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Zhaoyang Liu, Heqing Huang, Juha Siikamäki, Jintao Xu 

This study explores a spatial piecewise approach as a means to facilitate the hedonic 

valuation of per unit area of urban green spaces at different distances from a property. 

In particular, we adapted the step function and regression spline estimation methods 

to statistically and visually identify the spatial boundary where green spaces cease to 

be capitalised into house prices. In comparison, existing literature on the hedonic 

prices of green spaces, despite being extensive, has mostly focused on the proximity to 

and views of urban green spaces, instead of the area of green spaces. Yet arguably, the 

hedonic price of the area of green spaces can be more relevant to cost-benefit analysis 

for urban land use decision making, which typically concerns a particular area of land. 

The empirical approach proposed in this study was applied to a rich census dataset 

collected from Beijing. Our hedonic price estimates are robust to an instrumental 

variable estimator and a novel matching algorithm that minimises covariate imbalance 

for a continuous treatment variable (the area of green spaces).  

 

Key words: Urban green space; Hedonic pricing; Spatial piecewise regression; 

Regression splines; Model selection; Instrumental variable estimation; Covariate 

balancing matching for continuous treatment 
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Urban parks and other green amenities provide metropolitans with spiritual, aesthetic, 

educational and recreational benefits, as well as many other desirable ecosystem 

services (Millennium Ecosystem Assessment, 2005). Nevertheless, creating green 

amenities in compact urban areas typically incurs prohibitively expensive costs, in 

light of fiercely competing demands for land. Economically optimal decision making in 

this regard often rests upon a quantitative understanding of the benefits and costs 

attached to urban green amenities. The opportunity costs tend to be more tangible, 

such as investment in green infrastructures (e.g. trees, paddocks, exercise equipment, 

playgrounds and other facilities) and foregone profits of alternative land uses (e.g. 

residential and commercial developments). In comparison, monetary value of the 

benefits is often largely obscure and much debated. Urban green amenities are usually 

open to visitors free of charge, which precludes a market price as a monetary 

measurement of the benefits accruing to users. Take Beijing as an example. In 2017, the 

entire municipality’s fixed investment (sourced from both public and private sectors) 

in green infrastructures ran to CNY 11.8 billion or USD 1.8 billion (Beijing Municipal 

Bureau of Statistics, 2018). This sum represents 28% of the municipality’s public 

spending on healthcare in the same year (Beijing Municipal Bureau of Statistics, 2018). 

Yet, it remains unclear whether such heavy investments in urban green spaces are 

economically worthwhile, owing to the absence of a solid monetary valuation of the 

ensuing benefits.   

A variety of non-market valuation techniques have been developed to overcome 

this hurdle. Hedonic pricing is one of the tried and trusted methods. It describes green 

amenities surrounding a property as one of its attributes, and seeks to discern the 

implicit value of green amenities via their quantitative relation to property prices. 

There has been a vast array of existing literature dedicated to this subject (see 

Bockarjova et al. 2020, Brander et al. 2011, Kovacs et al. 2022 and Perino et al. 2014 for 

systematic reviews). Hedonic studies from Beijing that involve green amenities are not 

unprecedented either (e.g. Dong et al. 2016, Mei et al. 2019, 2021, Wu et al. 2014, Zhang 

et al. 2020, Zheng et al. 2016 and Zheng and Kahn 2008). Despite that, they have mostly 
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valued the proximity to the nearest green space, namely the value added to a house if it 

is located in closer proximity to a green space. On pragmatic grounds, it might be 

difficult to utilise this measurement to derive an aggregate value for a particular green 

space,1 yet understanding the total benefits of a green space is essential for the cost-

benefit analysis of urban land use. Recent developments in applying Geographical 

Information Systems (GIS) and machine learning to environmental valuation have 

facilitated hedonic valuations of the views of green amenities (e.g. Black 2018, Cavailhès 

et al. 2009, Daams et al. 2016, Walls et al. 2015 and Wu et al. 2022). This value is more 

amenable to aggregation, particularly if views are measured as a continuous variable 

(such as the area of green amenities in a property’s view shed). Even so, this is likely to 

be an incomplete estimate of the total benefits of green amenities, since such benefits 

arise from both passive aesthetic values and other active onsite use values. The latter 

values may be better captured by the proximity to green amenities. Yet, attempting to 

aggregate both valuations undoubtedly adds an additional layer of complexity.  

In comparison, valuing the area (or size) of green space would produce a more 

comprehensive measurement of the capitalisation of green amenities in property prices. 

In particular, it would directly inform decision making in urban planning, by 

providing a straight answer on the hedonic price of a green space that occupies a 

certain land area. However, this practice is notably less common in existing literature. 

A pivotal technical hurdle appears to be associated with a model specification problem 

as to which green spaces should enter the hedonic price model. Intuition suggests that 

the value of a property is less likely to be affected by a sufficiently distant green space. 

This implies that perhaps the value of a property is only affected by green spaces 

within a ‘threshold’ or maximum distance, and it is these green spaces that should 

enter the hedonic price model. In a few rare examples of hedonic studies valuing the 

size of green amenities, the most common strategy was to adopt a predetermined 

spatial bound, such as a predetermined radius (e.g. Albouy et al. 2020, Czembrowski 

and Kronenberg 2016, Netusil et al. 2010 and Waltert and Schläpfer 2010) or a census 

 
1 One could hypothetically remove or create a green space and recalculate the distance between each 

property and its nearest green space, which would give rise to the aggregate impact on property values 

attributable to this particular green space. But this might be an incomplete estimate of the hedonic price of 

the green space, which relates to our subsequent discussion of the hedonic pricing of the views of green 

amenities.  
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block (e.g. Cho et al. 2008 and Netusil et al. 2014). Two other cases (i.e. Conway et al. 

2010 and Sander et al. 2010) undertook what this study refers to as a spatial piecewise 

analysis. They delineated a series of concentric rings surrounding each house and 

measured the green space coverage within each doughnut-shaped area. All these green 

space coverage variables entered the hedonic pricing model. It was assumed that the 

estimated hedonic prices of green spaces beyond a certain threshold distance would 

become statistically equal to zero, and this threshold distance would be regarded as the 

spatial bound of the hedonic valuation. This can be formalised into a space-wise 

variant of the ‘step function’ approach. In regression settings, the conventional step 

function approach typically involves breaking an explanatory variable into bins and 

fitting a constant in each bin (James, Witten, Hastie, & Tibshirani, 2017). In contrast, the 

spatial step function approach assumes that the hedonic price per unit area of green 

spaces (or the coefficient on the area of green spaces) can be expressed as a step 

function of their distance from the property, and therefore differs from the standard 

practice where the dependent variable (house prices in this case) is assumed to be a 

step function of an explanatory variable (e.g. area of green spaces). A similar variant of 

the step function approach was adopted by Schlenker and Roberts (2009), who 

investigated the nonlinear effects of temperature on agricultural production via 

regressing crop yields against accumulated growth time at different temperatures. 

Henceforth, we will borrow the terminology ‘step function’ to refer to this model 

specification.  

