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SECTION I
1I Number Theory

Let p be a prime, and let N =

(
2n

n

)
for some positive integer n.

Show that if a prime power pk divides N for some k > 1, then pk 6 2n.

Given a positive real x, define ψ(x) =
∑

n6x Λ(n), where Λ(n) is the von Mangoldt

function, taking the value log p if n = pk for some prime p and integer k > 1, and 0
otherwise. Show that

ψ(x) =
∑

p6x, p prime

⌊
log x

log p

⌋
log p.

Deduce that for all integers n > 1, ψ(2n) > n log 2.

2H Topics in Analysis
(a) State Brouwer’s fixed-point theorem in 2 dimensions.

(b) State an equivalent theorem on retraction and explain (without detailed calcu-
lations) why it is equivalent.

(c) Suppose that A is a 3× 3 real matrix with strictly positive entries. By defining
an appropriate function f : 4→ 4, where

4 = {x ∈ R3 : x1 + x2 + x3 = 1, x1, x2, x3 > 0},

show that A has a strictly positive eigenvalue.

3K Coding and Cryptography
Describe the Rabin scheme for coding a message x as x2 modulo a certain integer N .

Describe the RSA encryption scheme with public key (N, e) and private key d.

[In both cases you should explain how you encrypt and decrypt.]

Give an advantage and a disadvantage that the Rabin scheme has over the RSA
scheme.

4F Automata and Formal Languages
State the pumping lemma for regular languages.

Which of the following languages over the alphabet {0, 1} are regular?

(i) {0i1i01 | i > 0}.

(ii) {ww |w ∈ {0, 1}∗} where w is the reverse of the word w.

(iii) {w ∈ {0, 1}∗ |w does not contain the subwords 01 or 10}.
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5J Statistical Modelling
The data frame data contains the daily number of new avian influenza cases in a

large poultry farm.

> rbind(head(data, 2), tail(data, 2))

Day Count

1 1 4

2 2 6

13 13 42

14 14 42

Write down the model being fitted by the R code below. Does the model seem to
provide a satisfactory fit to the data? Justify your answer.

The owner of the farm estimated that the size of the epidemic was initially doubling
every 7 days. Is that estimate supported by the analysis below? [You may need
log 2 ≈ 0.69.]

> fit <- glm(Count ~ Day, family = poisson, data)

> summary(fit)

Call:

glm(formula = Count ~ Day, family = poisson, data = data)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7298 -0.6639 0.0897 0.4473 1.4466

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.5624 0.1759 8.883 <2e-16 ***

Day 0.1658 0.0166 9.988 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 122.9660 on 13 degrees of freedom

Residual deviance: 9.9014 on 12 degrees of freedom

> pchisq(9.9014, 12, lower.tail = FALSE)

[1] 0.6246105

> plot(Count ~ Day, data)

> lines(data$Day, predict(fit, data, type = "response"))

[QUESTION CONTINUES ON THE NEXT PAGE]
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6E Mathematical Biology
A marine population grows logistically and disperses by diffusion. It is moderately

predated on up to a distance L from a straight coast. Beyond that distance, predation is
sufficiently excessive to eliminate the population. The density n(x, t) of the population at
a distance x < L from the coast satisfies

∂n

∂t
= rn

(
1 − n

K

)
− δn+D

∂2n

∂x2
, (∗)

subject to the boundary conditions

∂n

∂x
= 0 at x = 0 , n = 0 at x = L .

(a) Interpret the terms on the right-hand side of (∗), commenting on their depend-
ence on n. Interpret the boundary conditions.

(b) Show that a non-zero population is viable if r > δ and

L >
π

2

√
D

r − δ
.

Interpret these conditions.
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7E Further Complex Methods
(a) Explain in general terms the meaning of the Papperitz symbol

P





a b c
α β γ z
α′ β′ γ′



 .

State a condition satisfied by α, β, γ, α′, β′ and γ′. [You need not write down any
differential equations explicitly, but should provide explicit explanation of the meaning
of a, b, c, α, β, γ, α′, β′ and γ′.]

(b) The Papperitz symbol

P





1 −1 ∞
−m/2 m/2 n z
m/2 −m/2 1− n



 , (†)

where n,m are constants, can be transformed into

P





0 1 ∞
0 0 n

1− z
2

m −m 1− n




. (∗)

(i) Provide an explicit description of the transformations required to obtain (∗) from
(†).

(ii) One of the solutions to the P -equation that corresponds to (∗) is a hypergeometric
function F (a, b; c; z′). Express a, b, c and z′ in terms of n, m and z.

8D Classical Dynamics
Briefly describe a physical object (a Lagrange top) whose Lagrangian is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
−Mgl cos θ .

Explain the meaning of the symbols in this equation.

