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Structural engineers are increasingly finding themselves
assessing existing structures rather than designing new ones.
These need to be checked because loads have changed or the
materials have deteriorated,or simply because the owner (or an
insurance company) wants reassurance that the structure is
adequate.Many of these structures are failing the checks,which
results in work for the engineer but expense for the client and
a feeling amongst the general public that we are surrounded by
bridges and buildings that are inadequate.But is this really the
case? Very few structures actually collapse because a slightly
increased load overcomes a slightly reduced load capacity
caused by corrosion.Gross errors do happen – a 20t truck driven
over a bridge with a 2t weight limit is not something the engi-
neer can be blamed for, but corrosion of critical structural
elements, such as prestressing tendons, is something for which
engineers should check. The problem to which this paper is
addressed is the structure which has apparently been giving
good service for many years which suddenly appears to be inad-
equate because of a reanalysis.

The relationships are considered between elastic theory and
plastic theory, design methods and analysis methods, and the
upper and lower bound theorems.These raise various conflicts
for engineers that can have important consequences.

Most engineers have been taught the fundamentals of plas-
ticity theory.They know how to perform a plastic collapse analy-
sis of a frame, or carry out a yield line analysis of a slab. They
know that these give an upper bound on the collapse load and
are thus ‘unsafe’. They are aware that there is also a lower
bound theorem, but circumstantial evidence shows that most
engineers cannot quote it and do not believe that they use it.
This is paradoxical, since they rely on it every time they design
a structure.

Elastic and plastic methods of design give different answers
when the structure is indeterminate, since the stress distribu-
tion is not defined purely by equilibrium. Beams and frames
have limited degrees of indeterminacy, but plates and slabs are
infinitely indeterminate so there the differences between the
two approaches can be expected to be most apparent. Bridge
decks are such structures, and all bridges are currently being
reassessed.

The rise of computer methods of analysis has allowed ‘exact’
solutions to be obtained for structures that would have been far
too difficult to analyse only a few years ago. It is relatively easy
now to carry out a finite element analysis of a deck slab and to
produce a plot of moments, stresses and deflections.Tables and
plots can be produced in great detail which give apparent assur-
ance that the results are accurate.The accuracy of the solution
relies on knowledge of the elastic stiffnesses of the structure,
and their distribution, which can be critically important when
the structure is of reinforced concrete which is partially cracked
or when the materials creep differentially. Slight variations of
the support conditions can have a dramatic influence on the
distribution of moments. An elastic analysis is thus making a
sweeping set of assumptions that may not be justified.

To illustrate these various aspects, consider a hypothetical
reinforced concrete slab structure. It will be assumed that the
structure was designed 30 years ago using the relevant
methods of the day, and is now being assessed using current
techniques. No safety factors will be taken into account, since
they cloud the issue, so applied loads and capacities can be
compared on a one-to-one basis. What would today’s engineers
recommend to the owners of that structure?

The structure
The structure is a rectangular slab made from reinforced
concrete, simply supported on all sides. It has an aspect ratio (µ)

of 2, with the shorter sides of length a. It was designed to carry
a uniformly distributed load of intensity q. The geometry is
shown in Fig 1,which matches the notation used in Timoshenko1

and other papers to which reference will be made2-5. It is
assumed that the slab was designed with orthogonal reinforce-
ment. Steel in the bottom of the slab, parallel to the x-axis,
resists the sagging moment Mx. Moments such as Mx are
expressed as moments per unit width and in the plots will be
non-dimensionalised by dividing by qa2. It is assumed that the
structure, as with most reinforced concrete slabs, is sufficiently
under-reinforced, in accordance with relevant codes, so that full
ductility is assured.

The design
It is assumed that the structure was designed in 1970 by a
bright young engineer fresh out of college. Engineers would
not have had access to calculators, let alone computers, so
complex calculations for a simple structure such as this would
not have been justified. The designer would be assumed to
know about the methods for the elastic analysis of such slabs,
such as the Fourier techniques used in the Navier analysis, but
would not have had the time to sum by hand the infinite series
that the solution required.But he would also have known about
the Hillerborg strip method of design6 which would have been
quite appealing. According to this theory, which is still taught
today and would still be regarded as a perfectly reasonable
method of design, the slab is imagined as a series of intersect-
ing orthogonal strips.By apportioning the load between the two
sets of strips, and designing suitable reinforcement on the
assumption that the strips are simply supported beams, the
designer has reduced an infinitely indeterminate plate to two
statically determinate beams. The only question that the
designer has to decide is the proportion of load to put onto each
of the two strips. He chooses to put a proportion of the load αq
onto the short strips,and the rest (1 – α)q onto the longer strips.
He knows that whatever value of α he chooses will satisfy the
lower bound theorem, which states:

If any stress distribution throughout the structure can be
found which is everywhere in equilibrium internally and
balances certain external loads and at the same time does not
violate the yield condition, those loads will be carried safely by
the structure.7

The important word in this theorem is ‘any’.Whatever value
of α he picks, the solution will still be in equilibrium with the
applied loads, so the moments obtained can be used as a basis
for designing the reinforcement.