However, this approach can hardly avoid adopting arbitrary cut-off levels of the 

statistical significance of the estimated hedonic prices to decide the threshold radius 

where green spaces cease to contribute to house prices, which may become 

increasingly debatable amid a recent flood of cautions against statistical studies basing 

conclusions primarily on arbitrary cut-off levels of statistical significance (e.g. Ferraro 

and Shukla 2020 and Wasserstein et al. 2019). Moreover, the spatial thresholds derived 

using the spatial piecewise approach by Conway et al. and Sander et al. are counter-

intuitively small (300ft and 250m respectively). In contrast, other studies valuing the 

proximity to green space found that the association between house prices and 

proximity to green space would not disappear up until 2, 3.2 or 7km away (Daams et 
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al., 2016; Mansfield, Pattanayak, McDow, McDonald, & Halpin, 2005; Melichar & 

Kaprová, 2013). Admittedly, urban residents’ perceptions of the size of and proximity 

to green space could be inherently different. But the striking difference still provokes a 

suspicion that that the estimated hedonic prices of the size of green amenities beyond 

the purported bounds (300ft and 250m) may be under-identified, owing to high 

correlation among green space coverage variables for neighbouring locations (Irwin, 

2002). Perhaps this is what underlies the paucity of hedonic valuations of the size of 

green amenities.  

In addition to the step function approach, this study proposes another empirical 

strategy that circumvents these pitfalls using regression splines and model selection 

procedures. We assume that hedonic prices of green spaces at different distances 

within the threshold distance is a polynomial function of distance, whereas the hedonic 

prices of green spaces beyond the threshold distance are statistically equal to zero and 

no longer vary along distance. This represents a fitted curve consisting of polynomial 

splines before the last knot and a right tail restricted to be flat, which can be derived 

using a regression model (Orsini & Greenland, 2011; Wegman & Wright, 1983). We 

next loop over all possible threshold distances up to 10km with a step length of 100m 

in search of the preferred threshold distance, using both within-sample and out-of-

sample predictions for model assessment and selection. This allows us to reparametrise 

the hedonic price model by approximating hedonic prices at different distances as a 

piecewise polynomial function of distance, and thereby helps avoid directly including 

a large number of green space area variables for all spatial segments as regressors. This 

model specification resembles a hybrid of the polynomial function and piecewise 

approaches of Schlenker and Roberts (2009), which were adopted in their study as 

alternatives to the step function approach. There have been hedonic studies that 

undertook polynomial regressions to explore the nonlinear patterns of house prices 

with regard to the proximity to restored brownfields (Haninger, Ma, & Timmins, 2017), 

power plants that switched fuels from coal to gas (Mei et al., 2021), shale gas wells 

(Muehlenbachs, Spiller, & Timmins, 2015), and nuclear power plants (Tanaka & Zabel, 

2018). These studies identified the spatial scope of the hedonic valuation through 

assessing whether the price of a house at a certain distance of an environmental 
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disamenity (a brownfield, power plant or shale gas well) was affected by an external 

shock (a brownfield restoration programme, fuel switching, shale gas drilling or a 

nuclear accident) that changed (perceptions towards) the disamenity. The regression 

spline approach proposed in this study provides a useful addition to their approach 

through directly estimating the hedonic price of an environmental amenity as a function 

of distance, whereas the three studies mentioned above estimated house prices as a 

function of distance and compared the estimated functions with and without an 

external shock. Our approach is therefore particularly applicable in the absence of such 

external shocks to environmental amenities/disamenities. Moreover, those three 

studies resorted to informal visual assessment to decide whether a shock caused a 

visually discernible difference in house prices in a certain radius. In contrast, our 

approach identifies the threshold distance using a model selection procedure which 

provides formal statistical justification.  

Moreover, the identification of the threshold distance justifies the validity of 

utilising outer green spaces ‘just’ beyond the threshold distance to instrument inner 

green spaces that are being valued, since such outer green spaces are likely to be highly 

correlated with the inner green spaces but are less likely to directly affect property 

values. In addition, we further tested the robustness of our hedonic price estimates 

using a novel matching approach proposed by Fong et al. (2018), which minimises 

covariate imbalance for a continuous treatment variable (the area of green spaces). 

These empirical strategies speak to an increasing emphasis on adopting quasi-

experimental methods (i.e. matching, difference-in-differences and fixed effects, 

instrumental variables, and regression discontinuity designs) to mitigate endogeneity 

bias in hedonic price estimates (Bishop et al., 2020; Kuminoff, Parmeter, & Pope, 2010).  

The remainder of this paper is structured as follows. Section 2 describes the 

study site, data and variables. Section 3 performs the spatial piecewise estimation of 

hedonic prices for green spaces, respectively using the step function and the regression 

spline approaches. In addition, this section reports the instrumental variable and 

matching estimates which better account for potential endogeneity issues. Section 4 

provides a demonstration of applying our results to the aggregation of the hedonic 

value of green spaces, which can be used for ecosystem services accounting and cost-
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benefit analysis for urban land use decision making. Section 5 discusses the results and 

concludes.  

 

The hedonic pricing analysis in this study is applied to data collected from Beijing. The 

city is similar in size to Greater London (or New York City), and accommodates nearly 

20 million people. In respect of the administrative hierarchy, Beijing consists of 16 

districts, which are further organised into 147 sub-districts (‘jiedao’). Below the sub-

district level, there exist 2,932 communities (‘shequ’), each of which encompasses a 

number of residential blocks (‘xiaoqu’). In 2016, the size of Beijing’s economy was on a 

par with Norway. This megacity has attracted floods of migrants from all over China, 

and its urban population has almost doubled during the past 15 years, which has led to 

spiralling house prices. According to the China Index Academy, our housing data 

provider, the new build average price within the 6th ring road2 has exceeded CNY 

60,000/m2 in the first half of 2017, which implies that a homebuyer has to shell out 

nearly half a million US dollars for a typical 50-m2 apartment. The government 

attempts to cool off the overheating housing market by regulating strict eligibility 

criteria for home buying, tightening mortgage rules and creating more publicly 

subsidised affordable housing. But at bottom, Beijing’s real estate sector is by and large 

a market-oriented system (Zheng & Kahn, 2008). 

 

 
2 The city centre of Beijing is surrounded by five ring roads (numbered from the innermost 2nd ring road to 

the most remote 6th ring road). 



 11 

 

 

 

(a) House prices  (b) Green spaces 

Figure 1   Visualisation of residential blocks and urban green spaces in Beijing 

Nevertheless, urban green amenities are well developed in this densely 

populated city. Beijing’s dry climate and inland location have left green spaces one of 

the few types of environmental amenities available to its residents. By definition, the 

scope of urban green amenities is confined to those situated in Beijing’s urban areas, 

and hence does not include vegetated land (mostly forests) in the outlying rural areas 

of the municipality. Beijing’s urban green spaces comprise five broad categories, 

including public green spaces (e.g. parks), productive green spaces (e.g. tree nurseries), 

protective green spaces (e.g. noise buffers and windbreaks), affiliated green spaces 

(those attached to residential blocks, public bodies and businesses, etc.) and other 

green spaces. Chief among them are public and affiliated green spaces, which 

respectively represent 37% and 41% of the total area of green spaces. The municipal 

government is responsible for the development and maintenance of public green 

spaces, whereas affiliated green spaces are created and/or maintained by the entities 

they are attached to. In 2016, the per capita area of green spaces came to 40m2, which 

went above the average dwelling size (32m2). The seemingly unbalanced trade-off 

arouses curiosity about the value of these green assets.  

