the same form in all coordinate systems. It is important to realize
that the Principle of General Covariance does not preclude the use of particular
coordinate systems which may be extremely useful in practice. Neither does it
rule out a priori the possibility of privileged systems of coordinates or frames of
reference. It simply requires that such spacetimes can in principle be described
without reference to particular cordinate systems. Thus if spacetime really were
flat, we would like to say so without introducing global inertial coordinates.
Tensor Calculus or Tensor Analysis allows us to do just that.

Given one coordinate system xa we can always pass to a new coordinate
system x̃a = x̃a(xb) and calculate the Jacobian matrix

Λa
b =

∂x̃a

∂xb
. (113)
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The chain rule implies that if ˜̃x
a

= ˜̃x
a
(x̃c) is a third coordinate system, then

∂ ˜̃x
a

∂xb
=

∂ ˜̃x
a

∂x̃c

∂x̃c

∂xb
. (114)

Moreover, if the transformation xa → x̃a is invertible

det
(∂x̃a

∂xb

)

6= 0, (115)

we have

∂xa

∂x̃b

∂x̃b

∂xc
= δa

c . (116)

For example, for a linear transformation, such as a Lorentz transformation,

x̃a = Λa
bx

b,
∂x̃a

∂xb
= Λa

b, (117)

the Jacobian matrix is a constant matrix. Note how nicely the index posi-
tions accommodate themselves to the rules of partial differentiation and matrix
multiplication, and of course, the Einstein summation convention.

One sometimes encounters the use of tildes on the indices as a further aid to
remembering what variables are being differentiated. In that case, the Einstein
summation convention holds but repeated indices must be of the same type, i.e.
either both un-tilded or both tilded. I shall not adopt that usage here because
it strains the eye and tends to make printed formulae difficult to read. However
for beginners, or when engaged in complicated calculations, this notation can
be useful.

We now consider Vector Fields. To motivate the definition consider a curve
xa = xa(λ) in spacetime. Its tangent vector in the xa coordinates is (by defini-
tion)

T a =
dxa

dλ
, (118)

and in coordinates x̃a, it is

T̃ a =
dx̃a

dλ
. (119)

Using the chain rule
dx̃a

dλ
=

∂x̃a

∂xb

dxb

dλ
, (120)

and thus

T̃ a =
∂x̃a

∂xb
T b, contravariant vector field. (121)

This formula motivates the definition of what is called a contravariant vector
field as set of quantities T a(x) transforming under a coordinate change as (121).
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The strange epithet contravariant suggests that there is some other kind of
vector field. This is true, and they are called covariant vector fields and roughly
speaking, they transform in the opposite way. An example is the gradient

Fa = ∂af =
∂f

∂xa
(122)

of a function f(x). The chain rule gives

∂f

∂xa
=

∂x̃b

∂xa

∂f

∂x̃b
, (123)

or, if F̃a = ∂f
∂x̃a

,

Fa =
∂x̃a

∂xb
F̃b, covariant vector field (124)

If the coordinate transformation xa → x̃a is invertible, we also have

F̃a =
∂xb

∂x̃a
Fb, , . (125)

Given a contravariant vector field T a and a covariant vector field Fa, one
may form the contraction FaT a = T aFa. Because

F̃aT̃ a =
∂x̃a

∂xb

∂xe

∂x̃a
T bFe = δe

bT
bFe = T aFa, (126)

the contraction is invariant, that is, it is a scalar field.
The transformation properties of the metric tensor field follow, just as in

Special Relativity, by demanding that the interval

ds2 = gabdxadxb = g̃cddx̃cdx̃d (127)

is invariant. Now since,

dxa =
∂xa

∂x̃c
dx̃c, (128)

we have

g̃cd = gab

∂xa

∂x̃c

∂xb

∂x̃d
, symmetric second rank covariant tensor field . (129)

A general (not necessarily symmetric) second rank covariant tensor field Qab

transforms as

Q̃cd = Qab

∂xa

∂x̃c

∂xb

∂x̃d
, symmetric second rank covariant tensor field . (130)

We can decompose
Qcd = Q(cd) + Q[dc], (131)
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into

Q(cd) =
1

2

(

Qcd + Qdc

)

= Q(dc) its symmetric part (132)

and

Q[cd] =
1

2

(

Qcd − Qdc

)

= −Q[dc] its anti−symmetric part. (133)

This decomposition is invariant under a general coordinate transformation.
Thus, for example

Q(cd)
∂xc

∂x̃a

∂xd

∂x̃c
= Qcd

∂x(c

∂x̃a

∂xd)

∂x̃c
= Qcd

∂xc

∂x̃(a

∂xd

∂x̃b)
=

(

Q̃
)

(ab)
. (134)

An identical argument holds for the anti-symmetric part with round brackets
exchanged for square brackets.

One may define contravariant second rank tensors analogously

P̃ ab = P cd ∂x̃a

∂xc

∂x̃b

∂xc
. (135)

Again the symmetric and anti-symmetric parts transform into themselves under
general coordinate transformations.

In general, one may consider arbitrary tensor fields of type
(p

q

)

with

p indices upstairs, i.e. contravariant

q indices downstairs, i.e. covariant
The transformation rule now has p factors of ∂x̃

∂x
and q factors of ∂x

∂x̃
.

For example a
(1

1

)

tensor field transforms as

M̃a
b =

∂x̃a

∂xc

∂xd

∂x̃b
M c

d . (136)

The upstairs and downstairs indices can be contracted to yield a scalar called
the trace

M̃a
a =

∂x̃a

∂xc

∂xd

∂x̃a
M c

d = δd
c M c

d = Md
d. (137)

In general, one may always contract r contravariant indices with r covariant

indices and the contraction will be a tensor field of type
(p−r

q−r

)

, r ≤ min(p, q).

8.1 Operations on tensors preserving their tensorial prop-
erties

(i) Addition (of same type)

(ii) Multiplication by scalars

(iii) Outer or Tensor Products, e.g.

VaW b is a
(1

1

)

tensor. (138)
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(iv) Contractions

(v) Index Interchange

Tab is a tensor ⇔ Tba is a tensor. (139)

(vi) Symmetrization and Anti-symmetrization. For example

T[abc] =
1

3!

(

Tabc + Tcab + Tbca − Tbac − Tcba − Tacb

)

is a tensor . (140)

8.2 Quotient Theorem

For example, if V abWab is a scalar for an arbitrary contravariant tensor V ab,
then Wab is a covariant tensor. This result is sometimes called Tensor Detection.

8.3 Rules for Index Shuffling

For example
V (ab)Wab = V abW(ab), (141)

and
V (ab)W[ab] = 0. (142)

8.4 *Graphical Notation*

For some purposes, especially those involving complicated index manipulations,
it may be convenient to adopt a graphical or ‘chemical’notation for tensors first
introduced by Clifford, Cayley and Sylvester in the nineteenth century. In this
notation

(i) Each tensor is represented by a vertex,

(ii) A contravariant index is represented by attaching an edge with an outgoing
arrow on it

(iii) A covariant index is represented by by an ingoing arrow.

(iv) In order to keep track of the order of the indices the arrows are attached in
a definite cyclic order, for example anti-clockwise, around each node. Of course
the relative order of an ingoing and outgoing node is unimportant

(v) Contractions correspond to joining an ingoing and an outgoing arrow, not
necessarily attached to the same vertex.

(vi) The Kronecker delta δb
a is represented by a nodeless arrow.

If one has a distinguished metric or bi-linear form, then the arrows may be
omitted. The obvious analogy with chemical diagrams explains why a tensor
of type

(p

q

)

is sometimes said to have valence p + q. The main draw-back of

this notation is the need to keep track of the cyclic order. Of course for totally
symmetric or totally anti-symmetric tensors, this is not a problem since then
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lifting one arrow over another of the same type gives rise to the same tensor
up to a sign. This can be used to give graphical proofs of tensor identities
or the enumeration of all possible invariants constructed from a set of tensors.
The latter problem is analogous to counting the number of isomers of a certain
molecule.

9 Differentiating Tensors

We have seen that ∂φ
∂xa is a co-vector field but what about the Hessian?

∂φ

∂xa∂xb
=

∂x̃c

∂xa

∂

∂x̃c

(∂x̃d

∂xb

∂φ

∂x̃d

)

(143)

=
∂x̃c

∂xa

∂x̃d

∂xb

∂2φ

∂x̃c∂x̃d
+

∂x̃c

∂xa

∂2x̃d

∂x̃c∂xb

∂φ

∂x̃d
(144)

=
∂x̃c

∂xa

∂x̃d

∂xb

∂2φ

∂x̃c∂x̃d
+

∂2x̃d

∂xa∂xb

∂φ

x̃d
. (145)

The first term is good but the second is clearly bad. In other words, the Hessian
is not a second rank covariant tensor field. For similar reasons, neither are the

Christoffel symbols
{

a
b

c

}

the components of a tensor field of type
(1

2

)

.
In order to construct tensor fields we must introduce a so-called covariant

derivative operator ∇a which maps
(p

q

)

tensors to
(

p
q+1

)

tensors . Moreover we

want ∇a to have properties as close as possible to those of ∂a.
We demand of ∇a that

(i) ∇aφ = ∂aφ,

(ii) ∇ is Leibnizian:

∇a(UV ) = (∇aU)V + U(∇aV ), (146)

for any pair of
(p

q

)

and
(p′

q′

)

tensor fields U and V ,

(iii) ∇a commutes with contractions,

(iv) Acting on a vector field,

∇aV b = ∂aV b + Γa
b

cV
c. (147)

A covariant derivative operator is also called an affine connection and the
Γa

b
c are its components 7.