However, the engineer believes that it is a ‘good thing’ to
make his value of α ‘reasonable’.He achieves this by saying that
he will choose α such that the deflections in the two strips that
intersect at the centre of the slab are equal (Fig 2).This is likely
to mean that the two strips will deflect together, which will in
turn mean that there will be no premature cracking.

A simple elastic calculation for a simply supported beam
shows that this deflection criterion gives
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so that when µ = 2.0, α = 0.941.

The engineer can then design the reinforcement in the two
directions, and to be economic, he curtails the reinforcement as
soon as possible, so that the resistance moment follows very
closely the applied moment. He has thus satisfied the second
requirement of the lower bound theorem – that the applied
moment nowhere exceeds the moment of resistance.

The designer knows that the moment field that he is design-
ing for is not ‘correct’, but he also knows that if the steel in one
direction is overloaded, either that steel will yield or the
concrete will crack more extensively, which will shed any addi-
tional load from the stiffer strips onto the less stiff strips. The
structure is safe.

The moment capacity fields provided to the slab in this way
are shown in Figs 3 and 4.

History of the slab
The scenario continues by assuming that the structure was
built to the design, using satisfactory materials and workman-
ship, and that it has suffered no exceptional events during its
life to date. The owner now wishes to have the structure
checked, so another engineer is approached to carry out an
assessment. In the meantime, the original designers have
ceased trading and the original calculations have been lost,
although a set of as-built drawings has survived in the client’s
files. A check of the structure shows no signs of corrosion. The
owner expects the check to be a formality.

The assessment
The engineer who is checking the structure is also a recent
college graduate.She is adept at using computer analysis pack-
ages, so she carries out a finite element analysis. The slab is of
uniform thickness and she has no knowledge of its state of
cracking, so she takes a uniform stiffness everywhere.She takes
Poisson’s ratio (ν) for concrete as 0.2 and she ends up with

results for three different moments, Mx, My, and Mxy, as shown
in Figs 5, 6 and 7. (The figures have been derived from a Navier
solution – they are what she would get if she did a finite element
analysis correctly.)

She uses the original drawings to determine the existing
moment capacities of the slab, which match those found by the
original designer.The applied Mx moments are considerably less
than the apparent moment capacity, but, disturbingly, the My

moment capacities seem lower than the applied moments, and
the maximum is not at the centre. There are also the Mxy

moments to deal with. The finite element package can cope
with this,however, since it has the Wood-Armer equations built-
in, so she can also determine the amount of steel that the
designer ought to have used.

Wood-Armer equations
The Wood-Armer results for the bottom steel are shown in Figs
8 and 9, which should be compared with Figs 3 and 4. The Mx

capacity required is still less than that provided at the centre,
but not at the corners; the My capacity is insufficient almost
everywhere.
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Fig. 3. (left)
Actual Mx steel (max.
0.118qa2)

Fig. 4. (below left)
Actual My steel (max.
0.029qa2)

Fig 5. (right)
Elastic Mx moments
(max. 0.0997qa2)

Fig 6. (right)
Elastic My moments
(max. 0.0382qa2)

Fig 7. (right)
Elastic Mxy moments
(max ±0.0659 qa2)
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Fig 10 shows the load factor that should be applied to the
external load so that the bottom steel is sufficient to carry the
applied moments. Values >1 are satisfactory, but this occurs
only in two small regions – elsewhere the moment capacity is
clearly insufficient, and by a large margin. To make matters
worse, the Wood-Armer equations also show that top steel is
required in the corner, to deal with the Mxy moments that are
present, even though all of the Mx and My are sagging. The
hogging Mx results are shown in Fig 11.

The checker knows, however, that the Wood-Armer equa-
tions were intended for use in design. By considering all possi-
ble failure orientations, Wood (for orthogonal reinforcement),
and Armer (for skew reinforcement) calculated the applied
moment about all possible failure orientations by simple equi-
librium:

cos sin sin cosM M M M2n x y xy
2 2= + -i i i i

They then considered the moment of resistance about any
possible axis (using Johansen’s stepped yield criterion) in terms
of the, as yet unknown, moments of resistance provided by the

steel Mx* and My*.

cos sinM M M
* * *

n x y

2 2= +i i

There are an infinity of possible solutions which ensure that
the resistance is higher than the applied moment for all orien-
tations, but Wood added the additional requirement that the
minimum total amount of steel be provided. This additional
requirement gives a unique solution for the required steel. A
typical result is shown in Fig 12.
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y xy= -

Note that the capacity is always greater than the applied
moment; the equations also minimise the steel required in two
specified directions (here 0° and 90°).