In this context, this study undertakes a hedonic analysis to investigate the 

house price premiums attributable to green spaces. Our analysis relies on a 

geographically referenced census dataset that details the first-time transactions of all 

new-build properties in Beijing between 2006 and 2016. All geographic data were 
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mapped and compiled in ArcGIS. We consulted previous hedonic studies, particularly 

those from Beijing (i.e. Dong et al. 2016, Li et al. 2016, Wu et al. 2014 and Zheng et al. 

2016; 2008), to guide our data collection and measurement of variables. Table A1 in the 

appendix defines these variables and presents the descriptive statistics.  

Our housing data were obtained from the China Index Academy and were 

allegedly sourced from the housing transaction registration system of the municipal 

government, which recorded the first-time transactions of all 1,270 new-build 

residential blocks between 2006 and 2016 (as in Figure 1a).3 We were only able to 

obtain the longitude and latitude coordinates of the centroid of each residential block. 

These coordinates were used to map the housing data to the urban infrastructure data. 

Therefore, the urban infrastructure variables would have the same values for all 

properties within each residential block. In light of this, we measured all variables at 

the residential block level. 

Data on urban green amenities were collected by the Beijing Municipal Bureau 

of Landscape and Forestry through field surveys in 2014 (as in Figure 1b). This dataset 

is a full inventory of more than 230,000 plots of green spaces in Beijing’s urban areas. 

Surveyors delineated digital boundaries of these green spaces using GPS trackers, and 

investigated a number of other attributes such as, in particular, the time when a green 

space was created. This enabled us to map property transactions to the green spaces 

that existed at the selling time. As illustrated in Figure A1 in the appendix, we 

calculated the area of green spaces in each ring4 around the centroid of a residential 

block, giving rise to a series of variables indicating the area of green spaces at different 

distances.5 

Further, we constructed a wide range of control variables for locational 

characteristics that may affect property values. We calculated the distance from each 

residential block to Tiananmen Square to indicate a residential block’s location relative 

to the city centre. The dummy variable ‘southern half of Beijing’ takes the value one for 

those residential blocks located to the south of Tiananmen Square. This dummy 

 
3 We excluded data points for publicly subsidised affordable homes.  
4 The one at the centre is a solid circle.  
5 We measured 100 variables that indicate the total area of green spaces in each 100m wide ring in a 10km 

radius of each residential block. For brevity, Table A1 only describes green space variables for each 1km 

wide ring in a 10km radius. 
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variable is expected to capture a downward shift in property values, since the southern 

half of Beijing was historically occupied by lower income groups and disadvantaged 

ethnic groups. We digitised the paper based Beijing Education Map (Beijing Municipal 

Education Commission, 2015) into an ArcGIS data file, which specifies the school 

district that covers each residential block and hence the schools assigned to it. School 

quality is proxied by the number of ‘demonstration’ schools/kindergartens in each 

school district. The title ‘demonstration’ (‘shifan’) is usually awarded to the highest 

ranked and most reputable schools in Beijing. We extracted geographic data on other 

urban infrastructures and services (including hospitals, railways, highways, regular 

roads, subway stations, bus stops, restaurants and shops) from Gaode Maps, a leading 

web map service in China, and measured the proximity and quantity variables for 

them. These infrastructures and services facilitate a more comfortable and convenient 

life, but may also induce adverse effects such as noise and crowdedness. Lastly, we 

generated a set of district, ring road (representing zones partitioned by the ring roads) 

and year dummies. The district (ring road) dummies control for the price effect of 

district (ring road) specific features that do not vary over time. The year fixed effects 

capture macro shocks that have a uniform effect on property values, such as changes in 

housing and mortgage policies. 

 

This section reports the estimation results of the step function and the regression spline 

approaches. Moreover, we used instrumental variable estimation and a novel matching 

approach to formally explore the robustness of our results to potential endogeneity 

bias. 
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3.1. Step Function Estimate 

The departure point of our data analysis is the step function approach, where the 

hedonic pricing model contains a sequence of variables that measure the total area of 

green spaces within each ring illustrated in Figure A1 in the appendix:  

 

𝑙𝑜𝑔(𝐻𝑜𝑢𝑠𝑒𝑃𝑟𝑖𝑐𝑒𝑖) = ∑ 𝑝𝑗𝐺𝑟𝑒𝑒𝑛𝑖𝑗𝑗 + 𝜷𝒙𝒊 + 𝜀𝑖. Eq.1 

 

In this equation, the subscript 𝑖 indexes observations (at the residential block level), 

whilst 𝑗 denotes the ordinal numbers of rings (where a larger number indicates an 

outer ring). This is the most flexible specification which does not presume any 

functional form for the dependency of the hedonic price of green spaces on distance. 

The vector 𝒙  consists of all other explanatory variables specified in Section 2. All 

estimation in this study was undertaken in Stata. Due to the large number of green 

space variables, their coefficient estimates (which represent hedonic prices at different 

distances) are graphically reported in Figure 2, and other regression output is omitted 

for brevity (available upon request).  

As can be seen in Figure 2a, when using green space variables for 100m wide 

rings (or using a 100m step length), the estimated hedonic price over distance roughly 

follows an inverted U-shaped pattern until about 1km away from a residential block. 

The hedonic price curve first increases with distance, peaks at 500m, and then declines 

with distance until about 1km. Beyond that point, the estimated hedonic price over 

distance curve exhibits a largely flat trend up to 10km, despite small swings around 

zero. There appears to be a breakpoint near 1km, but the estimated hedonic prices at 

different distances are mostly statistically insignificant inside 1km, except in the 400m–

500m and 600m–700m rings, where the estimates are statistically significant at the 10% 

level. Since house prices are measured in logarithms, the estimated coefficient on the 

area of green spaces in the 400m–500m ring translates into a CNY 57.05 (~USD 8.59) 

increase in the average house price per m2 in response to a 1ha increase in green spaces 
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in this ring, ceteris paribus.6 In comparison, the estimated hedonic price in the 600m–

700m ring drops to CNY 40.08 (~USD 6.04) per m2 of housing per ha of green spaces. 

To provide a flavour of the magnitude of the aggregate hedonic value, we measured 

the difference in the total predicted property value7 between 1) the baseline scenario 

where all green space coverage variables took the actual values, and 2) a hypothetical 

scenario where we removed green spaces that were created after 2006 in the 400m–

500m and 600m–700m rings of all residential blocks in our dataset. Despite the 

seemingly limited magnitude of the hedonic price estimates, the aggregate hedonic 

value of these green spaces amounts to a sizeable CNY 58 billion (~USD 9 billion) in 

2016 prices, owing to the vast total floor area of the 1,270 residential blocks. This figure 

is likely to be a lower bound of these green spaces’ hedonic value, since our housing 

transaction dataset only concerns houses built between 2006 and 2016. Even so, this 

lower bound still outweighs Beijing’s fixed investment in all green infrastructures 

between 2006 and 2016 (CNY 26 billion or USD 4 billion in 2016 prices) (Beijing 

Municipal Bureau of Statistics, 2018).8 However, we have also observed statistically 

significant hedonic price estimates in some further away locations (e.g. at 3km). The 

swings in the magnitude and statistical significance of the hedonic price estimates add 

to the difficulty of identifying the spatial scope for the hedonic valuation.  