7For a general affine connection, there is no symmetry with respect to interchange of the
the lower indices. I am using the convention that the first index is the ‘differentiating’index.
This convention is not in universal use, and so one should take care when consulting text-
books. However, shortly we will restrict attention to symmetric affine connections and this
distinction becomes unnecessary.
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They are not the components of a
{1

2

}

tensor field. In fact, under a coordi-
nate transformation

Γa
b

c → Γ̃a
b

c =
∂x̃b

∂xe

∂xg

∂x̃a

∂xd

∂x̃c
Γg

e
d +

∂x̃b

∂xe

∂2xe

∂x̃a∂x̃c
. (148)

Properties (i),(ii),(iii),(iv) determine the action of the covariant derivative
operator ∇a on any tensor field. For example, to see how ∇a acts on a covector
field note that

∇a(WbV
b) = (∇aWb)V

b + Wb(∇aV b) = ∂a(WbV
b) (149)

= (∂aWb)V
b + (∂aV b)Wb = (∇aWb)V

b + Wb(∂aV b + Γa
b

cV
c), (150)

which implies that

∇aWb = ∂aWb − Γa
c

bWc . (151)

Note the minus sign compared with the expression (iv) for a vector field.
Similarly,

∇aWcb = ∂aWcb − Γa
e

cWeb − Γa
e

bWce . (152)

It is a useful exercise to check that

∇a∇bφ = ∇a∂bφ (153)

are the components of a tensor field.

9.1 Symmetric Affine Connections

Using index shuffling and the equality of mixed partials we deduce that

Γ̃[a
b

c] =
∂x̃b

∂xe

∂xg

∂x̃[a

∂xd

∂x̃c]
Γg

e
d (154)

=
∂x̃b

∂xe

∂x[g

∂x̃a

∂xd]

∂x̃c
Γg

e
d (155)

=
∂x̃b

∂xe

∂xg

∂x̃a

∂xd

∂x̃c
Γ[g

e
d] . (156)

It follows that
Ta

b
c = Γa

b
c − Γc

b
a = −Tc

b
a (157)

is a tensor of type
(1

2

)

called the torsion tensor. In what follows, we shall
always assume that the torsion vanishes, i.e the components of the connection
are symmetric

Γa
b

c = Γc
b

a . (158)

You should check that you understand why the work we did above shows that
this is a statement which holds in all coordinate systems.
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9.1.1 Example: Exterior Derivative

An anti-symmetric co-tensor is called a p-form.
One may construct a (p+1) form, called the exterior derivative or generalized

curl, using just partial differentiation. We define 8

dωabc... = (p + 1)∂[aωbc...]. (159)

To prove this is a tensor field we can either write out the behaviour under a coor-
dinate transformation and see that the bad terms cancel, or more expeditiously,
show that for any symmetric affine connection

∂[aωbc...] = ∇[aωbc...]. (160)

The right hand side is a tensor and therefore the left hand side is a tensor. The
operator d so defined acting on p forms is nilpotent: d2 = 0.

9.1.2 Example: The Nijenhuis Bracket

Similarly, using the same technique, one may prove that given two
(1

1

)

tensor
fields Aa

b and Ba
b, then

Sa
b

c = Ae
a∂eB

b
c−Ab

e∂aBe
c−Ae

c∂eB
b

a+Ab
e∂cB

e
a+Be

a∂eA
b

c−Bb
e∂aAe

c−Be
c∂eA

b
a+Bb

e∂cA
e

a

(161)

is also a
(1

2

)

tensor field which is antisymmetric in a and c.

9.2 The Levi-Civita Connection

It is a striking fact that

(i)
{

b
a

c

}

=
{

c
a

b

}

(162)

(ii)
{

b
a

c

}

transform precisely as a symmetric affine connection.
We call this connection the Levi-Civita connection. It has the following

remarkable property

∇agbc = ∂agbc − Γa
e

bgec − Γa
e

cgeb = 0. (163)

In fact, a stronger statement is true

The Fundamental Theorem of Differential Geometry
The Levi-Civita connection

{

b
a

c

}

is the unique affine connection s.t.

(i)
Γb

a
c = Γc

a
b, i.e. is symmetric (164)

8The p+1 factor is conventional and makes for simplifications in the formulation of Stokes’s
theorem.
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(ii)
∇agcb = 0, themetric is covariantly constant. (165)

Proof: We write out the covariant constancy condition three times, cyclically
permuting the three indices and then take a suitable linear combination. The
symmetry of Γa

b
c leads to cancellations:

(i) ∇agbc = ∂agbc − Γa
e

bgec − Γa
e

cgeb = 0. (166)

(ii) ∇cgab = ∂cgab − Γc
e

ageb − Γc
e

bgea = 0. (167)

(iii) ∇bgca = ∂bgca − Γb
e

cgea − Γb
e

agec = 0. (168)

Now take (i) − (ii) − (iii) and use the symmetry of the connection to get

2geaΓb
e

c + ∂agbc − ∂cgab − ∂bgac = 0, (169)

which gives

Γb
e

c =
1

2
ges

(

∂bgsc + ∂cgsb − ∂sgbc

)

. (170)

9.2.1 Example: metric-preserving connections with torsion

Repeat the above exercise for a connection with torsion to find that the connec-
tion coefficients are now given by

Γb
e

c =
1

2
ges

(

∂bgsc + ∂cgsb − ∂sgbc

)

+ Tb
e

c − Tbc
e − Tcb

e. (171)

The additional term

Kb
e

c = Tb
e

c − Tbc
e − Tcb

e (172)

is sometimes called the contorsion tensor.

10 Parallel transport

If γ is a curve given by xa(λ) and T a = dxa

dλ
its tangent vector we define the

absolute derivative of a vector V a along γ by

DV a

Dλ
= T b∇bV

a . (173)

We often denote ∇bV
a by V a

;b and so

DV a

Dλ
= V a

;bT
b. (174)
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We say that V a is parallely transported along γ if

DV a

Dλ
= 0. (175)

That is
dV a

dλ
+ (T bΓb

a
c)V

c = 0, (176)

or, infinitesimally,
dV a = −Γb

a
eV

edxb (177)

along γ. This is a linear o.d.e. along γ and has a unique solution given the
initial value of the vector, V a(0). However parallel transport is path dependent,
it depends on γ and two curves γ and γ′ joining the same two events in spacetime
will have different vectors V a at the end points.

Note that we could have demanded the apparently weaker condition

DV a

Dλ
= f(λ)V a (178)

along γ for some function f(λ), but if

V a = gUa, (179)

we have

ġUa + g
DUa

Dλ
= fgUa, (180)

and so, by setting ġ
g

= f , we get

DUa

Dλ
= 0. (181)

10.1 Autoparallel curves

These are curves along which the tangent vector T a is parallely transported 9

DT a

Dλ
= 0 (182)

or

d2xa

dλ2
+ Γb

a
c

dxc

dλ

dxb

dλ
= 0 . (183)

For the Levi-Civita connection, Γa
b

c =
{

a
b

c

}

we recover our old definition
of a geodesic.

9Although we won’t use this fact in this course, the notions of parallel transport and auto-
parallel curve also make sense for affine connections which are not necessarily symmetric.
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Note that we could have demanded the apparently weaker condition that

DT a

Dλ
= f(λ)T a, (184)

for some f(λ). However if we change parameter

λ → λ̃ = λ̃(λ), (185)

we find
T a = gT̃ a, (186)

where

g =
dλ̃

dλ
, T̃ a =

dxa

dλ̃
, (187)

and we can now use our previous remark to set ġ
g

= f and find a new parameter

λ̃ such that
DT̃ a

Dλ̃
= 0, (188)

and we get back to our previous condition. Such a choice of parameter is called
an affine parameter and it is unique up to an affine transformation

λ̃ → aλ̃ + b, a, b ∈ R. (189)

10.2 Acceleration and Force

Let τ be proper time along a timelike curve γ, then the 4-acceleration is defined
by

aa =
DUa

Dτ
, (190)

where Ua = dxa

dτ
is the 4-velocity and is normalized so that UaUa = gabU

aU b =
−1.

Differentiating gabU
aUb = 1 along γ and remembering that the metric is

covariantly constant, Dgab

Dλ
= 0, we find that

2Uaaa = 0. (191)

Thus the 4-velocity and acceleration vector are orthogonal, in particular the
acceleration vector is spacelike. The 4-force F a is defined by

d(mUa)

dτ
= F a, (192)

where m is the rest mass of the particle, which we will assume is a constant.
In this case Newton’s law holds in the form F a = maa. Any expression for the
force must be orthogonal to the 4-velocity

F agabU
b = 0. (193)
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10.2.1 Example: The acceleration of a particle at rest

A particle at rest in a static metric has Ua = 1√
|g44|

δa
4 and a 4-acceleration

U̇a = −(
∂ig44

2g44
, 0). (194)

Thus the 4-acceleration a particle at rest is directed radially outward and its
magnitude squared is given by

U̇aU̇a =
1

4(g44)2
hij∂ig44∂jg44. (195)

In the Schwarzschild metric, this equals
M2

r4

1− 2M
r

. The acceleration, and hence the

force needed to keep the particle from falling radially inwards, diverge at the
horizon r = 2M .