Various special cases were identified to allow for situations
where these equations required moments of the wrong sign.

Denton’s equations
Denton5 recognised that structures were failing assessments
because of the optimisation criterion imposed by Wood and
Armer. It is of no concern to a checker that the reinforcement
is not optimal. The assessor does not have to choose the rein-
forcement, she only has to check whether the applied moment
is less than the resistance moment for all orientations. Denton
published these equations in a form that determines the limit-
ing factor γ by which the applied moments have to be multiplied
so that they lie below the resistance moment for all orientations.
If γ is everywhere greater than 1 the structure is adequate – if
not it is, at least locally, overstressed.

So the checker applies these equations to find γ everywhere,
and plots the results as shown in Fig 13, which is in a similar
format to Fig 11. The results are better, but still show that the
slab is unsatisfactory in many areas,particularly in the corners
of the slab, where Mxy is high. γ factors as low as about 0.20 are
present, and even in the middle of the slab, where Mxy is zero,
γ is as low as 0.63.

These equations tell us nothing about the top steel, none of
which was provided by the designer.

The checker thus concludes that the slab is inadequate, and
recommends significant refurbishment,perhaps using glued-on
carbon fibre strips.
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by Wood-Armer
equations (max.
0.0998qa2)

Fig 9. 
My capacity required
by Wood-Armer
equations (0.0401qa2

at centre)

Fig 10. 
‘Safe’ load factor as
predicted by Wood-
Armer equations (<1
is unsatisfactory)

Fig 11. 
Hogging Mx capacity
required by Wood-
Armer equations
(max. 0.0659qa2)

Fig 12. 
Moment capacity
provided by the
Wood-Armer
equations
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The client
The client is dissatisfied. He is informed that the structure he
has been using for 30 years, without any problems and without
any indication of damage, has a strength that is only a fraction
of what it was designed for. He does not believe that a structure
so weak would have survived without problems especially since,
without admitting it to the engineers, he suspects he has been
overloading it anyway. So he requests a second opinion.

Yield line analysis
As a check on the assessment,a yield line analysis is carried out.
This had not been done before since the checker knows that it
is an upper bound, and thus ‘unsafe’.The second checker uses a
simple yield line mechanism (Fig 14), with a single pattern
parameter, which gives a load factor of 1.0 that is independent
of the value of the pattern parameter. A more complex pattern
(Fig 15), with a hogging hinge in the corner, which ordinarily
gives a lower collapse load, in this case gives a higher one.
Despite extensive searching, no mechanism can be found with
a collapse load factor less than one.The structure is declared safe
and the client is happy,but the checking engineers feel they have
lost a fruitful contract to repair a deficient structure.

Discussion
Some elements of this scenario would be familiar to most engi-
neers working today. The example is hypothetical, and to a
certain extent unrealistic.No additional safety factors have been
applied which would have provided more reinforcement than
was actually required. Only a single load case was considered
and the reinforcement was curtailed more than would have
taken place in practice. No code rules for minimum steel were
applied, which would certainly have led to a slab that was
stronger at its edges than is suggested here, and no options for
varying the proportion of load carried in the edge strips and mid-
span strips were applied.These factors would have masked the
basic problem rather than being a solution for it.

External observers,blessed with perfect knowledge and hind-
sight, can comment on the roles of the various protagonists.Can
they be criticised or should modern procedures be modified? 

The original designer applied the logic of Hillerborg’s method
correctly. He may be accused of being a little simplistic in choos-
ing a single distribution factor over the whole slab, but his
attempt to equate the deflections of the intersecting strips at the
centre the slab is reasonable.

Was the first checker at fault? Her reliance on computer
analysis would be very typical of the procedures today. Finite
element programs are cheap and easy to use – she probably
spent less time setting up her analysis than the author of this
paper did in writing the Fourier series solution. Did she make a
mistake in using the Wood-Armer equations? Yes, but she
corrected it by using Denton’s equations instead.Where she was
at fault was her reliance on what the plasticity community has
come to call ‘Navier’s straitjacket’8.This is a rigid belief that the
solution produced by an elastic analysis is the true answer.The
finite element package she used was linear, and had a uniform
stiffness in all directions. She knew that the structure would
crack,which would shed loads from one direction to another,but

it is very difficult to follow the true load-deflection path since it
depends so much on the history of the slab,on the yield strength
of the reinforcement and its bond characteristics, and on the
tensile strength of the concrete, most of which are unknown
and unknowable. It would be possible to carry out a non-linear
finite element analysis, which would supposedly allow these
effects to be taken into account, but a large number of assump-
tions would be required, it would take a very long time to set up
and run,and the results would be unlikely to be any more correct
than the linear analysis.