Write down three independent integrals of motion for this system, and show that
the nutation of the top is governed by the equation

u̇2 = f(u) ,

where u = cos θ and f(u) is a certain cubic function that you need not determine.
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9B Cosmology
A collection of N particles, with masses mi and positions xi, interact through a

gravitational potential

V =
∑

i<j

Vij = −
∑

i<j

Gmimj

|xi − xj |
.

Assume that the system is gravitationally bound, and that the positions xi and velocities
ẋi are bounded for all time. Further, define the time average of a quantity X by

X = lim
t→∞

1

t

∫ t

0
X(t′) dt′ .

(a) Assuming that the time average of the kinetic energy T and potential energy V
are well defined, show that

T = −1

2
V .

[
You should consider the quantity I =

1

2

N∑

i=1

mi xi · xi , with all xi measured relative to

the centre of mass.
]

(b) Explain how part (a) can be used, together with observations, to provide
evidence in favour of dark matter. [You may assume that time averaging may be replaced
by an average over particles.]

10D Quantum Information and Computation
Let H be a state space of dimension N with standard orthonormal basis {|k〉}

labelled by k ∈ ZN . Let QFT denote the quantum Fourier transform mod N and let S
denote the operation defined by S|k〉 = |k + 1 mod N〉.

(a) Introduce the basis {|χk〉} defined by |χk〉 = QFT−1|k〉. Show that each |χk〉 is
an eigenstate of S and determine the corresponding eigenvalue.

(b) By expressing a generic state |v〉 ∈ H in the {|χk〉} basis, show that QFT |v〉
and QFT(S|v〉) have the same output distribution if measured in the standard basis.

(c) Let A, r be positive integers with Ar = N , and let x0 be an integer with
0 6 x0 < r. Suppose that we are given the state

|ξ〉 =
1√
A

A−1∑

j=0

|x0 + jr mod N〉 ,

where x0 and r are unknown to us. Using part (b) or otherwise, show that a standard
basis measurement on QFT |ξ〉 has an output distribution that is independent of x0.
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SECTION II
11I Number Theory

(a) Let N > 3 be an odd integer and b an integer with (b,N) = 1. What does it
mean to say that N is a (Fermat) pseudoprime to base b?

Let b, k > 2 be integers. Show that if N > 3 is an odd composite integer dividing
bk − 1 and satisfying N ≡ 1 mod k, then N is a pseudoprime to base b.

(b) Fix b > 2. Let p be an odd prime not dividing b2 − 1, and let

n =
bp − 1

b− 1
and m =

bp + 1

b+ 1
.

Use the conclusion of part (a) to show that N = nm is a pseudoprime to base b. Deduce
that there are infinitely many pseudoprimes to base b.

(c) Let b, k > 2 be integers, and let n = p1 · · · pk, where p1, p2, . . . , pk are distinct
primes not dividing 2b. For each j = 1, 2, . . . , k, let rj = n/pj . Show that n is a
pseudoprime to base b if and only if for all j = 1, 2, . . . , k, the order of b modulo pj
divides rj − 1.

(d) By considering products of prime factors of 2k − 1 and 2k + 1 for primes k > 5,
deduce that there are infinitely many pseudoprimes to base 2 with two prime factors.

[Hint: You may assume that gcd(j, k) = 1 for j, k > 1 implies gcd(2j−1, 2k−1) = 1,
and that for k > 3, 2k + 1 is not a power of 3.]
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12H Topics in Analysis
Let x be irrational with nth continued fraction convergent

pn
qn

= a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

an−1 +
1

an
.

Show that (
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·

(
an−1 1

1 0

)(
an 1
1 0

)

and deduce that ∣∣∣∣
pn
qn

− x

∣∣∣∣ 6
1

qnqn+1
.

[You may quote the result that x lies between pn/qn and pn+1/qn+1. ]

We say that y is a quadratic irrational if it is an irrational root of a quadratic
equation with integer coefficients. Show that if y is a quadratic irrational, we can find an
M > 0 such that ∣∣∣∣

p

q
− y

∣∣∣∣ >
M

q2

for all integers p and q with q > 0.

Using the hypotheses and notation of the first paragraph, show that if the sequence
(an) is unbounded, x cannot be a quadratic irrational.
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13J Statistical Modelling
Let X be an n × p non-random design matrix and Y be a n-vector of random

responses. Suppose Y ∼ N(µ, σ2I), where µ is an unknown vector and σ2 > 0 is known.

(a) Let λ > 0 be a constant. Consider the ridge regression problem

β̂λ = arg min
β
‖Y −Xβ‖2 + λ‖β‖2 .

Let µ̂λ = Xβ̂λ be the fitted values. Show that µ̂λ = HλY , where

Hλ = X(XTX + λI)−1XT .

(b) Show that

E(‖Y − µ̂λ‖2) = ‖(I −Hλ)µ‖2 +
{
n− 2 trace(Hλ) + trace(H2

λ)
}
σ2.