To check that this is reasonable, it is worth working through this example
in the case of 2-dimensional Minkowski space E 1,1 in accelerating coordinates
which is a good local model for the behaviour of the metric near a Killing horizon
as we shall see later. If

x0 = ρ sinh t, x1 = ρ cosh t, (196)

the metric in the Rindler wedge x1 > |x0| is

ds2 = −ρ2dt2 + dρ2. (197)

Curves ρ = constant have acceleration 1
ρ

and this is clearly in the positive

x1 direction.

10.2.2 Example: Charged Particles

For a particle of charge e moving in an electromagnetic field we have the Lorentz
equation

m
DUa

Dλ
= eF a

bU
b, (198)

where
Fab = gacF

c
b = −Fba = F[ab], (199)

is the second rank antisymmetric covariant Faraday tensor, the Lorentz 4-force
is indeed orthogonal to the 4-velocity.

10.2.3 Example: Relativistic Rockets

Relativistic rockets have variable rest-mass, m = m(τ). Their equation of mo-
tion is

DmUa

Dτ
= Ja, (200)
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where Ja is the rate of emission of 4-momentum of the ejecta. Physically Ja

must be timelike, JaJa < 0, which leads to the inequality

ṁ

m
> |aa|. (201)

Thus to obtain a certain acceleration, as in the Twin-Paradox set-up, over a
certain proper time requires a lower bound on the total mass of the fuel used

ln(
mfinal

minitial
) <

∫

|aa|dτ. (202)

In two dimensional Minkowski spacetime E 1,1

Ua = (cosh θ, sinh θ) ⇒ |aa| =
dθ

dτ
, (203)

where θ is the rapidity. We find

mfinal

minitial
<

√

1 + vinitial

1 − vinitial

√

1 − vfinal

1 + vfinal
=

1

1 + z
. (204)

Consider two observers, one of whom is at rest and engaged in checking
Goldbach’s conjecture that every even number is the sum of two primes using a
computer. The second observer, initially at rest with respect to the first observer
vinitial = 0, decides to use time dilation to find out faster by accelerating towards

the stationary observer thus acquiring a velocity vfinal and a blue shift factor
(1+z). The increase in the rate of gain of information is bounded by the energy
or mass of the fuel expended.

10.3 The Levi-Civita connections of conformally related
metrics

Supose we have two conformally related metrics such that

g′ab = Ω2gab. (205)

A short calculation reveals that

{

b
a

c

}′
=

{

b
a

c

}

+ δa
b

∂cΩ

Ω
+ δa

c

∂bΩ

Ω
− gas ∂sΩ

Ω
gbc (206)

Now, given a curve γ, xa(λ) we have

d2xa

dλ2
+

{

b
a

c

}′ dxb

dλ

dxc

dλ
=

d2xa

dλ2
+

{

b
a

c

}dxb

dλ

dxc

dλ
+2

dxa

dλ

Ω̇

Ω
−gas ∂sΩ

Ω
gab

dxa

dλ

dxb

dλ
.

(207)
Now, in general, if xa(λ) is a geodesic of the metric gab it will not be a

geodesic of the metric g′ab. However there is an exception. Supposing that γ is
a null geodesic of the metric gab then we have

gab

dxa

dλ

dxb

dλ
= 0 ⇒ g′ab

dxa

dλ

dxb

dλ
= 0, (208)
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and so γ certainly has a null tangent vector with respect to the confomally
related metric g′ab. Now

d2xa

dλ2
+

{

b
a

c

}′ dxb

dλ

dxc

dλ
=

d2xa

dλ2
+

{

b
a

c

}dxb

dλ

dxc

dλ
+ 2

dxa

dλ

Ω̇

Ω
, (209)

and so if xa(λ) is a null geodesic of the metric gab with λ an affine parameter,
then the left hand side vanishes and we deduce from the vanishing of the right
hand side that it is also a null geodesic of the conformally related metric g′ab.
But now λ is no longer an affine parameter. Thus while being a null geodesic is
a conformally invariant statement, being affinely parametrized is not.

Physically two conformally related metrics cannot be distinguished by means
of measurements made solely with light rays.

10.4 Static metrics and Fermat’s Principle

If

ds2 = −e2Udt2 + hijdxidxj (210)

we found that the equation of motion of a photon is

d2xi

dλ2
+

[

{

j
i

k

}

+ hishjk∂sU
]dxj

dλ

dxk

dλ
= 0 . (211)

Now introduce a new spatial metric

h′
ij = e−2Uhij . (212)

One has
{

j
i

k

}′
=

{

j
i

k

}

− δi
j∂kU − δi

k∂jU + his∂sUhjk. (213)

Thus
d2xi

dλ2
+

{

j
i

k

}′ dxj

dλ

dxk

dλ
= 2

dxi

dλ
∂kU

dxk

dλ
. (214)

It follows that xλ is a non-affinely parmetrized geodesic of the optical or Fermat
3-metric

ds2
o = e−2Uhijdxidxj = h′

ijdxidxj . (215)

Since
ds2

4 = e2U
[

− dt2 + h′
ijdxidxj

]

, (216)

this is, in fact, a special case of our previous example with Ω = eU .
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10.4.1 Isotropic coordinates and optical metric for the Schwarzschild
solution: Shapiro time delay

Any spherically symmetric 3-metric is conformally flat10. In fact, if one intro-
duces an isotropic coordinate ρ by

r = ρ

(

1 +
M

2ρ

)2

, (217)

which maps ∞ > ρ > M
2 to ∞ > r > 2M in a 1-1 way, then the Schwarzschild

metric becomes

ds2 = −
(1 − M

2ρ

1 + M
2ρ

)2

dt2 +
(

1 +
M

2ρ

)4{

dρ2 + ρ2
(

dθ2 + sin2 θdφ2
)

}

(218)

The 3-metric inside the brace is flat. Thus the optical metric is of the form

ds2
o = n2(x)dx2, (219)

and n(x) is an effective space-dependent refractive index given by

n(x) =

(

1 + M
2|x|

)3

(

1 − M
2|x|

) . (220)

The effective refractive index n(x) increases from unity at infinity to infinity as
one approaches the horizon at r = 2M,ρ = M

2 . Light or radio waves passing
near a star or black hole are thus slowed down compared with radio waves or
light which keep away. This effect is called the Shapiro time delay effect and has
been verifed recently (using the Cassini satellite when it was in opposition to the
earth) to one part in a hundred thousand 11. A radio wave is sent from earth to
the satellite and back. To the relevant accuracy, the time delay compared with
the flat space result may be obtained from the line integral 2

∫

γ
ndl where γ is a

straight line in isotropic coordinates joining the earth and the satellite. If these
are at radii r1 and r2 respectively, and b is the distance of nearest approach, the
relevant time delay is

4GM

c3
ln

(

4r1r2

b2

)

. (221)

10.4.2 Example: Circular null geodesics

The circumference of a circle of coordinate radius ρ centred on the origin is

2πn(ρ)ρ. (222)

10You should be able to prove this when you have understood the proof of Birkhoff’s The-
orem later in the course.

11Those interested can look up the article on the web (B Bertotti, L Iess and P Torora,
A test of general relativity using radio links with the Cassini spacecraft, Nature 425 (2003)
374-376.
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In the case of the Schwarzschild metric the circumference has a minimum value

at ρ = M(1 +
√

3
4 ), i.e. r = 3M This corresponds to a circular geodesic of the

optical metric, called in this context a circular null geodesic, although the null
geodesic itself is of course not a closed curve in spacetime.

10.4.3 *Example: Stereographic projection, null geodesics in closed
Friedman-Lemaitre universes and Maxwell’s fish eye lens*

An n-sphere Sn of unit radius may be defined by its embedding into En+1,
n + 1 dimensional Euclidean space whose coordinates X0,X1,X2, . . . ,Xn are
constrained to satisfy

(X0)2 + (Xi)2 = 1, (223)

i = 1, 2, . . . , n. We may set

X0 = cos χ, Xi = ni sin χ, (224)

with nini = 1, i.e. ni ∈ Sn−1 and 0 ≤ χ ≤ π .The metric induced from the
embeddings, call it dΩ2

n, is given by

dΩ2
n = (dX0)2 + (dXi)2, (225)

which works out to be given by

dΩ2
n = dχ2 + sin2 χdΩ2

n−1, (226)

where dΩ2
n−1 is the metric on Sn−1. If we set ρ = tan χ

2 , we find that

ds2 =
4

(1 + ρ2)2
{

dρ2 + ρ2dΩ2
n−2

}

. (227)

The metric inside the brace is flat and the map taking χ, ni to ρ, ni is called
stereographic projection and is clearly conformal. In other words the metric on
Sn is conformally flat. The problem of finding the geodesics on Sn is thus the
same as finding the light rays in a medium of refractive index

n(x) =
2

1 + x2
. (228)

Note that there is a circular geodesic of length 2π at |x| = 1, and hence from
the high degree of symmetry SO(n+1), every geodesic is closed with length 2π.
In fact, every geodesic can be thought of as the intersection of the sphere with
a 2-plane through the origin of En+1. Every distinct pair of 2-planes intersect
on a line through the origin which cuts Sn at antipodal points Xα and −Xα.