Any elastic solution, such as the finite element or the Fourier
series, gives a set of moments that is in equilibrium with the
applied loads.Thus, even if it is not the correct solution, a linear
elastic analysis can be used as the basis of a lower bound solu-
tion, which is ideal for design. That is the reason for the asser-
tion at the beginning of the paper that most designers rely on
the lower bound theorem every time they design a structure.
They only need to ensure that they have an equilibrium set of
moments and the capacity to resist them. Knowledge of the
‘true’ stress-state of the structure is a chimera.

Could the checker reasonably have done anything else? She
could have presumed that a lower bound method was used for
design, but it would be difficult for her to check; there are an
infinity of different ways in which the distribution factor for the
loads could have been chosen.What is simple for the designer is
very complex for the assessor. Knowing the reinforcement but
not knowing the details of the design procedure, she could have
broken the slab down into strips parallel to the reinforcement.
She could have determined the loads that would just cause the
moment capacity to be reached everywhere in one set of strips,
and then checked whether the rest of the loads could be carried
by the other set of strips. In a simple case like the one being
considered here, such an approach is feasible, but in more
complex cases it would be very difficult.

Is it surprising that the upper bound method gave a load
factor of 1? The original design provided just sufficient rein-
forcement to cope with the applied loads. Any increase in load
would have caused the strips to yield all along their length in
both directions. So a simple yield line mechanism, which allows
all the applied loads to do positive work,and the whole of the slab
to contribute to its resistance, is bound to give a load factor of 1.0.
The more extensive mechanisms, where there is a corner of the
slab in which the load does no work, are bound to give higher
collapse loads. If a slab has uniform moment of resistance,corner
fans can reduce the collapse load by about 10%, but here the
yield lines in the corner do very little work since the moment
capacity is so low.

It is also worth pointing out that any method of design that
apportioned the load according to a set of rules (such as code
rules for central and edge strips) would have fallen foul of the
assessment procedures,because they would similarly have relied
on a lower bound plasticity approach to design. So the paradox
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remains that a structure could even be designed one day,and fail
its assessment the next, without ever having been used.

Caveats
The ideas in this paper are generally applicable,but some words
of caution are necessary. If the structure is going to change its
method of carrying loads from the elastic distribution to the fully-
plastic one as it cracks or deforms it must have enough ductility
for this to occur. If it does not have enough ductility the structure
will fail when some component or element fails by overstressing.
This does not make the finite element result correct – the
designer may well still not know the support conditions or the
stiffnesses properly – but it does mean that plasticity cannot be
relied on.

In concrete structures, the most frequent reason for not being
ductile is if the structure fails in shear. If the moments are being
redistributed,equilibrium requires also that the shears are redis-
tributed,so the structure must be capable of carrying not only the
shear in the original elastic state, but also any state it passes
through en route to the final solution.

For steel structures, stability must be considered. If the struc-
ture, or an element within it, fails by buckling, then redistribu-
tion cannot occur.This can happen even in highly redundant steel
structures, such as double-layer grids. These structures are so
indeterminate, and their initial stress-state so dependent on the
way they are built, that they rarely reach their nominal capacity
due to premature buckling in compression members whose initial
stress state is not known accurately.A finite element analysis is
no help because the designer does not know what state of self-
stress to build in (even if the f.e. package allows such a thing).

The paper does not address other geometrical effects, such as
membrane action or P-δeffects.These often enhance the strength
of concrete structures but degrade the capacity of steel structures.

Steel structures are also sensitive to fatigue problems.These
stresses are dependent on the range of elastic stresses, and an
elastic finite element analysis can be relevant here, since the

total load is not being considered, only a small varying compo-
nent of it.

Conclusions
What lessons can be learnt as a profession when trying to make
the most of our existing structures?
• Remember the underlying structural principles, especially of

the lower-bound theorem.
• Remember that linear elastic solutions and lower bound tech-

niques like Hillerborg, are primarily useful for design.
• Make structures deformable,so that the redistributions inher-

ent in plasticity theory can take place.
• If a structure is to fail it must have a collapse mechanism,

whose collapse load can be computed by an upper bound analy-
sis.

• A computer analysis is only as accurate as the assumptions
that underlie it. If the stiffness of a support is unknown,or the
elastic modulus of the concrete is unknown, the stresses that
depend on it will be wrong. Neatly printed garbage is still
garbage.
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