(c) Let Y ∗ = µ + ε∗, where ε∗ ∼ N(0, σ2I) is independent of Y . Show that
‖Y − µ̂λ‖2 + 2σ2trace(Hλ) is an unbiased estimator of E(‖Y ∗ − µ̂λ‖2).

(d) Describe the behaviour (monotonicity and limits) of E(‖Y ∗− µ̂λ‖2) as a function
of λ when p = n and X = I. What is the minimum value of E(‖Y ∗ − µ̂λ‖2)?

14E Mathematical Biology
The spatial density n(x, t) of a population at location x and time t satisfies

∂n

∂t
= f(n) +D

∂2n

∂x2
, (∗)

where f(n) = −n(n− r)(n− 1), 0 < r < 1 and D > 0.

(a) Give a biological example of the sort of phenomenon that this equation describes.

(b) Show that there are three spatially homogeneous and stationary solutions to
(∗), of which two are linearly stable to homogeneous perturbations and one is linearly
unstable.

(c) For r = 1
2 , find the stationary solution to (∗) subject to the conditions

lim
x→−∞

n(x) = 1, lim
x→∞

n(x) = 0 and n(0) =
1

2
.

(d) Write down the differential equation that is satisfied by a travelling-wave solution
to (∗) of the form n(x, t) = u(x − ct). Let n0(x) be the solution from part (c). Verify
that n0(x− ct) satisfies this differential equation for r 6= 1

2 , provided the speed c is chosen
appropriately. [Hint: Consider the change to the equation from part (c).]

(e) State how the sign of c depends on r, and give a brief qualitative explanation
for why this should be the case.
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15D Classical Dynamics
(a) Let (q,p) be a set of canonical phase-space variables for a Hamiltonian system

with n degrees of freedom. Define the Poisson bracket {f, g} of two functions f(q,p) and
g(q,p). Write down the canonical commutation relations that imply that a second set
(Q,P) of phase-space variables is also canonical.

(b) Consider the near-identity transformation

Q = q + δq , P = p + δp ,

where δq(q,p) and δp(q,p) are small. Determine the approximate forms of the canonical
commutation relations, accurate to first order in δq and δp. Show that these are satisfied
when

δq = ε
∂F

∂p
, δp = −ε ∂F

∂q
,

where ε is a small parameter and F (q,p) is some function of the phase-space variables.

(c) In the limit ε → 0 this near-identity transformation is called the infinitesimal
canonical transformation generated by F . Let H(q,p) be an autonomous Hamiltonian.
Show that the change in the Hamiltonian induced by the infinitesimal canonical trans-
formation is

δH = −ε{F,H} .
Explain why F is an integral of motion if and only if the Hamiltonian is invariant under
the infinitesimal canonical transformation generated by F .

(d) The Hamiltonian of the gravitational N -body problem in three-dimensional
space is

H =
1

2

N∑

i=1

|pi|2
2mi

−
N−1∑

i=1

N∑

j=i+1

Gmimj

|ri − rj |
,

where mi, ri and pi are the mass, position and momentum of body i. Determine the form
of F and the infinitesimal canonical transformation that correspond to the translational
symmetry of the system.

16G Logic and Set Theory
Write down the Axiom of Foundation.

What is the transitive closure of a set x? Prove carefully that every set x has a
transitive closure. State and prove the principle of ∈-induction.

Let (V,∈) be a model of ZF. Let F : V → V be a surjective function class such
that for all x, y ∈ V we have F (x) ∈ F (y) if and only if x ∈ y. Show, by ∈-induction or
otherwise, that F is the identity.
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17G Graph Theory
State and prove Hall’s theorem, giving any definitions required by the proof (e.g. of

an M -alternating path).

Let G = (V,E) be a (not necessarily bipartite) graph, and let γ(G) be the size of
the largest matching in G. Let β(G) be the smallest k for which there exist k vertices
v1, . . . , vk ∈ V such that every edge in G is incident with at least one of v1, . . . , vk. Show
that γ(G) 6 β(G) and that β(G) 6 2γ(G). For each positive integer k, find a graph G
with β(G) = 2k and γ(G) = k. Determine β(G) and γ(G) when G is the Turan graph
T3(30) on 30 vertices.

By using Hall’s theorem, or otherwise, show that if G is a bipartite graph then
γ(G) = β(G).

Define the chromatic index χ′(G) of a graph G. Prove that if n = 2r with r > 1
then χ′(Kn) = n− 1.

18I Galois Theory
Let L be a field, and G a group which acts on L by field automorphisms.

(a) Explain the meaning of the phrase in italics in the previous sentence.

Show that the set LG of fixed points is a subfield of L.

(b) Suppose that G is finite, and set K = LG. Let α ∈ L. Show that α is algebraic
and separable over K, and that the degree of α over K divides the order of G.