If n = 3, an optical device of this sort is called a Maxwell Fish Eye Lens.
It has the remarkable property (obvious from the description in terms of the
sphere) that for every ‘object point’xe there is a single ‘image point’xo through
which every ray starting from xe passes.
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A related type of lens, used for some radar systems, is the Luneburg lens. In
its idealized form, we set n = 1 outside the hemisphere x3 > 0, |x| = 1 and use
formula (228) inside the hemisphere. The planar face of the lens is at x3 = 0
and all rays incident orthogonally on this planar surface will be focussed onto
the axis at x3 = 1 .

Now consider the k = 1 Friedman-Lemaitre metric

ds2 = −dt2 + a2(t)dΩ2
3, (229)

where a(t) is the scale factor. This metric is conformal to the Einstein Static
Universe

ds2 = a2(t)
{

−dη2 + dΩ2
3

}

, (230)

where

dη =
dt

a(t)
(231)

is called conformal time. Thus from our work above we see that light rays in
the universe behave precisely as they would in a Maxwell Fish Eye Lens.

10.5 *Projective Equivalence*

This concept is similar to that of conformal equivalence except that we focus
on auto-parallels. We say two linear affine connections Γb

c
d and Γ̃b

c
d are pro-

jectiveley equivalent if they share the same autoparallel paths12, not necessarily
with the same affine parameter. It follows that

Γ(b
c

d) = Γ̃(b
c

d) + δc
bAd + δc

dAb, (232)

for some co-vector field Ab.
A projective transformation or collineation takes auto-parallel paths to auto-

parallel paths.
The basic example is constructed from straight lines in Rn.
Globally one should consider RPn. To describe this, introduce homogeneous

coordinates Xα, α = 0, 1, . . . , n. We can think of Rn as the hyperplane Π given
by X0 = 1. Straight lines correspond to the intersections of 2-planes through
the origin with the hyperplane Π. Acting with SL(n + 1,R) in the obvious
way, will take straight lines to straight lines. However, some SL(n + 1,R)
transformations will take straight lines to straight lines at ‘infinity’, i.e. to
2-planes which do not intersect the hyperplane Π. Moreover while almost all
straight lines intersect once, some which are pararallel do not intersect at all. To
obtain a more symmetrical picture, one adds extra points at infinity to Π. One
defines RPn as the set of lines through the origin in Rn+1, i.e. (n + 1)-tuples
Xα identified such that Xα ≡ λXα, λ 6= 0. Clearly GL(n + 1,R) takes all
straight lines to all straight lines but we need to factor by the action of R \ 0 to

12It is convenient to define a path as the image of a curve, i.e. to throw away the information
about the parametrization.
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get an effective action of PSL(n + 1,R). One may also check that every pair of
distinct straight lines intesect once and only once.

Clearly, Sn ⊂ Rn+1 may be mapped onto the set of directions through the
origin. However, anti-podal points on Sn must be identifed since Xα ≡ −Xα.
Under this 2−1 mapping great circles, i.e. geodesics on Sn map to straight lines
in RPn. As we have seen, by considering Maxwell’s lens, every distinct pair of
geodesics on Sn intersect twice. On RPn these two intersections are identified.

10.5.1 *Example: metric preserving connections having the same
geodesics*

A metric preserving connection with torsion Ta
b

c is projectively equivalent to
the Levi-Civita connection if and only if the torsion is totally antisymmetric

Tabc = T[abc]. (233)

11 Curvature

In general, parallel transport is non-commutative; it depends upon the path
one takes. The extent to which it fails to do so is measured by the Riemann
Curvature Tensor, which may be defined by

(∇a∇b −∇b∇a)V c = Rc
dabV

d, (234)

a formula sometimes known as the Ricci identity .

We need to check that Rc
dab is a

(1

3

)

tensor. Whatever it is, it is obviously
anti-symmetric in a and b:

Rc
dab = −Rc

dba . (235)

The point is the righthand side of the Ricci identity is a tensor field by con-
struction. Now using the fact that

∇aV c = ∂aV c + Γa
c

eV
e, (236)

we find that
Rc

dab = ∂aΓb
c

d + Γa
c

eΓb
e

d − (a ↔ b) . (237)

We see that Rc
dab depends only on Γa

b
c and its first derivatives, but not on

derivatives of V a. It is linear in V d and therefore we can use the Quotient
Theorem to show that Rc

dab is indeed a tensor.

11.0.2 The Ricci Identity for co-vectors

Using the expresion for the curvature tensor and the definition of the covariant
derivative for co-vectors one may check that if the connection is symmetric then

(∇a∇b −∇b∇a)Wc = −Rd
cabWd . (238)
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There is an analogous expression for an arbitrary tensor of type
(p

q

)

: there

are p terms with positive sign and q terms with negative sign. In particular, for
a second rank covariant tensor Qcd, one has

(∇a∇b −∇b∇a)Qcd = −Re
cabQed − Re

dabQce . (239)

11.0.3 The Ricci tensor

By contraction we can define the Ricci tensor

Rdb = Ra
dab = −Ra

dba . (240)

The definitions given above work for any affine connection, symmetric or not. In
this course we are mainly interested in the Levi-Civita connection which satisfies

∇agbc = 0. (241)

This imposes extra symmetries which are most easily seen by introducing local
inertial coordinates.

11.1 Local Inertial Coordinates

These are such that at any chosen point in spacetime, xa = 0 say,

(i)
gab(0) = ηab = diag(+1,+1,+1,−1) (242)

(ii)
∂gab

∂xc

∣

∣

∣

x=0
= 0, (243)

or, equivalently,
Γa

c
b(0) = 0. (244)

Local inertial coordinates are also called Riemann normal coordinates.

11.1.1 Existence of Local Inertial Coordinates

We start off in a coordinate system xa which is not inertial and solve for the
necessary coordinate transformations taking us to x̃a which are inertial. We
shall find we need to fix only the first and second derivatives of x̃ with respect
to x or, equivalently, of x with respect to x̃ at the origin 0.

Under a coordinate transformation we have

g̃ab = gcd

∂xc

∂x̃a

∂xd

∂x̃b
(245)

and

Γ̃a
b

c =
∂x̃b

∂xe

[∂xg

∂x̃a

∂xd

∂x̃c
Γg

e
d +

∂2xe

∂x̃a∂x̃c

]

(246)
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Now restrict to x = 0. We have

g̃ab(0) = gcd(0)
∂xc

∂x̃a

∣

∣

∣

x=0

∂xd

∂x̃b

∣

∣

∣

x=0
(247)

and

Γ̃a
b

c(0) =
∂x̃b

∂xe

∣

∣

∣

x=0

[∂xg

∂x̃a

∣

∣

∣

x=0

∂xd

∂x̃c

∣

∣

∣

x=0
Γg

e
d(0) +

∂2xe

∂x̃a∂x̃c

∣

∣

∣

x=0

]

(248)

Now we can pick ∂xd

∂x̃b

∣

∣

∣

x=0
and ∂2xe

∂x̃a∂x̃c

∣

∣

∣

x=0
as we wish. We do so to make

g̃ab(0) = ηab and Γ̃a
b

c(0) = 0. The first condition involves diagonalizing gab(0)
which can always be done provided the metric gab has the correct signature.
The second then involves solving a linear equation for the second derivatives.

11.2 Physical significance of local inertial coordinates, jus-
tification of the clock postulate

The physical significance of local inertial coordinates is that they allow one to
‘abolish’the local effect of gravity by passing to a freely falling frame. In local
inertial coordinates, the geodesic equations becomes

d2x̃a

dτ2
+

{

b
a

c

}dx̃b

dτ

dx̃c

dτt
= 0 =

d2x̃a

dτ2
+ . . . (249)

and thus
x̃a(τ) = x̃a(0) + Ua(0)τ + . . . (250)

and so geodesics are straight lines to lowest order, just as in Minkowski space-
time.

In fact, Fermi showed that one may introduce local inertial coordinates along
any timelike geodesic.

Note that local physics in local inertial coordinates is the same as in Minkowski
spacetime. Thus if one writes down the equations of quantum mechanics de-
scribing an atomic clock at rest, then the elapse of x4 is what the clock measures.
But this coincides with proper time along a timelike geodesic with xi = constant.

11.2.1 Consequences: The Cyclic Identity

In local inertial coordinates at a point we have

(i) Rd
cab

′′ =′′ ∂aΓb
d

c − ∂bΓa
d

c (251)

(ii) Rd
bca

′′ =′′ ∂cΓa
d

b − ∂aΓc
d

b (252)

(iii) Rd
abc

′′ =′′ ∂bΓc
d

a − ∂cΓb
d

a (253)

We have introduced the notation ′′ =′′ to indicate that an equation is true
only in inertial coordinates. Using Γa

b
c = Γc

b
a we deduce that in inertial

coordinates

Rd
cab + Rd

bca + Rd
abc = 0 = Rd

[abc] . (254)
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Now we can drop the ′′ =′′ because the equation is a tensorial relation, and
hence, if it is true in one coordinate system, it is true in all coordinate systems.