Moreover, the statistical significance of hedonic price estimates at different 

distances is found to be sensitive to the step length of the analysis. When using 200m 

rings, as shown in Figure 2b, we find a similar (albeit ‘coarsened’) hedonic price over 

distance curve: it still has an inverted U shape within 1km and becomes virtually flat 

afterwards. Despite that, the estimated hedonic prices are statistically significant at the 

5% level within the 400m–800m belt, which is much wider than the 400m–500m and 

600m–700m rings that have a statistically significant hedonic price estimate derived 

 
6 The original log-linear estimate (𝑝̂𝑗) indicates that the average predicted house price 𝐸(𝐻𝑜𝑢𝑠𝑒 𝑃𝑟𝑖𝑐𝑒̂

𝑖) 

would be changed by 100[𝑒𝑥𝑝(𝑝̂𝑗∆𝐺)] per cent if the area of green spaces is changed by ∆𝐺 on average 

(Wooldridge, 2013).  
7 Following Cameron and Trivedi (2009), house prices were predicted as 𝐻𝑜𝑢𝑠𝑒𝑃𝑟𝑖𝑐𝑒̂

𝑖 =

𝑒𝑥𝑝 (∑ 𝑝̂𝑗𝐺𝑟𝑒𝑒𝑛𝑖𝑗𝑗 + 𝜷̂𝒙𝒊)𝑒𝑥𝑝 (0.5𝜎̂2), where 𝜎̂ is the root mean squared error of Eq.1 and all other 

notations have the same meaning as in Eq.1. 
8 The monetary values of green spaces and municipal fixed-asset investment in previous years (2006–2015) 

were converted to 2016 values using a discount rate of 8%, as recommended by the National Development 

and Reform Committee of China and the Ministry of Housing and Urban-Rural Development of China 

(2006). The undiscounted raw sums are respectively CNY 44 billion (~USD 7 billion) and CNY 20 billion 

(~USD 3 billion).  
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using a 100m step length as we mentioned above. The magnitudes of the estimated 

hedonic prices (CNY 49.88 or USD 7.51 per m2 of housing per ha of green spaces for the 

400m–600m ring, and CNY 32.12 or USD 4.84 for the 600m–800m ring) resemble those 

for the 400m–500m and 600m–700m rings in the 100m step length setting. Yet, the 

aggregate hedonic value of green spaces created after 2006 in the 400m–800m belt 

comes to CNY 99 billion (~USD 15 billion) in 2016 prices, which nearly doubles the 

counterpart estimate in the 100m step length setting. There still exist statistically 

significant hedonic price estimates for outer rings (e.g. the 2.8km–3km ring). Turning 

next to Figure 2c, with a 500m step length, we only find a statistically significant 

hedonic price estimate within the 500m circle (CNY 34.97 or USD 5.27 per m2 of 

housing per ha of green spaces, p-value = 0.08). Beyond the 500m circle, the statistical 

significance of the hedonic price estimates disappears and the magnitude declines 

rapidly to practically zero, which somewhat resembles the results of Conway et al. 

(Conway et al., 2010) and Sander et al. (Sander et al., 2010) who adopted a similar 

approach. The aggregate hedonic value of green spaces created after 2006 inside 500m 

shrinks notably to CNY 47 billion (~USD 7 billion) in 2016 prices, which is smaller than 

that given by a 100m step length. Moreover, the hedonic price estimate becomes 

statistically significant in the 9km–9.5km ring, which is largely counterintuitive. Lastly, 

it can be seen from Figure 2d that hedonic price estimates for 1km wide rings are 

statistically insignificant everywhere (even at the 10% level), which substantially 

deviate from our previous findings.  

Overall, there appears to be a lack of clear-cut indication of a breakpoint distance 

where green spaces cease to affect house prices. In terms of statistical significance, it is 

difficult to find a breakpoint distance where the p-value structurally changes from 

being below a conventional threshold level (at all distances inside the breakpoint 

distance) to being above that level (at all distances outside the breakpoint distance). In 

addition, the practice of basing research conclusions primarily on arbitrary cut-offs of 

the p-value regardless of the magnitude of the estimates has been increasingly 

cautioned against (e.g. Ferraro and Shukla 2020 and Wasserstein et al. 2019). For 

instance, the 100m step length models found a statistically significant hedonic price 

estimate for green spaces at 3km. However, this estimate has a much smaller 
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magnitude than the estimates for green spaces within 1km, and the general pattern of 

the hedonic price estimates at other distances around 3km suggest that these are more 

likely to be small swings around zero. In light of both the magnitude and statistical 

significance, the 100m and 200m step length models seem to suggest a breakpoint 

around 1km, yet this conjectured breakpoint is mostly based on informal visual 

assessment rather than on formal statistical criteria, which resembles the visual 

assessment approach of Haninger et al. (2017), Mei et al. (2021), Muehlenbachs et al. 

(2015) and Tanaka and Zabel (2018). Moreover, these patterns are largely sensitive to 

the step length, which calls for justifiable and replicable means to assess which step 

length is preferable. A natural solution might be to prioritise the step length that gives 

rise to regression models with higher levels of explanatory power or goodness of fit. 

This also implies the possibility of identifying the breakpoint distance according to 

measures of goodness of fit, if the choice of the breakpoint’s position can be converted 

to a model selection problem. We next formally explore this possibility through a 

regression spline approach which endogenously chooses the position of the breakpoint 

using model selection procedures.     
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(a) 100m step length (b) 200m step length 

  

 
 

(c) 500m step length (d) 1km step length 

  

Figure 2   Hedonic price estimates at different distances: Step function estimates 

3.2. Regression Spline Estimates 

We propose a regression spline approach adapted from Schlenker and Roberts (2009) 

and Orsini and Greenland (2011). The hedonic pricing model is reparametrised as a 
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restricted regression spline (Eq.2), assuming that 1) only green spaces within a 

threshold distance 𝐷𝐾 (which corresponds to the last knot of the spline) affect house 

prices, and the hedonic price of these green spaces can be expressed as a polynomial 

function of distance, and 2) outside the threshold distance (or after the last knot), the 

hedonic price of green spaces no longer varies over distance and is expected to be 

statistically insignificant. 

  

𝑙𝑜𝑔(𝐻𝑜𝑢𝑠𝑒 𝑃𝑟𝑖𝑐𝑒𝑖) = 𝛼 ∑ 𝐺𝑟𝑒𝑒𝑛𝑖𝑗𝑗 + ∑ 𝛾𝑘 ∑ (𝐷𝑘 − 𝑑𝑗)
+

𝑛
𝐺𝑟𝑒𝑒𝑛𝑖𝑗𝑗

𝑘=𝐾
𝑘=1 +

𝜷𝒙𝒊 + 𝜀𝑖. 

Eq.2 

 

In this hedonic pricing model, 𝛼, 𝛾𝑘 and 𝜷 are the parameters to be estimated,  𝑑𝑗 

represents the radius of the middle of the j-th ring, k indicates the order of knots, and 

𝐷𝑘 denotes the location of the k-th knot. The positive part function (𝐷𝑘 − 𝑑𝑗)
+

 truncates 

(𝐷𝑘 − 𝑑𝑗) at zero. The hedonic price estimates can be recovered through evaluating the 

function 𝑝𝑗 = 𝛼 + ∑ 𝛾𝑘 ∑ (𝐷𝑘 − 𝑑𝑗)
+

𝑛
𝑗𝑘  at different distances, and their standard errors 

can be estimated using the delta method described in Greene (2012).  