Assume that α is a primitive element for the extension L/K, and that G is a
subgroup of Aut(L). What is the degree of α over K? Justify your answer.

(c) Let L = C(z), and let ζn be a primitive nth root of unity in C for some integer
n > 1. Show that the C-automorphisms σ, τ of L defined by

σ(z) = ζnz, τ(z) = 1/z

generate a group G isomorphic to the dihedral group of order 2n.

Find an element w ∈ L for which LG = C(w).

Part II, Paper 4 [TURN OVER]



12

19I Representation Theory
(a) Define the group S1. Sketch a proof of the classification of the irreducible

continuous representations of S1. Show directly that the characters obey an orthogonality
relation.

(b) Define the group SU(2).

(i) Show that there is a bijection between the conjugacy classes in G = SU(2)
and the subset [−1, 1] of the real line. [If you use facts about a maximal torus
T , you should prove them.]

(ii) Write Ox for the conjugacy class indexed by an element x, where −1 < x < 1.
Show that Ox is homeomorphic to S2. [Hint: First show that Ox is in bijection
with G/T .]

(iii) Let t : G→ [−1, 1] be the parametrisation of conjugacy classes from part (i).
Determine the representation of G whose character is the function g 7→ 8t(g)3.

20G Number Fields
(a) Compute the class group of K = Q(

√
30). Find also the fundamental unit of K,

stating clearly any general results you use.

[The Minkowski bound for a real quadratic field is |dK |1/2/2. ]

(b) Let K = Q(
√
d) be real quadratic, with embeddings σ1, σ2 ↪→ R. An element

α ∈ K is totally positive if σ1(α) > 0 and σ2(α) > 0. Show that the totally positive
elements of K form a subgroup of the multiplicative group K∗ of index 4.

Let I, J ⊂ OK be non-zero ideals. We say that I is narrowly equivalent to J if
there exists a totally positive element α of K such that I = αJ . Show that this is an
equivalence relation, and that the equivalence classes form a group under multiplication.
Show also that the order of this group equals

{
the class number hK of K if the fundamental unit of K has norm −1,
2hK otherwise.

21F Algebraic Topology
(a) Define the Euler characteristic of a triangulable space X.

(b) Let Σg be an orientable surface of genus g. A map π : Σg → S2 is a double-
branched cover if there is a set Q = {p1, . . . , pn} ⊆ S2 of branch points, such that the
restriction π : Σg \ π−1(Q) → S2 \ Q is a covering map of degree 2, but for each p ∈ Q,
π−1(p) consists of one point. By carefully choosing a triangulation of S2, use the Euler
characteristic to find a formula relating g and n.
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22H Linear Analysis
(a) Let (H1, 〈·, ·〉1), (H2, 〈·, ·〉2) be two Hilbert spaces, and T : H1 → H2 be

a bounded linear operator. Show that there exists a unique bounded linear operator
T ∗ : H2 → H1 such that

〈Tx1, x2〉2 = 〈x1, T ∗x2〉1 , ∀x1 ∈ H1, x2 ∈ H2 .

(b) Let H be a separable Hilbert space. We say that a sequence (ei) is a frame of
H if there exists A,B > 0 such that

∀x ∈ H, A‖x‖2 6
∑

i>1

|〈x, ei〉|2 6 B‖x‖2.

State briefly why such a frame exists. From now on, let (ei) be a frame of H. Show that
Span{ei} is dense in H.

(c) Show that the linear map U : H → `2 given by U(x) =
(
〈x, ei〉

)
i>1

is bounded
and compute its adjoint U∗.

(d) Assume now that (ei) is a Hilbertian (orthonormal) basis of H and let a ∈ H.
Show that the Hilbert cube Ca =

{
x ∈ H such that ∀i > 1, |〈x, ei〉| 6 |〈a, ei〉|

}
is a

compact subset of H.

23H Analysis of Functions
Fix 1 < p <∞ and let q satisfy p−1 + q−1 = 1.

(a) Let (fj) be a sequence of functions in Lp(Rn). For f ∈ Lp(Rn), what is meant
by (i) fj → f in Lp(Rn) and (ii) fj ⇀ f in Lp(Rn)? Show that if fj ⇀ f , then

‖f‖Lp 6 lim inf
j→∞

‖fj‖Lp .

(b) Suppose that (gj) is a sequence with gj ∈ Lp(Rn), and that there exists K > 0
such that ‖gj‖Lp 6 K for all j. Show that there exists g ∈ Lp(Rn) and a subsequence(
gjk
)∞
k=1

, such that for any sequence (hk) with hk ∈ Lq(Rn) and hk → h ∈ Lq(Rn), we
have

lim
k→∞

∫

Rn

gjkhk dx =

∫

Rn

gh dx.