11.2.2 Consequences: The Bianchi Identity

In local inertial coordinates at a point we also have

(i) Rd
cab;e

′′ =′′ ∂e∂aΓb
d

c − ∂e∂bΓa
d

c (255)

(ii) Rd
cea;b

′′ =′′ ∂b∂eΓa
d

c − ∂b∂aΓe
d

c (256)

(iiii) Rd
cbe;a

′′ =′′ ∂a∂bΓe
d

c − ∂a∂eΓb
d

c (257)

Now using the equality of mixed partials we get

Rd
cab;e + Rd

cea;b + Rd
cbe;a = 0 = Rd

c[ab;e] . (258)

11.2.3 *Example: The other possible contraction*

For a general symmetric connection the Ricci tensor has no particular symme-
tries. Let Sab = −Sab = Re

eab be the other possible contraction. The cyclic
identity tells us that this is not independent:

Sbd = Rbd − Rdb. (259)

The second Bianchi identity gives

S[bd;c] = 0, (260)

thus, locally,
Sbd = ∂bSd − ∂dSb, (261)

for some co-vector Sb.

11.2.4 Example: *Weyl Connections*

These preserve angles under parallel transport but not the metric. Thus

∇agbc = Aagbc, (262)

for some one-form Aa. Thus

Γb
c

d =
{

b
c

d

}

− 1

2

(

δc
bAd + δc

dAb − gdbg
ceAe

)

. (263)

Note that, if gab = Ω2g̃ab, then Aa = 2∂aΩ
Ω . Conversely, if Aa = 2∂aΩ

Ω , then we
can find a conformally related metric which is invariant under parallel transport.
A Weyl connection of that type is rather trivial because it can be eliminated by
a conformal ‘gauge’transformation. A gauge-invariant measure of triviality in
this sense is the second contraction

Sdb = Ra
adb = n

(

∂dAb − ∂bAd

)

. (264)
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Weyl suggested that one might generalize Einstein’s theory by endowing
spacetime with what we now call a Weyl connection in which measuring rods
moved from A to B along a path γ suffer parallel transport. Einstein pointed
out that if it were non-trivial, then the measuring rods would not return to
their original size on returning to A by some other curve unless the curvature
Ra

abd = Sbd vanishes. This contradicts the observed fact that measuring rods
are made from atoms and atoms have quite definite sizes.

In fact, atomic units of length and time are constructed from the Bohr radius

RB =
4πǫ0˜

2

mee2
. (265)

Even if the charge on the electron e or the mass of the electron me varied with
position, under parallel transport the Bohr radius, and hence the metric would
undergo a trivial conformal change which could be eliminated by a conformal
rescaling.

Although Weyl rapidily abandoned his theory that the equations of physics
should be gauge-invariant in the sense of independent of units of length, the
idea of gauge-invariance resurfaced soon after when quantum mechanics was
discovered and it was realized that in the presence of an electromagnetic field,

one should replace ∂aΨ by
(

∂a − i e
˜
Aa

)

Ψ in the Schrödinger equation, where

now Ab is the electro-magnetic vector potential. Parallel transport of an electron
now results in a change of the phase of its wave function Ψ. It is now believed
that the equations of physics are exactly gauge-invariant in this sense.

11.2.5 Example:* Projective Curvature*

In general two projectively equivalent connections have different Riemann and
Ricci tensors. However, using normal coordinates one may show that the fol-
lowing tensor

W a
bcd = Ra

bcd+
2

(n + 1)(n − 1)
δa
[dRc]b+

2n

(n + 1)(n − 1)
δa
[dR|b|c]−

2

n + 1
δa
b R[cd],

(266)
where |b| means that the index b is omitted from the anti-symmetrization,is the
same for both connections.

In the case of the Levi-Civita connection, the Ricci tensor is symmetric and
the projective curvature simplifies to

W a
bcd = Ra

bcd +
2

n − 1
δa
[dRc]b. (267)

Thus a space of constant curvature with Ra
bcd = K δa

[dgc]b has W a
bcd =

0.This is consistent with our discussion of Sn and RPn.

11.3 Consequences of the metric Preserving Property

The cyclic identity and the Bianchi identity hold for any symmetric affine con-
nection. To make further progress we must use the metric preserving condition.
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The quickest way of proceeding is to note that

Rabcd
′′ =′′ 1

2

(

∂b∂cgad + ∂a∂dgbc − ∂b∂dgac − ∂a∂cgbd

)

(268)

We deduce that

Rabcd = R[ab]cd (269)

and
Rabcd = Rcdab (270)

It follows that the Ricci tensor Rab is symmetric

Rab = Rba (271)

In local inertal coordinates the first derivatives of the metric vanish and the
second derivatives determine and are determined by the curvature tensor. One
has

gab
′′ =′′ ηab −

1

3
Racbdx

cxd + O(x3), (272)

whence

∂e∂fgab = −1

3

(

Raebf + Rafbe

)

. (273)

It is a useful exercise to substitute (273) into the left hand side of (268) and
check that it works.

If one does not wish to use inertial coordinates one may procede as follows.
One applies the the Ricci identity for co-tensors (239) to the metric

∇e∇fgab −∇f∇egab = −Rg
aefggb − Rg

befgag. (274)

The right hand side vanishes and hence

Rabfe + Rbafe = 0. (275)

To establish that Rabfe is symmetric with respect to swapping the index
pairs ab and ef one may take four copies of the cyclic identity

(i) Rabcd + Radbc + Racdb = 0 (276)

(ii) Rbadc + Rbdca + Rbcad = 0 (277)

(iii) Rcbda + Rcabd + Rcdab = 0 (278)

(iv) Rdbac + Rdacb + Rdcba = 0 (279)

One now takes (i) + (ii) − (iii) − (iv) and the skew-symmetry on the first
and on the second pair of indices to obtain the result.
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11.3.1 *Example: The curvature of the sphere*

Stereographic coordinates on the unit n-sphere Sn introduced earlier, in which
the metric is

ds2 = 4
dxidxi

(1 + xkxk)2
(280)

are Riemann normal coordinates centred on the origin.
From this one deduces that at the origin

Rabcd = gacgbd − gadgbc. (281)

But, by SO(n + 1) invariance, the origin is not a privileged point on the sphere
and hence (281) must be true everywhere on Sn with unit radius. If the radius
is a then

Rabcd =
1

a2

(

gacgbd − gadgbc

)

. (282)

.

11.4 Contracted Bianchi Identities

Contracting the Bianchi identity

Rd
cab;e + Rd

cea;b + Rd
cbe;a = 0 (283)

on d and a gives
Rcb;e − Rce;b + Rd

cbe;d = 0 (284)

Now contract on with gce to get

Rc
b;c − R;b + Rd

b;d = 0 (285)

where we define the Ricci scalar by

R = gabRab = gabRe
aeb = gabgcdRacbd (286)

and have used the symmetries of the Riemann tensor to give

Ra
b = Ra

cbeg
ce. (287)

We can tidy up this expression to give

(

Rab − 1

2
gabR

)

;b
= 0 (288)

or defining the Einstein tensor by

Gab = Rab − 1

2
gabR, (289)

Gab
;b = 0. (290)
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11.5 Summary of the Properties of the Riemann Tensor

(i) Rabcd = −Rabdc = −Rbacd = Rcdab (291)

(ii) Rabcd + Racdb + Radcb = 0. (292)

(iii) Rabcd;e + Rabec;d + Rabde;c = 0. (293)

in addition (iii) ⇒
(

Rab − 1

2
gabR

)

;b
= 0. (294)

12 The Einstein Equations

We have now developed sufficient tensor analysis to obtain the Einstein equa-
tions. In fact in vacuo

Rab = 0, (295)

or possibly

Rab = Λgab (296)

with Λ the Cosmological Constant. Why is Λ a constant? We know that

Rab
;b =

1

2
∂aR, (297)

but since gabgab = δa
a = 4, contraction of (296) with gab gives R = 4Λ.

Thus

(Λgab)
;b = Λ;a =

1

2
(4Λ);a = 2Λ;a (298)

which implies that
Λ;a = ∂aΛ = 0. (299)

Note that if Λ 6= 0, we cannot put gab = ηab, since then Rab = 0. That is if
Λ 6= 0, then spacetime cannot be flat.

Remarkably very recent observations of the recession of distant galaxies
(which seem to be accelerating away from us) and of the cosmic microwave
background indicate that Λ is very small but positive. The dimensions of the
cosmological constant Λ are length−2 and roughly

Λ ≈ (1027cm)−2. (300)
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12.1 Uniqueness of the Einstein equations: Lovelock’s the-
orem

Following a programme initiated by Weyl and Cartan, Lovelock proved the
following

Theorem In four spacetime dimensions, the only tensor V ab constructed solely
from the metric gab and its first and second partial derivatives ∂agbc and ∂a∂bgcd

which is conserved, V ab
;b = 0, is a linear combination of the Einstein tensor

and the metric with constant coefficients. In particular V ab is symmetric.