The positions of the knots (and hence the threshold distance) are endogenously 

decided via a model selection procedure. The step function estimates (in the finest 

100m step length setting) suggest that the hedonic price over distance curve is likely to 

have two conspicuous turning points (around 0.5km and 1km, respectively). We have 

therefore allowed for a maximum of two knots (K = 0, 1 or 2) to accommodate the two 

turning points. We specified the degree of the spline function to be three (n = 3), which 

is the most commonly adopted choice in the regression spline literature (Orsini & 

Greenland, 2011; Wegman & Wright, 1983), to ensure that the estimated hedonic price 

curve and its first and second order derivatives are continuous at the knots (so that the 

curve is visually smooth). The hedonic pricing model (Eq.2) is then estimated 

repeatedly using 5,151 possible combinations of the locations of the knots within a 

10km radius (the possible locations of the knots differ in other step length settings), to 

search for the model specification (defined by the locations of the knots) that fits the 

data best.  
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We propose two different procedures for model assessment and selection. One is 

the conventional approach based on within-sample prediction and the Akaike 

Information Criterion (AIC).9 On the other hand, the rapid proliferation of statistical 

learning suggests that models with better ‘out-of-sample’ explanatory power (as 

opposed to the conventional within-sample explanatory power) are increasingly 

preferred (Varian, 2014). However, regression spline models are in general considered 

particularly ill-adapted to extrapolation beyond the data used to fit these models (Suits, 

Mason, & Chan, 1978). In light of that, we conducted a 5-fold cross validation analysis 

to select a model with the best out-of-sample prediction accuracy, as per Hastie et al. 

(2008), James et al. (2017), and Jardine and Siikamäki (2014). We first randomly split 

our data into five equal-sized sub-samples. For each sub-sample, we fit a hedonic 

pricing model using the other four sub-samples (training data), and calculate the mean 

squared error (MSE) of the fitted model when predicting the unused sub-sample (test 

data). This is repeated over all five sub-samples (for the same model specification) and 

the resulting average MSE measures the model’s out-of-sample prediction accuracy. 

We next repeat this procedure 500 times to obtain stable results. 

Figure 3a displays the AIC measures from within-sample predictions of all 5,151 

possible model specifications considered in the 100m step length setting, where the 

horizontal plane represents the full set of all possible combinations of the knots’ 

locations, and the vertical axis denotes the corresponding AIC values. The preferred 

model specification (that gives the lowest AIC) has the first knot at 0.9km and the 

second knot at 1km. In comparison, Figure 3b shows that the out-of-sample cross 

validation procedure favours a slightly different model specification, which has the 

first knot at 0.7km and the second knot at 1.2km. These two findings, albeit not 

identical, both provide much more evident and unambiguous evidence as to the spatial 

scope of the hedonic valuation (as indicated by the location of the second knot), 

compared to the results from the step function approach. The preference between the 

two model selection procedures is largely a case specific decision, depending on 

whether the priority is to best explain a particular dataset or to obtain higher out-of-

 
9 We have opted for the AIC instead of the mean squared error (MSE) for within-sample model 

assessment and selection. Adding regressors (through, for example, increasing the number of knots) 

always reduces the MSE of within-sample prediction. Therefore attempting to select a model 

specification that minimises the MSE of within-sample prediction would lead to overfitting. 



 21 

sample predictive power. In this study, we prioritise out-of-sample performance and 

therefore focus on the model specification recommended by the out-of-sample cross 

validation procedure. That said, it is reassuring to see that the two procedures suggest 

considerably similar breakpoint distances where the hedonic price of green spaces 

disappears (1km and 1.2km, respectively).  

As can be seen in Model 1 in Table 1, the estimated parameters (𝛾1 and 𝛾2) that 

capture the distance-dependent patterns of the hedonic price estimates between the 

two knots are both strongly significant (p-value < 0.001). The hedonic price estimates 

(and their confidence intervals) at different distances can be recovered from the 

regression spline, as shown in Figure 4a. In monetary terms, the highest estimate 

appears in the 300m–400m ring (CNY 54.19 or USD 8.16 per m2 of housing per ha of 

green spaces) and the lowest occurs in the 0m–100m ring (CNY –42.24 or USD –6.36). 

The area weighted average hedonic price within 1.2km is estimated to be CNY 18.39 or 

USD 2.77, and is highly significant (p-value < 0.01, standard error estimated using the 

delta method). For green spaces outside the threshold distance, the hedonic price 

estimate (𝛼) is statistically insignificant and considerably small in size (less than 2% of 

the weighted average hedonic price estimate within 1.2km). These estimates 

characterise the hedonic price curve presented in Figure 4a, which has an inverted U-

shape within 1.2km and then becomes almost indistinguishable from the horizontal 

axis (though still marginally above zero). This hedonic price curve closely resembles 

that derived from the step function approach using a 100m step length (Figure 2a).  

The aggregate hedonic value of green spaces created after 2006 inside 1.2km 

amounts to CNY 125 billion (~USD 19 billion) in 2016 prices, which is obtained using 

the same prediction-based method described in the Section 3.1. This aggregate value, 

which refers to green spaces in the entire circular area within a 1.2km radius, is 

unsurprisingly much higher than the highest estimate given by the step function 

approach, since the latter only concerns green spaces in a few segments of the 1.2km 

circle that have a statistically significant hedonic price estimate in the step function 

model. 

Our findings on the preferred model specification, hedonic price estimates and 

the aggregate hedonic value are reasonably stable if we switch to a 200m step length. 
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More specifically, Figure 3c shows that the within-sample model selection procedure 

using a 200m step length prefers a threshold distance at 1km, which is identical to that 

derived using a 100m step length. In addition, as suggested in Figure 3d, the out-of-

sample cross validation procedure also favours the same threshold distance (1.2km) as 

in the 100m step length setting. If we still focus on the threshold distance with the best 

out-of-sample prediction accuracy (1.2km), the monetary hedonic price estimates 

inside 1.2km range from CNY –10.28 or USD –1.55 (for the 0m–200m ring) to CNY 

53.13 or USD 8.00 (for the 200m–400m ring) per m2 of housing per ha of green spaces, 

and average out to CNY 14.96 or USD 2.25. The hedonic price estimate beyond 1.2km 

remains small and statistically insignificant. Overall, the hedonic price curve (Figure 4b) 

hardly differs from that derived using a 100m step length (Figure 4a). The aggregate 

hedonic value of green spaces created after 2006 within 1km (CNY 112 billion or USD 

17 billion in 2016 prices) is somewhat lower than that in the 100m step length setting 

(CNY 125 billion or USD 19 billion), but the difference is much smaller than that from 

the step function approach, in both absolute and relative terms.  