Give an example to show that the result need not hold if the condition hk → h is replaced
by hk ⇀ h in Lq(Rn).
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24I Algebraic Geometry
Let C be a smooth irreducible projective algebraic curve over an algebraically closed

field.

Let D be an effective divisor on C. Prove that the vector space L(D) of rational
functions with poles bounded by D is finite dimensional.

Let D and E be linearly equivalent divisors on C. Exhibit an isomorphism between
the vector spaces L(D) and L(E).

What is a canonical divisor on C? State the Riemann–Roch theorem and use it to
calculate the degree of a canonical divisor in terms of the genus of C.

Prove that the canonical divisor on a smooth cubic plane curve is linearly equivalent
to the zero divisor.

25F Differential Geometry
Let I ⊂ R be an interval, and S ⊂ R3 be a surface. Assume that α : I → S is a

regular curve parametrised by arc-length. Define the geodesic curvature of α. What does
it mean for α to be a geodesic curve?

State the global Gauss–Bonnet theorem including boundary terms.

Suppose that S ⊂ R3 is a surface diffeomorphic to a cylinder. How large can the
number of simple closed geodesics on S be in each of the following cases?

(i) S has Gaussian curvature everywhere zero;

(ii) S has Gaussian curvature everywhere positive;

(iii) S has Gaussian curvature everywhere negative.

In cases where there can be two or more simple closed geodesics, must they always be
disjoint? Justify your answer.

[A formula for the Gaussian curvature of a surface of revolution may be used without
proof if clearly stated. You may also use the fact that a piecewise smooth curve on a
cylinder without self-intersections either bounds a domain homeomorphic to a disc or is
homotopic to the waist-curve of the cylinder. ]

26H Probability and Measure
Let (Ω,F ,P) be a probability space. Show that for any sequence An ∈ F satisfying∑∞

n=1 P(An) <∞ one necessarily has P(lim supnAn) = 0.

Let (Xn : n ∈ N) and X be random variables defined on (Ω,F ,P). Show that
Xn → X almost surely as n→ ∞ implies that Xn → X in probability as n→ ∞.

Show that Xn → X in probability as n → ∞ if and only if for every subsequence
Xn(k) there exists a further subsequence Xn(k(r)) such that Xn(k(r)) → X almost surely as
r → ∞.
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27K Applied Probability
Let

(
X(t)

)
t>0

be a continuous-time Markov process with state space I = {1, . . . , n}
and generator Q = (qij)i,j∈I satisfying qij = qji for all i, j ∈ I. The local time up to time
t > 0 of X is the random vector L(t) =

(
Li(t)

)
i∈I ∈ Rn defined by

Li(t) =

∫ t

0
1X(s)=i ds (i ∈ I).

(a) Let f : I × Rn → R be any function that is differentiable with respect to its
second argument, and set

ft(i, `) = Eif
(
X(t), `+ L(t)

)
, (i ∈ I, ` ∈ Rn).

Show that
∂

∂t
ft(i, `) = Mft(i, `),

where

Mf(i, `) =
∑

j∈I
qijf(j, `) +

∂

∂`i
f(i, `).

(b) For y ∈ Rn, write y2 = (y2i )i∈I ∈ [0,∞)n for the vector of squares of the
components of y. Let f : I × Rn → R be a function such that f(i, `) = 0 whenever∑

j |`j | > T for some fixed T . Using integration by parts, or otherwise, show that for all i

−
∫

Rn

exp
(
1
2y

TQy
)
yi

n∑

j=1

yjMf(j, 12y
2) dy =

∫

Rn

exp
(
1
2y

TQy
)
f(i, 12y

2) dy ,

where yTQy denotes
∑

k,m∈I
ykqkmym.

(c) Let g : Rn → R be a function with g(`) = 0 whenever
∑

j |`j | > T for some fixed
T . Given t > 0, j ∈ I, now let

f(i, `) = Ei

[
g
(
`+ L(t)

)
1X(t)=j

]
,

in part (b) and deduce, using part (a), that

∫

Rn

exp
(
1
2y

TQy
)
yiyjg(12y

2) dy

=

∫

Rn

exp
(
1
2y

TQy
)(∫ ∞

0
Ei

[
1X(t)=j g

(
1
2y

2 + L(t)
)]
dt

)
dy.

[You may exchange the order of integrals and derivatives without justification.]
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28J Principles of Statistics
Suppose that X | θ ∼ Poisson(θ), θ > 0, and suppose the prior π on θ is a gamma

distribution with parameters α > 0 and β > 0. [Recall that π has probability density
function

f(z) =
βα

Γ(α)
zα−1e−βz, z > 0,

and that its mean and variance are α/β and α/β2, respectively. ]

(a) Find the π-Bayes estimator for θ for the quadratic loss, and derive its quadratic
risk function.