In higher dimensions there exist tensors V ab which contain higher than first
powers of second derivatives of the metric ∂a∂bgcd. In four spacetime dimensions
this cannot happen. If we restrict to tensors V ab which are no more than linear
in ∂a∂bgcd, then only linear combinations of the Einstein tensor and metric with
constant coefficients are allowed.

12.2 *Dilatation and Conformal symmetry*

In the absence of a cosmological term, Einstein’s vacuum equations contain
no dimensionful quantity, no length for example. As a consequence for every
solution with metric gab there is another solution with metric g′ab = λ2gab,
where λ is an arbitrary positive constant. This is because under such a scaling
we have R′

ab = Rab. All lengths, times and masses in the metric g′ab are rescaled
by a factor λ. To see this in detail, consider the Schwarzschild metric. One
easily sees that mutiplying the metric by a factorλ2 is equivalent to rescaling
the time t and radial coordinates t → λt, r → λr provided one rescales the
mass M → λM . The symmetry thus generalizes the dilatation symmetry of
Minkowski spacetime, hence its name. Of course the symmetry is broken by the
cosmological term.

Note that in general, even if Λ = 0, the Einstein equations do not admit
general conformal symmetry: one cannot allow λ to depend upon position.

12.2.1 *The Weyl Conformal Curvature Tensor*

Let Ω = eΦ. If g̃ab = Ω2gab, then the Weyl tensor

Cab
cd = Rab

cd−
1

n − 1

(

Ra
c δb

d−Ra
dδb

c−Rb
cδ

a
d+Rb

dδ
a
c

)

+
1

(n − 1)(n − 2)
R

(

δa
c δb

d−δa
dδb

c

)

(301)
is the same for the two metrics. Moreover, all of its contractions vanish.

12.3 Geodesic Deviation

To motivate the Einstein equations we consider the Geodesic deviation equation
in General Relativity and compare it with Newtonian theory for which, as we
have seen

d2Ni

dt2
+ EijNj = 0. (302)
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We begin by considering a family of geodesics such that xa(λ, σ) is a geodesic
for fixed σ.

T a =
∂xa

∂λ

∣

∣

∣

σ
(303)

is the tangent vector to the geodesic labelled by σ. We call

Na =
∂xa

∂σ

∣

∣

∣

λ
(304)

a connecting vector . Thus

∂T a

∂σ
=

∂Na

∂λ
=

∂2xa

∂σ∂λ
=

∂2xa

∂λ∂σ
. (305)

We may think of σ and λ as a space and time coordinate. If we introduce
two more coordinates x1, x2 say we have, in the coordinate system (x1, x2, σ, λ),
(labeling the last two coordinates by σ and λ)

T a = δa
4 , Na = δa

3 . (306)

Thus
T a

,bN
b − Na

,bT
b = 0. (307)

Now
T a

;bN
b = T a

,bN
b + Γb

a
cT

cN b, (308)

and
Na

;bT
b = Na

,bT
b + Γb

a
cN

cT b. (309)

Thus for a symmetric connection we have

T a
;bN

b − Na
;bT

b = 0. . (310)

In fact for any two vector fields, it is the case that

[

T,N
]a

= T a∂aN b − Na∂aT b, (311)

is also a vector field,called the commutator or bracket. As you may check, the
bad terms in the coordinate transformation cancel. In our case, we say that the
tangent vector T a and the connecting vector Na commute.

We now claim that if

(i) T a
;bT

b = 0, (312)

(i.e. T a is the tangent of a geodesic) and

(ii) T a
;bN

b − Na
;bT

b = 0, (313)
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(i.e. T a and Na) commute, then the general relativistic version of the equation
of geodesic deviation, sometimes called the ⁀Jacobi equation, is

D2Na

Dτ2
+ Ea

bN
b = 0 GeodesicDeviation (314)

where

Ea
b = Ra

dbcT
dT c. (315)

Proof The Ricci identity, i.e. the definition of curvature is

T a
;b;c − T a

;c;b = −Ra
dbcT

d. (316)

Contracting with T aN b gives

⋆ N b
(

T a
;b;cT

c − T a
;c;bT

c
)

= −Ea
bN

b (317)

But
D2Na

Dτ2
=

(

Na
;bT

b
)

;c
T c =

(

T a
;bN

b
)

;c
T c (318)

(by commutivity, (ii)). Expanding we have

D2Na

Dτ2
= T a

;b;cN
bT c + T a

;bN
b

;cT
c. (319)

Now using (⋆) we get

D2Na

Dτ2
+ Ea

bN
b = T a

;bN
b

;cT
c + T a

;c;bT
cN b (320)

= T a
;bN

b
;cT

c + (T a
;cT

c);b N b − T a
;cT

c
;bN

b (321)

= T a
;bN

b
;cT

c − T a
;cT

c
;bN

b (322)

(using the geodesic equation (ii))

= T a
;bN

b
;cT

c − T a
;cN

c
;bT

b = 0. (323)

(by the commutivity (ii)).

12.4 A convenient choice of connecting vector

The calculations given above work if the geodesic γ with parameter λ is space-
like, timelike or null. It is often convenenient to choose Na to be orthogonal to
T a,

T aNa = 0. (324)

This is possible because of the following

Lemma If T aNa = 0 at one point of γ, then T aNa = 0 on all points of γ.

50



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Proof

(T aNa

)

;c
T c =

D

Dλ

(

T aNa) = T aNa;cT
c (325)

(because T a is tangent to a geodesic)

= T aTa;cN
c (326)

(by commutivity)

=
1

2
(gabT

aT b);cN
c = 0. (327)

The last step uses the fact the the metric is covariantly constant and that
gabT

aT b = constant along a geodesic.
Thus

D

Dλ

(

NaT a
)

= 0. (328)

If it is zero for one value of λ it will be zero for all values of λ.

12.5 Example

A spacetime of constant sectional curvature has by definition

Rabcd = K
(

gbdgac − gadgbc

)

(329)

You should check that this expression has all the required symmetries.
In a general spacetime, if W a and V a span a two-plane Π, the sectional

curvature of that plane is defined by

K(V,W ) = RabcdV
aW bV cW d. (330)

Note that, by the symmetries of the Riemann tensor, if V a → aV a + bW a,
K → a2K, If the 2-plane Π is timelike we may choose V a and W a such that
V aVa = −1, W aWa = +1, V cWc = 0. This fixes the scale of K. If the
2-plane is spacelike we may choose V aVa = 1, W aWa = +1, V cWc = 0.
A space of constant curvature thus has K = constant on all 2-planes. Moreover

Schur’s Lemma In a space of constant sectional curvature K is independent
of position.

Proof
By contraction with gac one finds

Rbd = 3Kgbd, (331)

3K = Λ = constant, (332)

by the contracted Bianchi identity.
In a space of constant sectional curvature, the equation of geodesic deviation

becomes
D2Na

Dλ2
+ K

(

TcT
cNa − TcN

cT a
)

= 0 . (333)
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We set T aNa = 0 and obtain

D2Na

Dλ2
+ KTcT

cNa = 0 (334)

In the timelike case we may set T aTa = −1 and if Λ > 0 (which corresponds

to de-Sitter spacetime) then timelike geodesics separate exponentially as
√

Λ
3 τ ,

where τ is propertime. If Λ < 0 (which corresponds to Anti-de-Siter spactime)

then they oscillate with period 2π
√

3
−Λ .

13 The Einstein Field Equations with Matter

Comparing the general relativistic geodesic equation with that in Newtonian
theory we have recal Poisson’s equation

Eii = 4πGρ (335)

Now in the Newtonian limit Eii = Ei
i ≈ Ri

4i4 = R44, that is

RabT
aT b ≈ 4πGρ. (336)

This suggests that the relativistic analogue shold be something like

Rab ∝ Tab, (337)

where Tab is a suitable tensor determined by the matter distribution. This is
roughly correct, but to see what the correct answer is we need to introduce

13.1 The Energy Momentum Tensor

Consider a theory in flat spacetime. We can define an energy density H say
with units energy per unit spatial volume and an energy flux vector si say with
units energy per unit area per unit time. Conservation of energy now reads13

(i)
∂H
∂t

+ ∂isi = 0 (338)

One may also define a momentum density πi with units of momentum per unit
3-volume such that such that the momentum π in a time-independent domain
D in E3 is

pi =

∫

D

πid
3x . (339)

Now we postulate that the only forces act through the boundary ∂D of the
domain D

dpi

dt
=

∫

D

πi

∂t
d3x = −

∫

∂D

Tijdσj , (340)

13For the next few equations we revert to Cartesian tensor notation and place all indices
downstairs, just as one does in PartIB. Their positions will be adjusted shortly.
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where the force exterted by the material inside the domain Fi on a surface
element dσi is given by

Fi = Tijdσj . (341)

If this equation is true for all domains we must have

(ii)
∂πi

∂t
+ ∂jTij = 0. (342)

Now conservation of angular momentum imposes the symmetry condition

Tij = Tji. (343)

Proof

∂

∂t

(

xkπi − xkπi

)

= −xk∂jTij + xi∂kTkj (344)

= −∂j

(

xkTij − xiTkj

)

+ Tik − Tki (345)

i.e.
∂

∂t

(

xkπi − xiπk

)

+ ∂j

(

xkTij − xiTkj

)

= Tki − Tik (346)

Integrating we get

d

dt

∫

D

(

xkπi −xiπk

)

d3x = −
∫

∂D

(

xkTij −xiTkj

)

dσj +

∫

D

(

Tik −Tki

)

d3x. (347)

The left hand side is the rate of change of ǫkijLj , where Lj is the total angular
momentum inside the domain D. The first term on the righthand side ǫkijGk,
where Gi is is the external torque on the system. If these are to be equal for all
domains D then Tij must be symmetric.