More importantly, a palatable property of the regression spline approach is that 

the same model selection criteria can be applied to model assessment across different 

step length settings. Intuitively, the regression spline approach should be less 

amenable to coarsened step lengths that cannot capture detailed variation in green 

spaces’ hedonic price along distance. In an extreme case, if we use a 5km step length, 

the only identifiable threshold distance would be 5km and we would not have the 

scope to explore any other possible thresholds. In our case, a 500m or 1km step length 

would already considerably limit the possible thresholds that can be explored. As 

shown in Figure A2 in the appendix, the preferred model specification in a 500m or 

1km step length setting has a threshold distance in an extremely far away location (e.g. 

8km–9km), which is less explicable in the contexts of Chinese cities, where residents 

primarily rely on neighbourhood gardens in close proximity for leisure activities (Chen 

& Jim, 2011). That said, all possible model specifications in the 200m, 500m and 1km 

step length settings are outperformed by the preferred specification in the 100m setting 

step length, in terms of both within- and out-of-sample prediction accuracy. This has 
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inclined us to lean towards the findings derived from a 100m step length and regard a 

1.2km radius as the spatial scope of the hedonic valuation. 

3.3. Instrumental Variable Estimates 

We next formally explore the implications of potential endogeneity bias for our 

hedonic price estimates. Admittedly, despite the extensive number of control variables 

in our hedonic price model, it is difficult to explicitly account for all determinants of 

house prices. If omitted factors are associated with both house prices and green spaces, 

our estimates might be biased. For instance, a greener residential block may 

intentionally target the high-end housing market and is thus likely to have other 

desirable features (such as stylish interior design) that may come with a price premium 

yet are not controlled for in our hedonic price model, which would impart an upward 

bias to the estimated hedonic prices of green spaces.  

We attempt to assess potential endogeneity bias via instrumenting the area of 

green spaces. Now we are more inclined to believe that green spaces further than 

1.2km away from a property would not directly influence its price, but tend to be 

highly correlated with green spaces closer to the property. In other words, green spaces 

beyond 1.2km only affect the dependent variable via its correlation with the suspected 

endogenous regressor (green spaces within 1.2km), and thus qualify as instruments. 

Bayer et al. (2009) adopted a similar ‘spatial lag’ type of instrument for air quality. 

Unfortunately, we cannot directly instrument green spaces in this manner in the step 

function or regression spline estimation, since all green spaces within a 10km radius 

have already entered the hedonic pricing model as explanatory variables to search for 

the threshold distance.  

Therefore, to facilitate the instrumental variable (IV) estimation, we reestimated 

the hedonic pricing model (Eq.1) using only one green space variable that represents 

the total area of all green spaces within a 1.2km radius. The OLS estimate of the 

hedonic price of these green spaces (the estimate for the ‘Green area 0m–1.2km’ 

variable in Model 2 in Table 1) is smaller than that given by the regression spline 

approach (Model 1 in Table 1), but remains statistically significant at the 5% level. In 

Model 3, the ‘Green area 0m–1.2km’ variable is instrumented using the area of green 
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spaces in the first three 1km wide rings outside 1.2km (‘Green area 1.2km–2.2km’, 

‘Green area 2.2km–3.2km’ and ‘Green area 3.2km–4.2km’).10 The F statistic from the 

weak IV test, which is markedly greater than the frequently invoked rule of thumb (10), 

provides substantive evidence against the null hypothesis of weak identification. The 

p-value from the over-identification test is well above the critical value (0.10), which 

further justifies the validity of the instruments. Although the p-value from the 

endogeneity test cannot reject the null hypothesis of no endogeneity bias at the 

conventional critical level (0.10), the IV estimate for ‘Green area 0m–1.2km’ is notably 

higher than the OLS estimates in Models 1 and 2, which suggests that the OLS 

estimates have likely underestimated the true hedonic value of green spaces due to 

endogeneity bias. We reestimated Model 3 using various subsets of the three excluded 

instruments, and the results are practically identical. 

  

 
10 We have opted for these instruments because green space variables for further rings do not have 

sufficient explanatory power for the area of green spaces inside 1.2km. 
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(a) Within-sample, 100m step length (b) Out-of-sample, 100m step length 

  

  

(c) Within-sample, 200m step length (d) Out-of-sample, 200m step length 

  

Figure 3   Predictive performance of regression spline models (100m and 200m step 

lengths) 
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(a) 100m step length 

 

 

(b) 200m step length 

 

Figure 4   Hedonic price estimates at different distances: Regression spline estimates  

Note: Figures 4a and 4b focus on the segment of the hedonic price curve within 2km, 

since the hedonic price estimates no longer change based on distance outside 1.2km. 
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Table 1   Regression spline estimates (100m step length) 

DV: Log (House price) Model 1 Model 2 Model 3 

 OLS OLS IV–2SLS 

Hedonic price:    

  Green area 0m–1.2km 7.03×10–4*** 4.82×10–4** 9.28×10–4** 

 (2.07×10–4) (2.02×10–4) (3.93×10–4) 

Regression spline parameters:    

  γ1  –3.99×10–11***   

 (1.53×10–11)   

  γ2  6.14×10–12***   

 (1.84×10–12)   

  α  1.32×10–5   

 (9.99×10–6)   

Control variables (Table A1) Yes Yes Yes 

Excluded instruments:    

  Green area 1.2km–2.2km No No Yes 

  Green area 2.2km–3.2km No No Yes 

  Green area 3.2km–4.2km No No Yes 

Weak IV test          

  Cragg-Donald Wald F statistic   137.16 

  (H0: Weak IV)    

R2 (1st stage)   0.60 

Over-identification test    

  Sargan statistic: p-value  

  (H0: Valid IV) 

  0.20 

IV redundancy test    

  LM test: p-value   

  (H0: Redundant IV) 

  0.00 

Endogeneity test    

  Diff-in-Sargan-Hansen Statistic: p-value   0.19 

  (H0: Exogenous ‘green area 0m–1.2km’)    

Hedonic price model sig.: p-value 0.00 0.00 0.00 

Hedonic price model R2 0.68 0.68 0.68 

Obs. 1,270 1,270 1,270 

Note: * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01. Standard errors are in 

parentheses. 
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3.4. Matching Estimates 

Lastly, we further tested the robustness of the aforementioned hedonic price estimates 

using a novel matching approach proposed by Fong et al. (2018). Matching has been 

advocated by the causal econometric literature (e.g. Greenstone & Gayer 2009, Imbens 

& Rubin 2015 and Imbens & Wooldridge 2009) as a means to better control for 

endogeneity issues and thereby strengthen an estimate’s causal inference. Fong et al. 

(2018) built upon conventional matching methods by, on the one hand, 

accommodating nonbinary treatment variables, and on the other, directly optimising 

sample covariate balance through minimising the correlation between covariates and 

the treatment. Fong et al. (2018) named this novel matching algorithm the ‘covariate 

balancing generalised propensity score’ (CBGPS), where the generalised propensity 

score refers to the distribution of the treatment conditional on the covariates. The 

CBGPS matching approach is well suited for this study, because we have a nonbinary 

‘treatment’ variable, the area of green spaces.  