(b) Suppose we wish to estimate µ = e−θ = Pθ(X = 0). Find the π-Bayes estimator
for µ for the quadratic loss, and derive its quadratic risk function. [Hint: The moment
generating function of a Poisson(θ) distribution is M(t) = exp

(
θ(et − 1)

)
for t ∈ R, and

that of a Gamma(α, β) distribution is M(t) = (1− t/β)−α for t < β.]

(c) State a sufficient condition for an admissible estimator to be minimax, and give
a proof of this fact.

(d) For each of the estimators in parts (a) and (b), is it possible to deduce using the
condition in (c) that the estimator is minimax for some value of α and β? Justify your
answer.
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29K Stochastic Financial Models
(a) What does it mean to say that a stochastic process is a Brownian motion? Show

that, if (Wt)t>0 is a continuous Gaussian process such that E(Wt) = 0 and E(WsWt) = s
for all 0 6 s 6 t, then (Wt)t>0 is a Brownian motion.

For the rest of the question, let (Wt)t>0 be a Brownian motion.

(b) Let Ŵ0 = 0 and Ŵt = tW1/t for t > 0. Show that (Ŵt)t>0 is a Brownian motion.
[You may use without proof the Brownian strong law of large numbers: Wt/t→ 0 almost
surely as t→∞. ]

(c) Fix constants c ∈ R and T > 0. Show that

E
[
f
(
(Wt + ct)06t6T

)]
= E

[
exp

(
cWT−1

2c
2T
)
f
(
(Wt)06t6T

)]
,

for any bounded function f : C[0, T ]→ R of the form

f(ω) = g
(
ω(t1), . . . , ω(tn)

)
,

for some fixed g and fixed 0 < t1 < . . . < tn = T , where C[0, T ] is the space of continuous
functions on [0, T ]. [If you use a general theorem from the lectures, you should prove it.]

(d) Fix constants x ∈ R and T > 0. Show that

E
[
f
(
(Wt + x)t>T

)]
= E

[
exp

(
(x/T )WT−1

2(x2/T )
)
f
(
(Wt)t>T

)]
,

for any bounded function f : C[T,∞)→ R. [In this part you may use the Cameron–Martin
theorem without proof. ]
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30J Mathematics of Machine Learning
Let D = (xi, yi)

n
i=1 be a dataset of n input–output pairs lying in Rp × [−M,M ]

for M ∈ R. Describe the random-forest algorithm as applied to D using decision trees
(T̂ (b))Bb=1 to produce a fitted regression function frf . [You need not explain in detail
the construction of decision trees, but should describe any modifications specific to the
random-forest algorithm.]

Briefly explain why for each x ∈ Rp and b = 1, . . . , B, we have T̂ (b)(x) ∈ [−M,M ].

State the bounded-differences inequality.

Treating D as deterministic, show that with probability at least 1− δ,

sup
x∈Rp

|frf(x)− µ(x)| 6M

√
2 log(1/δ)

B
+ E

(
sup
x∈Rp

|frf(x)− µ(x)|
)
,

where µ(x) := Efrf(x).
[
Hint: Treat each T̂ (b) as a random variable taking values in an appropriate space

Z (of functions), and consider a function G satisfying

G(T̂ (1), . . . , T̂ (B)) = sup
x∈Rp

|frf(x)− µ(x)|.
]

31A Asymptotic Methods
(a) Classify the nature of the point at ∞ for the ordinary differential equation

y′′ +
2

x
y′ +

(
1

x
− 1

x2

)
y = 0 . (∗)

(b) Find a transformation from (∗) to an equation of the form

u′′ + q(x)u = 0 , (†)

and determine q(x) .

(c) Given u(x) satisfies (†), use the Liouville–Green method to find the first three
terms in an asymptotic approximation as x → ∞ for u(x), verifying the consistency of
any approximations made.

(d) Hence obtain corresponding asymptotic approximations as x → ∞ of two
linearly independent solutions y(x) of (∗).
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32A Dynamical Systems
(a) A continuous map F of an interval into itself has a periodic orbit of period 3.

Prove that F also has periodic orbits of period n for all positive integers n.

(b) What is the minimum number of distinct orbits of F of periods 2, 4 and 5?
Explain your reasoning with a directed graph. [Formal proof is not required.]

(c) Consider the piecewise linear map F : [0, 1] → [0, 1] defined by linear segments
between F (0) = 1

2 , F (12) = 1 and F (1) = 0. Calculate the orbits of periods 2, 4 and 5
that are obtained from the directed graph in part (b).

[In part (a) you may assume without proof:

(i) If U and V are non-empty closed bounded intervals such that V ⊆ F (U)
then there is a closed bounded interval K ⊆ U such that F (K) = V .