Our two fundamental equations may be combined in a single equation

∂aT ab = 0, (348)

provided we set

T 44 = H T i0 =
si

c
, T 0i = cπi, T ij = Tij , . (349)

that is

T ab =

(

H cπi
si

c
Tij

)

(350)

and ∂a = (∂i, ∂4) with x4 = ct.
You should check that all components of T ab have the dimensions energy

3−volume .
In order to render the conservation of angular momentum condition Tij = Tji

invariant under Lorentz transformations must extend the symmetry property
Tij = Tij to the relativistically invariant condition

T ab = T ba . (351)

This implies a relation between energy flux si and momentum density π

cπi =
si

c
(352)
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13.2 Generalization to curved spacetime

We make what is often referred to as a minimal coupling assumption, that is
when we see an equation in special relativity containing a comma we simply
replace the comma by a semi-colon. In this way the equation will certainly be
covariant and hopefully it will also be consistent. Thus we assume that

T ab
;b = ∂bT

ab + Γc
b

bT
ac + Γc

a
dT

cd = 0. (353)

In fact

Γa
b

b =
1√−g

∂a

(√−g
)

, (354)

where
g = det gab. (355)

Proof
Recall that

Γb
a

c =
1

2
gad

(

gbd,c + gcd,b − gbc,d

)

, (356)

so that

Γa
b

b =
1

2
gcd∂agcd. (357)

Now for any one parameter family of symmetric matrices M(t) with determinant
∆(t) one has (by diagonalization)

∆̇ = ∆Trace M−1Ṁ, (358)

and the result follows. The conservation law may now be re-written

T ab
;b =

1√−g
∂a

(√−gT ab
)

+ Γc
a

dT
cd = 0. (359)

In the Newtonian limit when T ab is dominated by T 44 the second term Γ4
i
4ρ

may be interpreted as a Newtonian force since Γ4
i
4 ≈ ∂iU .

14 The Einstein field equations

The obvious candidate equations, which are tensorial and constructed from no
higher than second derivatives of the metric, are

Rab = AT ab + Bgab + CRgab, (360)

where A,B,C are constants. Acting with ∇a shows that C = 1
2 , and comparison

with Poissons equation now shows thatA = 8πG
c4 .

Thus

Rab − 1

2
gabR =

8πG

c4
T ab − Λgab. (361)
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14.1 Example and derivation of the geodesic postulate

A perfect fluid, i.e.an inviscid fluid has

T ab = ρUaU b + P
(

gab +
1

c2
UaU b

)

, ) (362)

where the Eulerian 4-velocity of the fluid Ua satisfies UaUa = −c2 and ρ is the
mass density and P the pressure. This is consistent with the fact that in the
local rest frame of the fluid for which Ua = (c,0),

T 44 = ρc2, T ij = Pδij . (363)

An equation of state is a relation P = P (ρ). For example for a radiation gas

1

c2
P =

1

3
ρ, (364)

which implies that T ab is trace-free T = T abgab = 0.
For dark energy or a cosmological constant we have

T ab = − Λc4

8πG
gab, (365)

thus

ρ = +
Λc2

8πG
(366)

and
P

c2
= −ρ. (367)

Thus if the cosmological constant is positive then the pressure is negative, in
other words, the medium is in a state of tension,

A pressure-free fluid is often called dust. It has P = 0 and hence T ab =
ρUaU b. We have

T ab
;b =

(

ρUaU b
)

;b
= ρU̇a + Ua

(

ρU b
)

;b
= 0, (368)

where U̇a = Ua
;bU

b is the acceleration of the fluid, i.e. of the worldlines of the
fluid, whose tangent vectors are parallel to to Ua and which satisfy

dxa

dτ
= Ua. (369)

The acceleration is orthogonal to the 4-velocity U̇aUa = 0. Thus taking the dot
product of (368) with Ua gives

U̇a = 0. (370)

This equation means that the world lines are geodesics. Physically this is be-
caues the vanishing pressure implies that any pressure gradient which would act
as a force must vanish. We now deduce that

(

ρU b
)

;b
= 0. (371)
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This is a law of conservation of rest mass.

(

ρU b);b = ∂b

(

ρU b
)

+ Γb
c

cU
b = 0. (372)

But using the fact that

Γb
c

c =
1√−g

∂b

(√−g
)

, (373)

we can convert this to a true conservation law

∂b

(√−gρU b
)

= 0. (374)

The name true conservation law arises because we have

∂

∂t

(√−g
U4

c
ρ
)

+ ∂i

(√−gU iρ
)

= 0. (375)

We can now integrate over a spatial domain D to get

d

dt

∫

D

√−g
U4

c
ρd3x = −

∫

∂D

ρ
√−gU idσi (376)

This equation expresses the conservation of rest mass.

14.1.1 Example: *perfect fluid with pressure*

If Tab = (ρ + P )UaUb + Pgab the conservation law gives

(

(ρ + P )Ua

);a

Ub + (ρ + P )U̇b + ∂aP = 0. (377)

Introduce a tensor ha
b = UaUb + δa

b . It has the property that ha
bhb

c = ha
c ,

hab = hba and ha
bU b = 0, but if V aUa = 0 then ha

bV b = V a, in other words
ha

b is a projection operator which projects vectors into the spacelike 3-plane
orthogonal to the timelike 4-velocity Ua.

Taking the inner product with U b gives

(

(ρ + P )Ua

);a

− ∂aPUa = 0 (378)

Thus
(ρ + P )Ua

;a + Ua∂aρ = 0. (379)

Projecting orthogonal to Ub gives ( remembering that ha
b U̇ b = U̇a)

U̇a = −hb
a∂bP

ρ + P
. (380)

To proceed further we need some thermodynamics. A homogeneous ‘perfect
fluid ’has the rather unusual property that there is only one independent ther-
modynamic variable which we may take to be the energy density ρ , pressure P
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, entropy density s or temperature T as we wish. They are linked by the first
law which reads

TdS = dU + PdV (381)

Now for a homogeneous substance, if U = V ρ, S = sV , this gives

Tds = dρ (382)

and
Ts = ρ + P. (383)

The latter formula is sometimes called the Gibbs-Duhem relation. It follows that

ds

s
=

dρ

ρ + P
. (384)

Thus we may re-write (379) as the law of entropy conservation

(

sUa
)

;a
= 0. (385)

To understand the other equation we note that

dP

ρ + P
=

dT

T
. (386)

Thus

U̇a = −hb
a∂bT

T
. (387)

For a fluid at rest in a static metric,

U̇a =
(

0, ∂i ln(
√−g44)

)

(388)

and hence
∂i ln(

√−g44) = −∂i lnT (389)

thus
T
√−g44 = constant, (390)

which is called Tolman’s redshift law. A gas in equilibrium in a static gravita-
tional potential must have a temperature which increases as the gravitational
potential decreases by precisely the redshift factor.If this were not so one could
construct a perpetual motion machine by converting the local energy at high
potential into thermal photons and sending them to a location of lower poten-
tial. The photons would gain energy and have the redshifted temperature. If
this were not equal to the local value, the temperature difference could be used
to do work.
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14.2 Example: Einstein’s Greatest Mistake

After constructing his theory of gravity, Einstein applied it to cosmology. He
believed that the universe should be static. He was unable to construct a static
model with his original theory which did not have a cosmological constant term.
However thinking along the lines we followed earlier, he realized that he had left
out a posible integration constant, which is of course Λ. Using it he managed
to construct a static universe called the Einstein Static Universe. The metric is

ds2 = −dt2 + gijdxidxj (391)

where gij is a metric of constant curvature K = 1
a2 on S3. The 3-sphere may

be envisaged as embedded in four flat dimensions

(X1)2 + (X2)2 + (X3)2 + (X4)2 = a2 (392)

It is not difficult to persuade one of the following fact

Rikjl =
1

a2

(

gijgkl − gilgkj

)

(393)

It follows that Rij = 2
a2 gij and Ri

i = 6
a2 .

Thus

Rab =

(

0 0
0 2

a2 gij

)

Ra
a =

6

a2
. (394)

and
1

2
Rgab =

(

− 3
a2 0
0 3

a2 gij

)

(395)

Now if the fluid is at rest Ua = δa
4 and

Tab = ρUaUb =

(

ρ 0
0 0

)

(396)

Substitution into the Einstein equations

Rab −
1

2
Rgab = 8πGρUaUb − Λgab (397)

gives

4πGρ =
1

a2
= Λ. (398)

14.3 Example Friedman-Lemaitre-Robertson-Walker met-
rics

About 5 years after Einstein’s paper, Friedman pointed out that one could have
time dependent cosmological solutions with or without Λ, a fact also realized by
Lemaitre. Shortly after Lemaitre’s paper Hubble announced that the universe
is not static, distant galaxies were receding from us. Einstein realized that he
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had failed to make this a prediction of his theory, and alledgedly refered to his
introduction of Λ as the greatest blunder of his life. Blunder or not, it has
no re-surfaced as vacuum energy, and seems to dominate the expansion of the
universe. To see how we consider the metric

ds2 = −dt2 + a2(t)gij(x
k)dxidxj (399)

where now the spatial metric is taken to be a 3-sphere of radius
√

k, k = 0, 1.
The case k = −1 is also allowed.