We reestimated the hedonic price of the area of green spaces within a 1.2km 

radius using both the parametric and non-parametric CBGPS methods. The parametric 

method assumes the generalised propensity score to be normally distributed. In 

contrast, the non-parametric method does not depend on any assumptions about the 

functional form of the generalised propensity score. Following Fong et al. (2018), we 

first identified the optimal Box-Cox transformation of the variable ‘Green area 0m–

1.2km’ by searching for the exponent parameter (from the range –2 to 2 with a 0.01 step 

length) that gives the best approximation of the standard normal distribution.11 We 

then performed the matching algorithm on the covariates listed in Table A2. The 

weights derived from the matching algorithm were then utilised to estimate a 

regression of house prices on the transformed green space variable and the three sets of 

fixed effects listed in Table A1 (to approximate within-cluster matching). Finally, the 

estimate on the transformed green space variable was utilised to compute the hedonic 

price estimate in the semi-elasticity form as in Table 1. The entire procedure was 

bootstrapped 500 times to derive the standard error and confidence interval.  

 
11 We adopted this transformation for both the parametric and non-parametric CBGPS estimation to 

ensure the estimates’ comparability, despite that the non-parametric CBGPS does not involve any 

distributional assumptions for the generalised propensity score.  
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Table A2 in the Appendix present the results of the covariate balance tests. The 

first column of Pearson correlation coefficients shows considerable pre-matching 

correlation between each covariate and the (transformed) green space variable: the 

absolute value of the correlation coefficient is above 0.15 for 20 out of a total of 22 

covariates, and above 0.30 for 13 covariates. Such correlation was substantially reduced 

by the parametric and non-parametric CBGPS matching procedures: none of the 

covariates has a post-matching correlation coefficient above 0.15 in absolute value, and 

19 covariates has a coefficient below 0.10. This improvement of covariate balance 

reduces concerns about potential endogeneity issues, since the green space variable has 

become notably less correlated with the observed covariates in the post-matching 

sample.  

Table 2 reports the hedonic price estimates derived from the two matching 

procedures. It can be seen in the first column of results that the parametric CBGPS 

matching gave a hedonic price estimate which highly resembles the IV estimate, in 

terms of both the magnitude and statistical significance. The second column of results 

shows that the hedonic price estimate from the non-parametric matching procedure 

becomes slightly higher than that the IV estimate, but remains qualitatively 

comparable.12 These findings lend further support to the robustness of our results 

against potential endogeneity bias.      

  

 
12 We assessed the implications of controlling for the covariates in the post-matching regressions. The 

hedonic price estimates become smaller (parametric CBGPS matching: 5.34×10–4; non-parametric CBGPS 

matching: 9.26×10–4), but remain statistically significant and qualitatively comparable to the estimates in 

Tables 1 and 2.  
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Table 2   Matching estimates (100m step length) 

DV: Log (House price) Model 4  Model 5 

 Parametric CBGPS  Non-parametric CBGPS 

Hedonic price:      

  Green area 0m–1.2km 9.26×10–4***   11.16×10–4**  

 (2.68×10–4)   (5.07×10–4)  

 [4×10–4, 14×10–4]   [2×10–4, 22×10–4]  

Note: * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01. Standard errors are in 

parentheses. 95% confidence intervals are in brackets.  

 

This section provides a demonstration of deriving aggregate hedonic prices using our 

estimation results. To reduce calculation workloads, we confined the analysis to green 

spaces that are larger than 0.5ha and located in Beijing’s six central districts. For each of 

these green spaces, we first searched in our dataset for all residential blocks located in 

the green space’s 1.2km radius. The aggregate hedonic price was then calculated 

through multiplying the unit hedonic price (the coefficient on the variable ‘Green area 

0m–1.2km’ in Models 1–5 after being converted from a semi-elasticity estimate to a 

marginal effect estimate) by the total area of the green space and the total floor area of 

the residential blocks within the green space’s 1.2km radius. Figure 5 maps the 

aggregate hedonic prices of these green spaces individually (based on the unit hedonic 

price estimate in Model 3). Admittedly, owing to the nature of the hedonic approach, 

the spatial distribution of the aggregate hedonic prices largely depends on the area of 

green spaces and the density of housing (new builds in this study). Still, these results 

provide instrumental information that can be directly fed into cost-benefit analysis for 

removing or creating a green space. Table 3 reports the total hedonic price estimates of 

all these green spaces. These estimates, although only concerning a subset of Beijing’s 

green spaces in our dataset, are already considerably sizeable: the annual average of 
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the aggregate hedonic price is comparable to 1% of Beijing’s GDP in 2016 (CNY 

2,566.91 billion or USD 386.58 billion).  

 

Figure 5   Hedonic prices (billion CNY in 2016 prices) of green spaces in central 

Beijing  

 

Table 3   Unit and total hedonic prices of green spaces 

  Model 1 Model 2 Model 3 Model 4 Model 5 

Unit hedonic 

price  

CNY 18.37 12.60 24.25 24.20 29.17 

(per ha of green 

space  

per m2 of floor 

area) 

USD 2.77 1.90 3.65 3.64 4.39 

Aggregate 

hedonic price  

CNY bln 192.56 132.02 254.18 253.64 305.68 

(all green 

spaces > 0.5ha  

in central 

Beijing) 

USD bln 29.00 19.88 38.28 38.20 46.04 
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There have been extensive studies that valued urban green amenities via measuring 

the ensuing house value premiums (or hedonic prices). Nevertheless, previous studies 

have mostly focused on valuing the proximity to and views of green spaces. We argue in 

this paper that an aggregable valuation of the size (or area) of green spaces would better 

capture the overall benefits of a particular green space, and therefore would be more 

applicable to urban land use decision making and ecosystem services accounting. Yet 

this practice is subject to difficulties in identifying the spatial limits of the capitalisation 

of green spaces in house prices. This study explored a spatial piecewise approach as a 

means to overcome such difficulties. We regress house prices on a series of green space 

variables representing the area of green spaces at different distances from a property, 

in an attempt to discern the spatial limit where the house value premium associated 

with green spaces is just about to disappear. Moreover, we propose a novel regression 

spline approach, which reparametrises the hedonic price model by approximating 

hedonic prices at different distances as a piecewise polynomial function of distance. 

We next loop over all possible threshold distances in search of the preferred threshold 

distance, using both within-sample and out-of-sample predictions for model 

assessment and selection. These techniques allow us to derive the spatial scope of the 

hedonic valuation based on formal statistical justification. Our hedonic price estimates 

are robust to an instrumental variable estimator and a novel matching algorithm which 

better account for potential endogeneity issues.  

In communicating our findings to policymakers, however, we draw attention to 

a number of caveats. First and foremost, green spaces provide many valuable 

ecosystem services that are not capitalised in housing values and hence cannot be 

captured by hedonic prices. For instance, in 2016 Beijing accommodated 285 million 

tourists (close to the US population), who spent CNY 502 billion (~USD 76 billion) in 

the city (Beijing Municipal Bureau of Statistics, 2018). A large proportion of them may 

have visited the city’s world-renowned historical parks (such as the Temple of Heaven 

Park) and other green amenities (such as the Olympic Park). In that case, the 

recreational value of green spaces has materialised in the form of attracting tourists 
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and contributing to tourism revenues, instead of residential housing value premiums. 

Therefore, the hedonic value may only partly represent green spaces’ total value. 