(ii) The Intermediate Value Theorem. ]

33B Principles of Quantum Mechanics
(a) A quantum system has Hamiltonian H = H0 + V (t). Let {|n〉}n∈N0 be an

orthonormal basis of H0 eigenstates, with corresponding energies En = ~ωn. For t < 0,
V (t) = 0 and the system is in state |0〉. Calculate the probability that it is found to be in
state |1〉 at time t > 0, correct to lowest non-trivial order in V .

(b) Now suppose {|0〉, |1〉} form a basis of the Hilbert space, with respect to which

(
〈0|H|0〉 〈0|H|1〉
〈1|H|0〉 〈1|H|1〉

)
=

(
~ω0 ~vΘ(t)eiωt

~vΘ(t)e−iωt ~ω1

)
,

where Θ(t) is the Heaviside step function and v is a real constant. Calculate the exact
probability that the system is in state |1〉 at time t. For which frequency ω is this
probability maximized?
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34B Applications of Quantum Mechanics
(a) Consider the nearly free electron model in one dimension with mass m and

periodic potential V (x) = λU(x) with 0 < λ� 1 and

U(x) =
∞∑

l=−∞
Ul exp

(
2πi

a
lx

)
.

Ignoring degeneracies, the energy spectrum of Bloch states with wavenumber k is

E(k) = E0(k) + λ〈k|U |k〉+ λ2
∑

k′ 6=k

〈k|U |k′〉〈k′|U |k〉
E0(k)− E0(k′)

+O(λ3) ,

where {|k〉} are normalized eigenstates of the free Hamiltonian with wavenumber k. What
is E0 in this formula?

If we impose periodic boundary conditions on the wavefunctions, ψ(x) = ψ(x+ L)
with L = Na and N a positive integer, what are the allowed values of k and k′? Determine
〈k|U |k′〉 for these allowed values.

(b) State when the above expression for E(k) ceases to be a good approximation and
explain why. Quoting any result you need from degenerate perturbation theory, calculate
to O(λ) the location and width of the band gaps.

(c) Determine the allowed energy bands for each of the potentials

(i) V (x) = 2λ cos

(
2πx

a

)
,

(ii) V (x) = λa

∞∑

n=−∞
δ(x− na) .

(d) Briefly discuss a macroscopic physical consequence of the existence of energy
bands.
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35C Statistical Physics
(a) Explain what is meant by a first-order phase transition and a second-order phase

transition.

(b) Explain why the (Helmholtz) free energy is the appropriate thermodynamic
potential to consider at fixed T , V and N .

(c) Consider a ferromagnet with free energy

F (T,m) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4 ,

where T is the temperature, m is the magnetization, and a, b, Tc > 0 are constants.

Find the equilibrium value of m at high and low temperatures. Hence, evaluate
the equilibrium thermodynamic free energy as a function of T and compute the entropy
and heat capacity. Determine the jump in the heat capacity and identify the order of the
phase transition.

(d) Now consider a ferromagnet with free energy

F (T,m) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4 +

c

6
m6 ,

where a, b, c, Tc are constants with a, c, Tc > 0, but b 6 0.

Find the equilibrium value of m at high and low temperatures. What is the order
of the phase transition?

For b = 0 determine the behaviour of the heat capacity at high and low temperat-
ures.
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36C Electrodynamics
(a) Define the electric displacement D(x, t) for a medium which exhibits a linear

response with polarisation constant ε to an applied electric field E(x, t) with polarisation
constant ε. Write down the effective Maxwell equation obeyed by D(x) in the time-
independent case and in the absence of any additional mobile charges in the medium.
Describe appropriate boundary conditions for the electric field at an interface between two
regions with differing values of the polarisation constant. [You should discuss separately
the components of the field normal to and tangential to the interface.]

(b) Consider a sphere of radius a, centred at the origin, composed of dielectric
material with polarisation constant ε placed in a vacuum and subjected to a constant,
asymptotically homogeneous, electric field, E(x, t) = E(x) with E(x) → E0 as |x| → ∞.
Using the ansatz

E(x) =

{
αE0 , |x| < a ,

E0 +
(
β(x̂ ·E0)x̂ + δE0

)
/|x|3 , |x| > a ,

with constants α, β and δ to be determined, find a solution to Maxwell’s equations with
appropriate boundary conditions at |x| = a.

(c) By comparing your solution with the long-range electric field due to a dipole
consisting of electric charges ±q located at displacements ±d/2 find the induced electric
dipole moment of the dielectric sphere.
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37C General Relativity
(a) A flat (k=0), isotropic and homogeneous universe has metric gαβ given by

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (†)

(i) Show that the non-vanishing Christoffel symbols and Ricci tensor components
are

Γ0
ii = a ȧ , Γi0i = Γii0 =

ȧ

a
, R00 = −3

ä

a
, Rii = a ä+ 2ȧ2 ,

where dots are time derivatives and i ∈ {1, 2, 3} (no summation assumed).