A straightforward but tiresome calculation shows that the Einstein equations
reduce to

(i)
ä

a
= −4πG

3
ρ +

Λ

3
(400)

(ii)
ȧ2

a2
+

k

a2
=

8πGρ

3
+

Λ

3
(401)

(iii) ρ̇ +
3ȧ

a
ρ = 0. (402)

15 Spherically Symmetric vacuum metrics

We start by establishing

Birkhoff’s Theorem The unique spherically symmetric vacuum metric is (lo-
cally) the Static Schwarzschild metric

ds2 = −
(

1 − 2GM

r

)

dt2 +
dr2

1 − 2GM
r

+ r2
(

dθ2 sin2 θdφ2
)

(403)

This generalizes Newton’s theorem and greatly simplifies the study of gravi-
ational collapse. Any spherically symmetric source, e.g. a pulsating, exploding,
or collapsing star has an exterior metric exactly given by the Schwarzschild met-
ric. Physically this can be understood in part from the fact that gravitational
waves are transverse and polarizable. Any polarization would define a direction
field on S2 but by the Hairy Ball Theorem it cannot therefore be spherically
symmetric.

Proof
Step 1: The metric The meric may be cast in the form

ds2 = A(r, t)dt2 + 2B(r, t)drdt + C(r, t)dr2 + R2(r, t)
(

dθ2 + sin2 θdφ2
)

(404)

There can be no gaθ or gaφ terms with a = r, t by spherical symmetry. We
are still allowed to change the coordinates r, t

r → r̃ = r̃(r, t), t → t̃ = t̃(r, t). (405)
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Using this freedom we can define

r̃ = R(r, t)14. (406)

The remaining coordinate freedom may be used to eliminate grt. Dropping
the tilde’s we have shown that the most general metric that we need to consider
is

ds2 = −eν(r,t)dt2 + eλ(r,t)dr2 + r2
(

dθ2 + sin2 θdφ2
)

(407)

Step 2: The field equations Routine calculations give

(i) Gtt ∝
e−λ

r2

(

−1 + eλ + rλ′
)

= 0 (408)

(ii) Grt ∝ e−
(ν+λ)

2
λ̇

r
= 0 (409)

(iii) Grr ∝ e−λ

r2

(

1 − e−λ + rν′
)

= 0 (410)

(iv) Gθθ =
1

sin2 θ
Gφφ ∝ e−λ

4

(

2ν′′+(ν′)2+
2

r
(ν′−λ′)−ν′λ′

)

−e−ν

4

(

2λ̈+(λ̇)2−λ̇ν̇
)

= 0

(411)
We are using the notation ḟ ≡ ∂tf, f ′ ≡ ∂rf .
Step 3: Proof of staticity

(ii) ⇒ λ̇ = 0 ⇒ λ = λ(r). (412)

(i) + (iii) ⇒ λ′ + ν′ = 0 ⇒ ν = −λ(r) + f(t), (413)

where f(t) is an arbitrary function of integration. Thus the metric is

ds2 = e−λ(r)ef(t)dt2 + eλ(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

(414)

We still have the freedom to change the time coordinate. Define a new time
coordianate t̃ by

dt̃ = e
1
2 f(t)dt. (415)

The metric now bcomes manifestly static

ds2 = e−λ(r)dt2 + eλ(r)dr2 + r2
(

dθ2 sin2 θdφ2
)

, (416)

where we have dropped the tilde on t.
Step 4: Solution of the Static field equation We now need to solve the
first order non-linear o.d.e. (i)

−1 + eλ + rλ′ = 0. (417)

14Strictly speaking we need to know that R(r, t)is not actually a constant. A separate
discussion rules out this possibility
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This can be done by making the substitution

e−λ = 1 + D(r), (418)

to get
D′

D
= −1

r
. (419)

The solution is

D = −2M

r
, (420)

where M is an arbitrary integration constant.

16 Geodesics in the Schwarzschild metric

Without loss of generality we can set θ = π
2 . The Lagrangian becomes

L = −
(

1 − 2M

r

)

( dt

dλ

)2

+
1

1 − 2M
r

( dr

dλ

)2

+ r2
(dφ

dλ

)2

. (421)

Since L is independent of λ, Noether’s theorem gives

(i)
(

1 − 2M

r

)

( dt

dλ

)2

− 1

1 − 2M
r

( dr

dλ

)2

− r2
(dφ

dλ

)2

= k, (422)

where k = +1, 0,−1 for timelike, lightlike or spacelike geodesics respectively.
Since L is independent of t Noether’s theorem gives

(ii)
(

1 − 2M

r

)

( dt

dλ

)

= E, (423)

where E is the energy (per unit mass in the timelike case). Since L is indepen-
dent of φ Noether’s theorem gives

(iii) r2
(dφ

dλ

)

= h, (424)

where h is the angular momentum (per unit mass in the timelike case). Substi-
tution of (ii) and (iii) in (i) gives

( dr

dλ

)2

= E2 −
(

1 − 2M

r

)(

k +
h2

r2

)

. (425)

16.1 The shape of the orbit

Using (iii) we get

h2

r2

( dr

dφ

)2

= E2 −
(

1 − 2M

r

)(

k +
h2

r2

)

. (426)
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Now set

u =
1

r
(427)

to get
1

2

(du

dφ

)2

+
1

2
u2 =

E2

2h2
− k

2h2
(1 − 2MU) + Mu3. (428)

We recognize this as the first integral of the second order o.d.e.

d2u

dφ2
+ u =

Mk

h2
+ 3Mu2 . (429)

16.1.1 Application 1: Newtonian limit

If we drop the last term on the right hand side we get

d2u

dφ2
+ u =

Mk

h2
. (430)

which is the standard Newtonian result provided we identify M as the mass of
the gravitating body. The ratio of the term neglected to that retained on the

left hand side is O(h2u2) which is easily seen to be O(v2

c2 ).

16.1.2 Application 2: light bending

We set k = 0 to get

d2u

dφ2
+ u = 3Mu2. (431)

This equation can be reduced to quadrature and the answer expressed in terms
of elliptic functions, however perhaps the simplest method, vaild for large impact
parameter b is to work perturbatively
To order zero

d2u

dφ2
+ u = 0 . ⇒ u =

sin φ

b
, (432)

that is
r sinφ = b, (433)

which is the equation of a straight line whose distance of nearest approach to
the origin is b,
Next Order Substituting the zero order solution in the right hand side of (431)
gives

d2u

dφ2
+ u =

3M

b2
sin2 φ =

3M

2b2
(1 − cos 2φ) (434)

This has as solution

u =
1

b

(

sin φ +
M

2b
(3 + cos 2φ)

)

, (435)
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where we have chosen the integration constant to make the u symmetric about
φ = π

2 .
To find the deflection angle δ we note that initial asymptote of the orbit

corresponds to vanishing u and occurs for small φ = φ∞. We expand

u ≈ 1

b

(

φ +
2M

b
+ O(φ2)

)

, (436)

so the asymptote is at φ∞ = − 2M
b

.The total deflection is δ = −2φ∞ and hence,
restoring dimensions

δ =
4GM

c2b
. (437)

Numerically, if b is a solar radius and M a solar mass then a radio wave
grazing the sun is deflected by about 1.75 seconds of arc.

16.1.3 Application 3: Precession of the perihelion

We now set k = 1.We assume that the orbit is nearly circular.
To order zero we have

d2u

dφ2
+ u =

M

h2
(438)

which has solution

u =
1

l
(1 + e cos φ), l =

h2

M
. (439)

This is an ellipse of semi-latus rectum l ,eccentricity 0 ≤ e < 1 and semi major
axis a = l

1−e2 . The aphelion (furthest) distance is l
1−e

and the perihelion (

nearest) distance is l
1+e

.
We shall assume that the eccentricity is small and so the orbit is nearly

circular.

Next order
d2u

dφ2
+ u =

M

h2
+ 3Mu2. (440)

We set u = M
h2 + w and expand to lowest (linear) order in w ignoring quadratic

terms.
d2w

dφ2
+ w(1 − 6M2

h2
) =

3M3

h4
. (441)

This is a forced simple harmonic motion with frequency ω =
√

1 − 6M
h2 ≈

1 − 3M
h2 . Thus to next order

u =
1

l′
(1 + e′ cos ωφ) , (442)

where l′ ≈ l and e′ ≈ e are the corrected values of l and e which can easily
be calculated but which are not relevant for us. This is a precessing ellipse in
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which the furthest and nearest points, the aphelion and perihelion respectively,
overshoot or advance by an amount per revolution

2π

ω
− 2π ≈ 6πM2

h2
=

6πM

l
. (443)

Thus the perihelion advance is

6πGM

c2a(1 − e2)
. (444)

For Mercury we get about 43 seconds of arc per century. For the binary
pulsar we get about 4 degrees per year.
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