Second, our dataset only concerns housing newly built during 2006–2016. The 

aggregate value of green spaces would be much more sizeable had we taken into 

account the associated price premiums of all housing in the city. Lastly, we would 

caution against literally extrapolating the results to other cases. This study seeks to 

undertake a methodological exploration and demonstration. The specific results (such 

as the threshold distance) may not be directly transferrable to other contexts. For 

example, for a less populated city with a more open layout, the spatial scope of 

hedonic valuation may well exceed the 1.2km radius. That said, the internal validity of 

our results is considerably robust to a number of alternative estimation methods. This 

can be taken as an indication of the robustness and reliability of the estimation 

procedure we proposed, which constitutes the primary contribution of this study. 
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Table A1   Description of variables 

Variable Definition Mean SD Min Max 

Dependent variable:      

House price Average house prices at the residential  

block level (CNY/m2).  

26,136.07 21,859.21 1,000 170,000 

Explanatory 

variable:  

     

Green area 0–1km Total area (ha) of green spaces 0–1km.  86.46 61.46 0.00 735.81 

Green area 1–2km Total area (ha) of green spaces 1–2km.  265.56 154.48 0.00 1,408.76 

Green area 2–3km Total area (ha) of green spaces 2–3km.  418.19 231.90 0.00 1,307.77 

Green area 3–4km Total area (ha) of green spaces 3–4km.  563.95 305.91 0.00 1,338.65 

Green area 4–5km Total area (ha) of green spaces 4–5km.  689.36 395.52 0.00 1,793.35 

Green area 5–6km Total area (ha) of green spaces 5–6km.  812.97 462.34 0.00 2,480.88 

Green area 6–7km Total area (ha) of green spaces 6–7km.  912.21 539.15 0.00 2,874.51 

Green area 7–8km Total area (ha) of green spaces 7–8km.  1,021.27 609.64 0.00 3,132.88 

Green area 8–9km Total area (ha) of green spaces 8–9km.  1,120.00 678.24 0.00 3,436.32 

Green area 9–10km Total area (ha) of green spaces 9–10km.  1,228.31 745.53 0.00 3,330.72 

House Binary: 1 = Detached or semi-detached 

houses; 0 = Flats.  

0.11 0.32 0 1 

High-rise Binary: 1 = High-rise; 0 = Otherwise.  0.15 0.36 0 1 

Decoration status Binary: 1 = Fully decorated; 0 = 

Otherwise.  

0.31 0.46 0 1 

School Number of ‘demonstration’ 

kindergartens,  

primary schools and middle schools. 

5.26 4.96 0 17 

Distance to city 

centre 

Distance (m) to Tiananmen Square. 38,598.73 31,062.49 621.53 149,208.90 

Southern half of 

Beijing  

Binary: 1 = To the south of Tiananmen 

Square; 0 = Otherwise. 

0.43 0.50 0 1 

Distance to 

hospital 

Distance (m) to the nearest 3A hospital.  12,157.54 18,106.05 44.88 93,955.29 

Distance to 

railway 

Distance (m) to the nearest railway.  3,108.72 3,394.63 0.31 32,167.34 

Distance to Distance (m) to the nearest highway.  697.43 952.00 0.33 19,781.63 
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highway 

Distance to road Distance (m) to the nearest road  

(aside from highways).  

286.29 877.43 0.03 19,790.42 

Distance to tube Distance (m) to the nearest tube 

station.  

11,262.11 18,689.13 25.42 99,998.54 

Distance to bus 

stop 

Distance (m) to the nearest bus stop.  485.32 719.47 2.16 18,176.29 

Restaurants 0–1km Number of restaurants within 0–1km.  31.89 50.47 0 403 

Restaurants 1–3km Number of restaurants within 1–3km. 236.00 310.14 0 1,638 

Restaurants 3–5km Number of restaurants within 3–5km. 417.92 536.08 0 2,817 

Restaurants 5–

7.5km 

Number of restaurants within 5–7km. 741.72 898.93 0 3,951 

Restaurants 7.5–

10km 

Number of restaurants within 7.5–

10km. 

959.84 1,095.65 0 4,448 

Shops 0–1km Number of shops within 0–1km.   47.52 71.88 0 539 

Shops 1–3km Number of shops within 1–3km.   354.63 404.14 0 1,922 

Shops 3–5km Number of shops within 3–5km.  623.70 711.40 0 3,280 

Shops 5–7.5km Number of shops within 5–7.5km. 1,098.08 1,213.23 0 4,954 

Shops 7.5–10km Number of shops within 7–10km. 1,418.90 1,536.63 0 6,020 

District fixed 

effects 

15 dummies indicating 16 districts.   0 1 

Ring road fixed 

effects 

5 dummies indicating 6 zones 

partitioned by 5 ring roads. 

  0 1 

Year fixed effects 10 dummies indicating 11 years  

(2006–2016). 

  0 1 

Note: CNY 6.64 = USD 1 in 2016. 3A hospitals are the highest-quality hospitals in China 

according to the classification system of the country’s Ministry of Health.  
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Table A2   Pearson correlation coefficients between each covariate and the 

green space variable (0m–1.2km) before and after matching 

Covariate Unmatched Parametric CBGPS Non-parametric CBGPS 

 Correlation  

coefficient 

Correlation  

coefficient 

Reduction (%) in  

absolute value 

Correlation  

coefficient 

Reduction (%) in  

absolute value 

House –0.22  –0.04  80.37  –0.04  83.84  

High-rise 0.14  0.03  82.41  –0.02  86.80  

Decoration status 0.19  0.04  79.35  –0.03  85.06  

School 0.29  0.03  88.83  0.04  84.85  

Distance to city centre –0.37  –0.08  78.97  0.03  90.76  

Southern half of Beijing  0.03  –0.01  53.60  –0.06  –96.72  

Distance to hospital –0.31  –0.10  67.39  0.06  80.67  

Distance to railway –0.25  –0.06  74.71  0.00  98.55  

Distance to highway –0.15  –0.07  55.50  –0.02  89.24  

Distance to road –0.19  –0.12  38.76  –0.06  68.10  

Distance to tube –0.32  –0.09  71.91  –0.01  97.23  

Distance to bus stop –0.29  –0.11  61.29  –0.07  76.61  

Restaurants 0–1km 0.37  0.01  96.90  0.06  84.53  

Restaurants 1–3km 0.42  0.04  90.20  0.02  94.21  

Restaurants 3–5km 0.40  0.03  91.90  0.01  97.00  

Restaurants 5–7.5km 0.37  0.03  93.06  0.00  99.35  

Restaurants 7.5–10km 0.36  0.03  90.98  –0.02  93.89  

Shops 0–1km 0.37  0.02  95.79  0.05  87.41  

Shops 1–3km 0.43  0.04  90.14  0.02  96.09  

Shops 3–5km 0.40  0.02  93.77  0.01  96.81  

Shops 5–7.5km 0.35  0.02  94.49  0.00  99.20  

Shops 7.5–10km 0.35  0.03  92.87  –0.01  97.05  
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Figure A1   Schematic diagram of a residential block and its surrounding 

green spaces 
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(a) Within-sample, 500m step length (b) Out-of-sample, 500m step length 

  

  
(c) Within-sample, 1km step length (d) Out-of-sample, 1km step length 

 

Figure A2   Predictive performance of regression spline models (500m and 

1km step lengths) 
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(a) 500m step length (b) 1km step length 

 

Figure A3   Regression spline estimates (500m and 1km step lengths) 

 

 

 

 

 

 