(ii) Derive the first-order Friedmann equation from the Einstein equations,
Gαβ + Λgαβ = 8πTαβ.

(b) Consider a flat universe described by (†) with Λ = 0 in which late-time accel-
eration is driven by “phantom” dark energy obeying an equation of state with pressure
Pph = wρph, where w < −1 and the energy density ρph > 0. The remaining matter is
dust, so we have ρ = ρph +ρdust with each component separately obeying ρ̇ = −3 ȧa(ρ+P ).

(i) Calculate an approximate solution for the scale factor a(t) that is valid at late
times. Show that the asymptotic behaviour is given by a Big Rip, that is, a
singularity in which a→∞ at some finite time t∗.

(ii) Sketch a diagram of the scale factor a as a function of t for a convenient choice
of w, ensuring that it includes (1) the Big Bang, (2) matter domination, (3)
phantom-energy domination, and (4) the Big Rip. Label these epochs and
mark them on the axes.

(iii) Most reasonable classical matter fields obey the null energy condition, which
states that the energy–momentum tensor everywhere satisfies Tαβ V

αV β > 0
for any null vector V α. Determine if this applies to phantom energy.

[
The energy–momentum tensor for a perfect fluid is Tαβ = (ρ+ P )uαuβ + Pgαβ

]
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38A Fluid Dynamics II
Consider a steady axisymmetric flow with components (−αr, v(r), 2αz) in cyl-

indrical polar coordinates (r, θ, z), where α is a positive constant. The fluid has density
ρ and kinematic viscosity ν.

(a) Briefly describe the flow and confirm that it is incompressible.

(b) Show that the vorticity has one component ω(r), in the z direction. Write down
the corresponding vorticity equation and derive the solution

ω = ω0e
−αr2/(2ν) .

Hence find v(r) and show that it has a maximum at some finite radius r∗, indicating how
r∗ scales with ν and α.

(c) Find an expression for the net advection of angular momentum, ρrv, into the
finite cylinder defined by r 6 r0 and −z0 6 z 6 z0. Show that this is always positive and
asymptotes to the value

8πρz0ω0ν
2

α
as r0 →∞.

(d) Show that the torque exerted on the cylinder of part (c) by the exterior flow
is always negative and demonstrate that it exactly balances the net advection of angular
momentum. Comment on why this has to be so.

[
You may assume that for a flow (u, v, w) in cylindrical polar coordinates

erθ =
r

2

∂

∂r

(v
r

)
+

1

2r

∂u

∂θ
, eθz =

1

2r

∂w

∂θ
+

1

2

∂v

∂z
, erz =

1

2

∂u

∂z
+

1

2

∂w

∂r

and ω =
1

r

∣∣∣∣∣∣

er reθ ez
∂/∂r ∂/∂θ ∂/∂z
u rv w

∣∣∣∣∣∣
.

]
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39A Waves
A plane shock is moving with speed U into a perfect gas. Ahead of the shock the

gas is at rest with pressure p1 and density ρ1, while behind the shock the velocity, pressure
and density of the gas are u2, p2 and ρ2 respectively.

(a) Write down the Rankine–Hugoniot relations across the shock, briefly explaining
how they arise.

(b) Show that

ρ1
ρ2

=
2c21 + (γ − 1)U2

(γ + 1)U2
,

where c21 = γp1/ρ1 and γ is the ratio of the specific heats of the gas.

(c) Now consider a change of frame such that the shock is stationary and the gas has
a component of velocity U parallel to the shock on both sides. Deduce that a stationary
shock inclined at a 45 degree angle to an incoming stream of Mach number M =

√
2U/c1

deflects the flow by an angle δ given by

tan δ =
M2 − 2

γM2 + 2
.

[
Note that tan(α− β) =

tanα− tanβ

1 + tanα tanβ
.
]

40E Numerical Analysis
(a) Show that if A and B are real matrices such that both A and A−B−BT are

symmetric positive definite, then the spectral radius of H = −(A−B)−1B is strictly less
than 1.

(b) Consider the Poisson equation∇2u = f (with zero Dirichlet boundary condition)
on the unit square, where f is some smooth function. Given m ∈ N and an equidistant
grid on the unit square with stepsize h = 1/(m + 1), the standard five-point method is
given by

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j = h2fi,j , i, j = 1, . . . ,m , (∗)

where fi,j = f(ih, jh) and u0,j = um+1,j = ui,0 = ui,m+1 = 0. Equation (∗) can be written

as a linear system Ax = b, where A ∈ Rm2×m2
and b ∈ Rm2

both depend on the chosen
ordering of the grid points.

Use the result in part (a) to show that the Gauss–Seidel method converges for the
linear system Ax = b described above, regardless of the choice of ordering of the grid
points.

[You may quote convergence results – based on the spectral radius of the iteration
matrix – mentioned in the lecture notes.]

END OF PAPER
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